### CHERRY LANE SLOPE MOVEMENT, SASKATOON, SK

# Geotechnical Investigation and Evaluation of Conceptual Remedial Options

#### Submitted to:

City of Saskatoon Infrastructure Services 222 - 3rd Avenue North Saskatoon, SK S7K 0J5

Attention: Mr. Andrew Hildebrandt



The City of Saskatoon is making available for your information a general study of parts of the east riverbank area conducted in 1985 by the Meewasin Valley Authority and the City of Saskatoon, as well as studies conducted for the City of Saskatoon in 2012 and 2013 for parts of the area between 11th Street East and Saskatchewan Crescent.

These reports are provided as a courtesy only. There have been significant changes in ground water levels as well as actual slope failures in recent years; therefore, the information contained in all studies must be regarded with caution and with the assistance of external experts. The City makes no representation that these reports reflect the current condition of the area.

Report Number: 11-1362-0057/5100 Distribution:

2 Copies - City of Saskatoon, Saskatoon, SK 2 Copies - Golder Associates Ltd., Saskatoon, SK



REPORT



### **Executive Summary**

Golder Associates Ltd. was retained by the City of Saskatoon to conduct a geotechnical investigation and evaluation of conceptual remedial options for the slope instability located in the area of Cherry Lane (back alley), the 200 to 300 blocks between the 11<sup>th</sup> Street East and the Saskatchewan Crescent East, Saskatoon (the Site).

Two slope failures recently occurred in this area, affecting approximately a 120 metre long section of Cherry Lane and the backyards of several houses and buildings. The first failure (referred to as the West Failure) occurred on June 20, 2012. The second failure (referred to as the East Failure) occurred sometime between June 20 and June 24, 2013. The West Failure impacted a slope area approximately 70 metre section of Cherry Lane and 40 metres from the head scarp to the toe; it was most pronounced in the backyards of 229, 231, 233/235 and 237/239 11<sup>th</sup> Street East, through Cherry Lane, and into the backyard of 222 Saskatchewan Crescent East. The West Failure resulted in the disruption and interference with the Electrical Utility Services, requiring repairs and adjustment, and disruption of the geometry and stability of the public right-of-way land, requiring closure of Cherry Lane. The East Failure affected a slope area approximately 30 metre section of Cherry Lane and 45 metres from the head scarp to the toe; it was most pronounced in the backyard of 303, 305 and 307 11<sup>th</sup> Street East, through Cherry Lane, and into the backyard of 306 Saskatchewan Crescent East. The West Failure were separated by two residential houses/apartment building, 241 11<sup>th</sup> Street East and 230 Saskatchewan Crescent East. No obvious cracking or slope movement was observed in this slope section between the two failure areas to date (May 2014).

Soil investigation and instrumentation installation were carried out to determine stratigraphy, location of the failure plane, rate of landslide movement and groundwater conditions; which are required for the development of conceptual remedial option. Monitoring of slope movements has been conducted since the West Failure occurred. The slope failures along Cherry Lane are most likely a result of a combination of the geology of the area along the riverbank, the heavy and prolonged precipitation in the spring of 2012 and 2013 that resulted in increased groundwater levels, and changes to the geometry as a result of landscaping of the slope.

The following conceptual remedial options have been evaluated for the Site:

- Option 1: Do nothing option;
- Option 2: Installation of a sub-drainage system;
- Option 3: Slope flattening with the installation of a sub-drainage system; and
- Option 4: Modification of shear zone with installation of a sub-drainage system.

As this Site poses a high risk to the public, infrastructure, and property in the area; a minimum slope factor of safety of 1.5 is recommended as the criteria for the evaluation of conceptual remedial options.





Based on the results of the option evaluation, Option 4 is recommended as a potential remedial option for the Site. The conceptual Option 4 involves the shear zone modification along Cherry Lane and the installation of a sub-drainage system (one section along 11<sup>th</sup> Street East and another along Cherry Lane). The approximate extent of the conceptual shear zone modification area is approximately 120 metres long and 4 to 13 metres wide. The construction cost estimate for this Option is in the range of 10 to 20 million dollars. While the conceptual cost of this option is estimated to be higher than the other three options, this option will result in the least disturbance to the surrounding properties (e.g., the majority of the remedial work can be confined to the area surrounding Cherry Lane), and can achieve the recommended minimum factor of safety of 1.5 for the remedial slope.





### **Table of Contents**

| 1.0 | INTRO | DUCTION                                                                     | 1  |
|-----|-------|-----------------------------------------------------------------------------|----|
| 2.0 | OBJE  | CTIVE AND SCOPE OF WORK                                                     | 3  |
| 3.0 | BACK  | GROUND                                                                      | 3  |
|     | 3.1   | Riverbank Instability History                                               | 3  |
|     | 3.2   | Historical Slope Stability Condition of the Site                            | 4  |
|     | 3.3   | Aerial Photos                                                               | 6  |
|     | 3.4   | Previous Geotechnical Studies                                               | 6  |
|     | 3.5   | Summary of Existing Foundation Plans                                        | 8  |
|     | 3.6   | Precipitation Data and Changes in Groundwater Table                         | 9  |
| 4.0 |       | ECONNAISSANCE                                                               | 14 |
| 5.0 | TOPO  | GRAPHIC SURVEY, GEOTECHNICAL INVESTIGATION AND INSTRUMENTATION INSTALLATION | 17 |
|     | 5.1   | Topographic Survey                                                          | 17 |
|     | 5.2   | Geotechnical Investigation and Instrumentation Installation                 | 17 |
|     | 5.3   | Summary of Installed Instrumentation                                        | 22 |
|     | 5.3.1 | Slope Inclinometers                                                         | 22 |
|     | 5.3.2 | Piezometers                                                                 | 22 |
|     | 5.3.3 | Survey Pins                                                                 | 23 |
|     | 5.3.4 | Tell-Tale Crack Monitors                                                    | 27 |
|     | 5.3.5 | Tilt Plates                                                                 | 27 |
|     | 5.3.6 | Settlement Points                                                           | 27 |
| 6.0 | TOPO  | GRAPHY AND STRATIGRAPHY                                                     | 28 |
| 7.0 | GROU  | NDWATER CONDITION                                                           | 33 |
| 8.0 | LABO  | RATORY TESTING                                                              | 35 |
| 9.0 | INSTR | UMENTATION MONITORING RESULTS                                               | 39 |
|     | 9.1   | Slope Inclinometer Results                                                  | 39 |
|     | 9.2   | Piezometers                                                                 | 40 |
|     | 9.3   | Survey Pin Monitoring                                                       | 43 |
|     | 9.3.1 | June 21 to June 28, 2012                                                    | 43 |
|     | 9.3.2 | June 28, 2012 to Jun 4, 2013 (100 series pins)                              | 43 |





|      | 9.3.3  | June 28, 2012 to June 28, 2013 (100 series pins)         | 43 |
|------|--------|----------------------------------------------------------|----|
|      | 9.3.4  | June 25, 2013 to September 11, 2013                      |    |
|      | 9.3.5  | September 11, 2013 to October 31, 2013 (300 series pins) | 51 |
|      | 9.4    | Monitoring of Structures                                 | 51 |
|      | 9.4.1  | Tell-Tale Crack Monitors                                 | 51 |
|      | 9.4.2  | Tilt Plates                                              | 51 |
|      | 9.4.3  | Settlement Points                                        | 51 |
| 10.0 | SLOPE  | STABILITY ANALYSIS                                       | 53 |
|      | 10.1   | General                                                  | 53 |
|      | 10.2   | Method of Analysis                                       | 53 |
|      | 10.3   | Material Properties                                      | 53 |
|      | 10.4   | Uncertainty of Input Parameters                          | 54 |
|      | 10.5   | Recommended Factor of Safety                             | 54 |
|      | 10.6   | Back-Analysis of Failure Slope                           | 55 |
|      | 10.7   | Conceptual Remedial Options                              |    |
|      | 10.7.1 | Option 1 – Do Nothing                                    | 58 |
|      | 10.7.2 | Option 2 – Installation of Sub-Drainage System           |    |
|      | 10.7.3 | Option 3 – Site Re-grading                               | 66 |
|      | 10.7.4 | Option 4 – Shear Zone Modification                       | 70 |
| 11.0 | SUMM   | ARY                                                      | 74 |
| 12.0 | CLOSU  | JRE                                                      | 76 |





| Table 1:  | Summary of Historical Reports Reviewed                                 | 7    |
|-----------|------------------------------------------------------------------------|------|
| Table 2:  | Summary of Building Foundations in Building Permits                    | 8    |
| Table 3:  | Summary of Installed Downhole Instrumentation                          | . 19 |
| Table 4:  | Slope Inclinometer Casing Summary Table                                | .22  |
| Table 5:  | Piezometer Summary Table                                               | .23  |
| Table 6:  | Atterberg Limit Test Results                                           | .36  |
| Table 7:  | Grain-size Analysis Results                                            | .37  |
| Table 8:  | Dry Density Test Results                                               | .38  |
| Table 9:  | Direct Shear Test Results                                              | .39  |
| Table 10: | Shear Strength Parameters for the Preliminary Slope Stability Analysis | .53  |
| Table 11: | Calculated Factor of Safety for Remedial Options                       | .58  |
| Table 12: | Average Slope Gradient for Conceptual Option 3 – Re-grading            | .66  |
| Table 13: | Shear Zone Modification Dimensions for Conceptual Option 4             | .70  |
| Table 14: | Risk/Benefit Summary of Conceptual Remediation Options                 | .75  |

#### FIGURES

| Figure 1:  | Site Location Plan                                            | 2    |
|------------|---------------------------------------------------------------|------|
| Figure 2:  | Borehole and Cross-Section Location Plan                      | 5    |
| Figure 3:  | Saskatoon Area Annual Precipitation (1996 to 2013)            | . 10 |
| Figure 4:  | Saskatoon Area Total Monthly Precipitation (1908 to 2013)     | .11  |
| Figure 5:  | Saskatoon Area Daily and Cumulative Precipitation (2012)      | . 12 |
| Figure 6:  | Saskatoon Area Daily and Cumulative Precipitation (2013)      | . 13 |
| Figure 7:  | Topographic Survey Plan (2013)                                | . 18 |
| Figure 8:  | Instrumentation Location Plan                                 | .21  |
| Figure 9:  | Cherry Lane Survey Pin Location Plan - 100 Series Pins (2012) | .24  |
| Figure 10: | Cherry Lane Survey Pin Location Plan - 200 Series Pins (2013) | .25  |
| Figure 11: | Cherry Lane Survey Pin Location Plan - 300 Series Pins (2013) | .26  |
| Figure 12: | Cross-Section A-A' (West Failure)                             | .29  |
| Figure 13: | Cross-Section B-B' (East Failure)                             | . 30 |
| Figure 14: | Longitudinal Section C-C' (along Cherry Lane)                 | .31  |
| Figure 15: | Longitudinal Section D-D' (along 11 <sup>th</sup> Street)     | . 32 |





| Figure 16: | Historical Groundwater Levels                                                             | 34 |
|------------|-------------------------------------------------------------------------------------------|----|
| Figure 17: | Monitored Piezometric Levels (2012-2013)                                                  | 41 |
| Figure 18: | Total Head Measured on October 30, 2013                                                   | 42 |
| Figure 19: | Monitoring Pin Location Plan for the Period of June 22-24, 2012                           | 44 |
| Figure 20: | Horizontal Slope Movements for 100 Series Pins (from June 28, 2012 to June 4, 2013)       | 45 |
| Figure 21: | Rate of Horizontal Movement Versus Time for Selected 100 Series Pins                      | 46 |
| Figure 22: | Horizontal Slope Movement for 100 Series Pins (June 28, 2012 to June 27, 2013)            | 47 |
| Figure 23: | Horizontal Slope Movements for 200 Series Pins (from June 25, 2013 to September 11, 2013) | 49 |
| Figure 24: | Rates of Horizontal Movement Versus Time for 200 Series Pins                              | 50 |
| Figure 25: | Results of Tilt Monitoring                                                                | 52 |
| Figure 26: | Back Analysis - Cross-Section A-A', West Failure                                          | 56 |
| Figure 27: | Back Analysis - Cross-Section B-B', East Failure                                          | 57 |
| Figure 28: | Slope Stability Analysis for Cross-Section A-A', Do Nothing Option With Low Water Table   | 60 |
| Figure 29: | Slope Stability Analysis for Cross-Section B-B', Do Nothing Option With Low Water Table   | 61 |
| Figure 30: | Slope Stability Analysis for Cross-Section A-A, Do Nothing Option With High Water Table   | 62 |
| Figure 31: | Slope Stability Analysis for Cross-Section B-B', Do Nothing Option With High Water Table  | 63 |
| Figure 32: | Slope Stability Analysis for Cross-Section A-A', Drainage Option                          | 64 |
| Figure 33: | Slope Stability Analysis for Cross-Section B-B', Drainage Option                          | 65 |
| Figure 34: | Slope Stability Analysis for Cross-Section A-A', Site Re-grading                          | 67 |
| Figure 35: | Slope Stability Analysis for Cross-Section B-B', Site Re-grading                          | 68 |
| Figure 36: | Conceptual Area Affected by Site Re-grading                                               | 69 |
| Figure 37: | Slope Stability Analysis for Cross-Section A-A', Shear Zone Modification                  | 71 |
| Figure 38: | Slope Stability Analysis for Cross-Section B-B', Shear Zone Modification                  | 72 |
| Figure 39: | Conceptual Area Affected by Shear Zone Modification Option                                | 73 |





APPENDICES APPENDIX A

Information and Limitations of this Report

APPENDIX B Aerial Photographs

**APPENDIX C** Field Inspection Photographs

**APPENDIX D** Topographic Survey Plan

APPENDIX E Records of Boreholes

APPENDIX F Monitoring Data

APPENDIX G Laboratory Test Results

APPENDIX H Cost Estimates for Conceptual Remediation Options





### 1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by the City of Saskatoon (the City) to conduct a geotechnical investigation and evaluation of conceptual remedial options for the slope instability located in the area of Cherry Lane (back alley), the 200 to 300 blocks between the 11<sup>th</sup> Street East and the Saskatchewan Crescent East, Saskatoon (the Site).


Two slope failures recently occurred in this area, affecting approximately a 120 metre (m) long section of Cherry Lane and the backyards of several houses and buildings. The first failure (referred to as the West Failure) occurred on June 20, 2012. The second failure (referred to as the East Failure) occurred sometime between June 20 and June 24, 2013. Site location, locations of the slope failures and civic addresses of residential properties are shown in Figure 1.

The West Failure impacted a slope area approximately 70 m section of Cherry Lane and 40 m from the head scarp to the toe; it was most pronounced in the backyards of 229, 231, 233/235 and 237/239 11<sup>th</sup> Street East, through Cherry lane, and into the backyard of 222 Saskatchewan Crescent East. The West Failure resulted in the disruption and interference with the Electrical Utility Services, requiring repairs and adjustment, and disruption of the geometry and stability of the public right-of-way (ROW) land, requiring closure of Cherry Lane. The East Failure affected a slope area approximately 30 m section of Cherry Lane and 45 m from the head scarp to the toe; it was most pronounced in the backyard of 303, 305 and 307 11<sup>th</sup> Street East, through Cherry Lane, and into the backyard of 306 Saskatchewan Crescent East. The West Failure and East Failure were separated by two residential houses/apartment building, 241 11<sup>th</sup> Street East and 230 Saskatchewan Crescent East. No obvious cracking or slope movement was observed in this slope section between the two failure areas.

This report presents a summary of field observations, the results of field investigation and monitoring program, assessment of slope stability conditions, and conceptual slope remediation options for the Site.

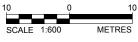
This report should be read in conjunction with "Information and Limitations of the Report", included in Appendix A. The reader is specifically directed to this information as it is essential for the proper interpretation and usage of this report.



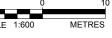


| LEGEND |
|--------|
|        |

REFERENCE


|   | _ | _ |  |
|---|---|---|--|
| 1 | - |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |

AERIAL PHOTOGRAPH PROVIDED BY CITY OF SASKATOON, MAY 15, 2011


- CRACK LOCATION (APPROXIMATE)

- 303 LOT NUMBER
- TOE OF SLUMP (APPROXIMATE)





SITE LOCATION PLAN





|                         | PR |
|-------------------------|----|
|                         | DE |
| <b>ZEE</b> Golder       | С  |
| Associates              | C⊦ |
| Saskatoon, Saskatchewan | RE |

| PROJEC | г 1     | 1-1362-0057 | FILE No. |
|--------|---------|-------------|----------|
| DESIGN | LM      | 08/05/14    | SCALE    |
| CADD   | BDS/JDS | 08/05/14    |          |
| CHECK  | HV      | 08/05/14    | FI       |
| REVIEW | PGB     | 08/05/14    |          |

City of CHERRY LANE SLOPE INSTABILITY

IGURE: 1

### 2.0 OBJECTIVE AND SCOPE OF WORK

The objective of this work was to develop a conceptual remediation plan for the Site (i.e., the West Failure, the East Failure, and the section of Cherry Lane between the two existing failures).

The scope of work for this study, as presented in our work plan dated July 12, 2013 includes:

- project management and meetings;
- geotechnical information review and compilation;
- structural engineering support;
- installation of survey control network and topographic survey;
- development of soil investigation program and monitoring system;
- soil investigation and instrumentation installation;
- soil laboratory testing;
- field monitoring;
- geotechnical analysis;
- development and evaluation of conceptual remediation options; and
- preparation of this engineering report.

Site reconnaissance, slope movement monitoring, and meetings with the City began when the slope movement occurred in June 2012, as part of the emergency response to the slope movement. Prior to July 2013, site reconnaissance and monitoring conducted by Golder was restricted to a portion of the Site owned by the City (i.e., Cherry Lane). Recent site reconnaissance and monitoring have been conducted for the entire Site, which is partially-owned by the City and partially-owned properties of private landowners. These tasks have been continued to date (May 2014); the results of our field observations and monitoring program have been provided to the City following each monitoring visit.

#### 3.0 BACKGROUND

#### 3.1 Riverbank Instability History

The topography of Saskatoon is a generally level plain of low relief dissected by the valley of the South Saskatchewan River. The South Saskatchewan River within Saskatoon runs through glacial till underlying surficial stratified deposits (SSD) of lacustrine clays, silts, and sands. The river is a discharge receptor for many of the aquifer systems in this geographic region. Slope instability along the east riverbank in the City has been an ongoing problem since 1913 (Clifton et al. 1981). Clifton et al. (1981), Clifton (1985), Eckel et al. (2002) and Golder (2008a) provide a detailed review of the geology, hydrogeology, historical slope instability activities and remedial works for the east river bank.

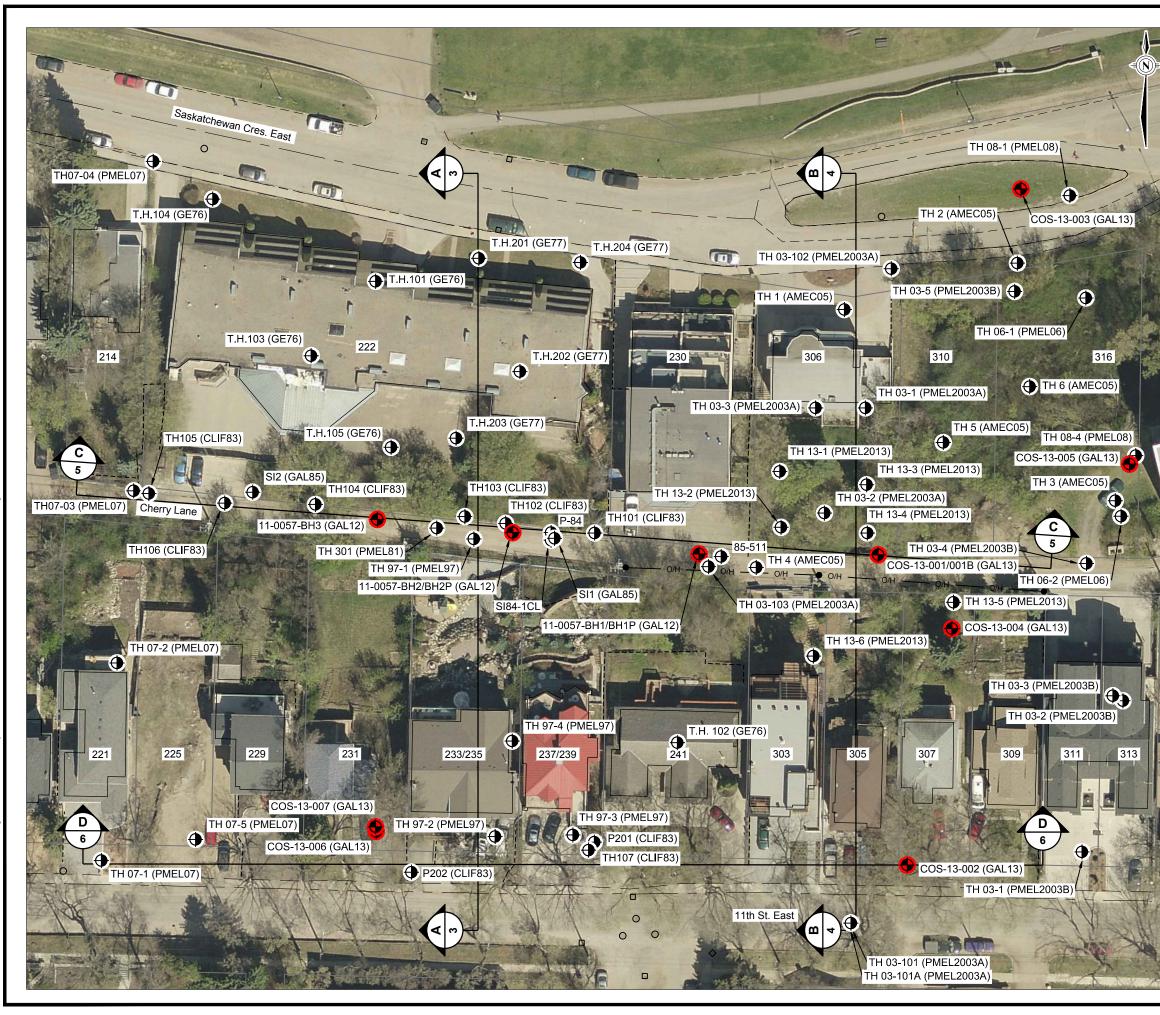




There is an increasing level of slope instability along the riverbank in recent years. High annual precipitation and heavy and prolonged precipitation events occurring in the last few years have increased piezometric levels in soils and contributed to slope instability.

### 3.2 Historical Slope Stability Condition of the Site

Riverbank instability occurs as a result of shear failure within the soil mass. Slope stability conditions depend on the site stratigraphy, soil materials, slope geometry, groundwater conditions and time. Most of the slope failures occur as shear within the lacustrine clay of the SSD at the contact with the till. The stability of a slope can be negatively affected by a number of activities (Clifton 1985), including: i) adding weight to the slope (such as fills on the slope and snow dumps); ii) increase in the elevation of the water table (resulting from lawn watering, leaking water mains, sewers and storm water lines, surface runoff directed towards the slope, blockage of the zone of seepage by placed fill, and the reduction in evapotranspiration through removal of vegetation, covering the slope with a membrane, or covering the slope with gravel); iii) excavation of the slope face (e.g., for road cuts and basement excavations); iv) removing natural vegetation (e.g., mature trees that tend to stabilize the slope); v) erosion of toe of the slope; and vi) vibrations (e.g., pile driving and explosives).


P. Machibroda Engineering Ltd. (PMEL) (1997) suggested the following primary mechanisms contributing to instability:

- prolonged periods of precipitation and/or spring snowmelt resulting in induced surface infiltration;
- toe erosion at the lower reach of the riverbank; and
- influences from upslope or down slope development including site grading, groundwater discharge or recharge and/or building development.

Clifton (1985) highlights the Cherry Lane area as an area where "existing landslides potentially threaten structures or improvements placed on or near the top of the slopes" and states that "the effects of movement can be seen on several parcels of private property and on several structures". The report also states that new improvements would require detailed slope stability analysis with particular consideration to sites that "lie on a landform, such as the old head scarps landward from Cherry Lane, where shear strain, however slow, can be expected".

Following the findings of the Clifton (1985) report, an agreement between Meewasin Valley Authority (MVA) and the City was signed on October 7, 1985 (City of Saskatoon 1985). This agreement outlined the responsibilities of each party in monitoring 17 inclinometers mentioned in the agreement, as well as any additional instrumentation that may be installed pursuant to the agreement. The 17 inclinometers that form the basis of the monitoring program were installed in 1984 and 1985. This agreement recommended monitoring the inclinometers in the spring and fall of each year, with more frequent monitoring during unusually heavy precipitation periods, and at locations where large displacements were observed.

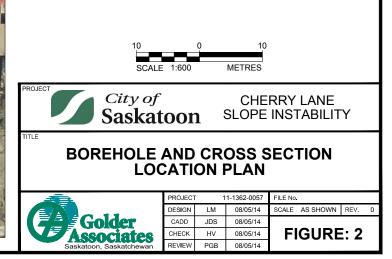
Two inclinometers, designated as SI84-1CL and 85-511 with locations presented on Figure 2 were installed and monitored in Cherry Lane. However Inclinometer SI84-1CL was blocked in 2004 and inclinometer 85-511 was bent in 2006. Inclinometer SI-84 ICL recorded approximately 20 millimetres (mm) of total movement for the period from November 1992 to October 2001. Inclinometer 85-511 recorded approximately 32 mm of total movement for the period from August 1985 to October 2005.



#### REFERENCES

- GE76 GROUND ENGINEERING LTD. APR. 9, 1976. GEOTECHNICAL INVESTIGATION 216, 218 AND 220 SASKATCHEWAN CRESCENT
- GE77 GROUND ENGINEERING LTD. JULY 4, 1977. GEOTECHNICAL SITE
- INVESTIGATION PROPOSED HOUSING COMPLEX, SASKATCHEWAN CRESCENT • PMEL81 - P. MACHIBRODA ENGINEERING LTD. JUNE 17, 1981. GEOTECHNICAL INVESTIGATION PROPOSED APARTMENT BUILDING SASKATCHEWAN CRESCENT, SASKATOON, SASKATCHEWAN

 CLIF83 - CLIFTON ASSOCIATES LTD. AUG. 17, 1983. GEOTECHNICAL STUDIES PROPOSED PARK TERRACE CONDOMINIUMS 222 SASKATCHEWAN CRESCENT EAST SASKATOON, SK.


- GAL85 GOLDER ASSOCIATES LTD. MAY 1985. PROGRESS REPORT NO. 1 SLOPE MONITORING PROGRAM, PARK TERRACE CONDOMINIUMS, 222 SASKATCHEWAN CRESCENT EAST, SASKATOON, SASKATCHEWAN
- PMEL97 P. MACHIBRODA ENGINEERING LTD. SEPT. 15, 1997. GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY STUDY PROPOSED RESIDENTIAL DEVELOPMENT, 237-11TH STREET EAST, SASKATOON, SASKATCHEWAN
- PMEL03A P. MACHIBRODA ENGINEERING LTD. SEPTEMBER 11, 2003.
   GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY STUDY PROPOSED GARAGE, 306 SASKATCHEWAN CRESCENT EAST, SASKATOON, SASKATCHEWAN, PMEL FILE NO. S03-4869
- PMEL03B P. MACHIBRODA ENGINEERING LTD. OCTOBER 31, 2003. GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY STUDY PROPOSED RESIDENCE, 313-11TH STREET EAST, SASKATOON, SASKATCHEWAN, PMEL FILE NO. S03-4925
- AMEC05 AMEC EARTH & ENVIRONMENTAL. JULY 27, 2005. REVISED SLOPE STABILITY ASSESSMENT PROPOSED CONDOMINIUM DEVELOPMENT, 316 SASKATCHEWAN CRESCENT, SASKATOON, SASKATCHEWAN
- PMEL06 P. MACHIBRODA ENGINEERING LTD. JULY 14, 2006. GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY STUDY PROPOSED CONDOMINIUM 316 -SASKATCHEWAN CRESCENT EAST, SASKATOON, SK
- PMEL07 P. MACHIBRODA ENGINEERING LTD. JUNE 12, 2007. GEOTECHNICAL INVESTIGATION AND SLOPE STABILITY STUDY PROPOSED RESIDENCES, 221 & 225 -11TH STREET EAST, SASKATOON, SK
- PMEL08 P. MACHIBRODA ENGINEERING LTD. JULY 8, 2008. PROPOSED COMMERCIAL/RESIDENTIAL DEVELOPMENT 328 SASKATCHEWAN CRESCENT EAST, SASKATOON, SK
- GAL12 GOLDER ASSOCIATES LTD. MAY 2013. ASSESSMENT OF SLOPE INSTABILITY AT 200 BLOCK, 11TH STREET EAST.
- PMEL13 P. MACHIBRODA ENGINEERING LTD. JULY 18, 2013. SLOPE INSTABILITY 230/306 SASKATCHEWAN CRESCENT SASKATOON, SK. DRAWING NO S13-8517-1 TO 7

#### LEGEND

| •        | BOREHOLE LOCATION (OTHERS)              |
|----------|-----------------------------------------|
| <b>•</b> | BOREHOLE LOCATION (GOLDER)              |
| •        | 2013 & 2012 BOREHOLES LOCATION (GOLDER) |
| •        | POWER POLE                              |
|          | CATCH BASIN                             |
| 0        | MANHOLE                                 |
| - о/н —  | OVERHEAD POWER LINE                     |
| 303      | LOT NUMBER                              |
|          |                                         |

#### REFERENCE

AERIAL PHOTOGRAPH PROVIDED BY CITY OF SASKATOON, MAY 15, 2011 CITY OF SASKATOON DATUM



## CHERRY LANE GEOTECHNICAL INVESTIGATION AND EVALUATION

As part of the City's site reconnaissance program for the east riverbank; site reconnaissance for Cherry Lane was conducted yearly by Golder since 2006. The 2012 site reconnaissance was conducted on April 26, 2012. As noted during these inspections, deflected curbs and fences, drops in the pavement and tension cracks were present; however, no noticeable slope movement was observed at the time of inspection.

The City noted that during surveys and inspections in 2012, there was no evidence of leaking water mains, storm drains or sewers in the vicinity of the study area.

### 3.3 Aerial Photos

Aerial photos covering the City area, including the Site were taken in 1939, 1958, 1961, 1970, 1974, 1977, 1987, 1997, 2001, 2006 and 2011 and are included Appendix B. The site is located in a meander bend of the South Saskatchewan River, where river erosion may affect the stability of the slope. Rotary Park and the fill area immediately north of Saskatchewan Crescent East were constructed in the 1960s. Apartment building 328 on Saskatchewan Crescent East was constructed before a portion of the river immediately north of Saskatchewan Crescent East was filled in in the 1960s. Apartment buildings 222 and 230 on Saskatchewan Crescent East were constructed before 1987. Construction of 233/235 and 237/239 11<sup>th</sup> Street East and some landscaping work was completed before 2001. The landscaping in the backyards of 233/235 and 237/239 11<sup>th</sup> Street East was completed before 2006. Construction of 303 11<sup>th</sup> Street East and landscaping of this property was completed before 2011.

### 3.4 Previous Geotechnical Studies

A large amount of background information is available on the geology, hydrogeology, slope conditions and soil properties for the east riverbank within the City in general and at the Site. General background information related to slope stability assessment for the east riverbank includes various geologic and hydrogeologic data published in the physical environment of Saskatoon (Christiansen 1968, 1970, 1979, Sauer 1975, Haug et al. 1977, Clifton et al. 1981); riverbank instability study reports prepared for the MVA and the City (Clifton 1985, Golder 2008a, 2013a); and riverbank site reconnaissance and monitoring reports (Eckel et al. 2002, Golder 2013b, AMEC 2005a to 2010, 2013).

Available geotechnical information and documents for the area surrounding the Cherry Lane slope movement include geotechnical and riverbank assessment reports and aerial imagery provided by the City, the MVA and local landowners for the 200 to 300 block of 11<sup>th</sup> Street East and the 200 to 300 block of Saskatchewan Crescent East in Saskatoon. Table 1 shows a summary of the site specific reports for the Site. These reports were mainly prepared for residential development at various times.





#### Table 1: Summary of Historical Reports Reviewed

| Title (Abbreviation)                                                                                                                                                                                    | Author                            | Year           | Location                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|---------------------------------------------------|
| Geotechnical Investigation 216, 218 and 220<br>Saskatchewan Crescent (GE76)                                                                                                                             | Ground Engineering<br>Ltd.        | Apr. 9, 1976   | 222 Saskatchewan<br>Crescent East                 |
| Geotechnical Site Investigation Proposed Housing<br>Complex, Saskatchewan Crescent (GE77)                                                                                                               | Ground Engineering<br>Ltd.        | Jul. 4, 1977   | 222 Saskatchewan<br>Crescent East                 |
| Geotechnical Investigation Proposed Apartment Building<br>Saskatchewan Crescent, Saskatoon, Saskatchewan<br>(PMEL81)                                                                                    | P. Machibroda<br>Engineering Ltd. | Jun. 17, 1981  | 222 Saskatchewan<br>Crescent East                 |
| Geotechnical Studies, Proposed Park Terrace<br>Condominiums 222 Saskatchewan Crescent East<br>Saskatoon, SK (CLIF83)                                                                                    | Clifton Associates Ltd.           | Aug. 17, 1983  | 222 Saskatchewan<br>Crescent East                 |
| Progress Report No. 1 Slope Monitoring Program, Park<br>Terrace Condominiums, 222 Saskatchewan Crescent<br>East, Saskatoon, Saskatchewan (GAL85)                                                        | Golder Associates<br>Ltd.         | May 1985       | 222 Saskatchewan<br>Crescent East                 |
| Slope Instability Study, South Saskatchewan River Bank Saskatoon, Saskatchewan (CLIF85)                                                                                                                 | Clifton Associates Ltd.           | Dec. 23, 1985  | East Riverbank                                    |
| Feasibility of Horizontal Drains for Slope Stabilization<br>East Bank – South Saskatoon, Saskatchewan (GAL89)                                                                                           | Golder Associates<br>Ltd.         | Apr. 1989      | East Riverbank                                    |
| Geotechnical Investigation and Slope Stability Study,<br>Proposed Residential Development, 237-11 <sup>th</sup> Street East,<br>Saskatoon, Saskatchewan (PMEL97)                                        | P. Machibroda<br>Engineering Ltd. | Sept. 15, 1997 | 237 – 11 <sup>th</sup> Street East                |
| Geotechnical Investigation and Slope Stability Study,<br>Proposed Garage, 306 Saskatchewan Crescent East,<br>Saskatoon, Saskatchewan, PMEL File No. S03-4869<br>(PMEL03A)                               | P. Machibroda<br>Engineering Ltd. | Sept. 11, 2003 | 306 Saskatchewan<br>Crescent East                 |
| Geotechnical Investigation and Slope Stability Study,<br>Proposed Residence, 313-11 <sup>th</sup> Street East, Saskatoon,<br>Saskatchewan, PMEL File No. S03-4925 (PMEL03B)                             | P. Machibroda<br>Engineering Ltd. | Oct. 31, 2003  | 313 – 11 <sup>th</sup> Street East                |
| Revised Slope Stability Assessment, Proposed<br>Condominium Development, 316 Saskatchewan<br>Crescent, Saskatoon, Saskatchewan (AMEC05)                                                                 | AMEC Earth & Environmental        | Jul. 27, 2005  | 316 Saskatchewan<br>Crescent East                 |
| Geotechnical Investigation, Proposed Idylwyld Lift Station Saskatoon, Saskatchewan (GAL06)                                                                                                              | Golder Associates<br>Ltd.         | Feb. 2006      | East of Sid Buckwold<br>Bridge                    |
| Geotechnical Investigation and Slope Stability Study,<br>Proposed Condominium 316 - Saskatchewan Crescent<br>East, Saskatoon, SK (PMEL06)                                                               | P. Machibroda<br>Engineering Ltd. | Jul. 14, 2006  | 316 Saskatchewan<br>Crescent East                 |
| Geotechnical Investigation and Slope Stability Study,<br>Proposed Residences, 221 & 225 - 11 <sup>th</sup> Street East,<br>Saskatoon, SK (PMEL07)                                                       | P. Machibroda<br>Engineering Ltd. | Jun. 12, 2007  | 221 and 225 – 11 <sup>th</sup><br>Street East     |
| Proposed Commercial/Residential Development, 328<br>Saskatchewan Crescent East, Saskatoon, SK (PMEL08)                                                                                                  | P. Machibroda<br>Engineering Ltd. | Jul. 8, 2008   | 328 Saskatchewan<br>Crescent East                 |
| Storm Sewer Preservation, East River Bank Slope<br>Stabilization, City of Saskatoon File No. PW 8250-4/IS<br>7821-3 (GAL08)                                                                             | Golder Associates<br>Ltd.         | Jul. 28, 2008  | East Riverbank                                    |
| Supplementary Comments and Visual Review and<br>Groundwater Monitoring Results, Proposed<br>Condominium 316-Saskatchewan Crescent East<br>Saskatoon, Saskatchewan, PMEL File No. S09-5722.1<br>(PMEL09) | P. Machibroda<br>Engineering Ltd. | Nov. 16, 2009  | 316 Saskatchewan<br>Crescent East                 |
| Assessment of Slope Instability at 200 to 300 block, 11 <sup>th</sup> Street East (GAL12)                                                                                                               | Golder Associates<br>Ltd.         | May 2013a      | 200 to 300 block, 11 <sup>th</sup><br>Street East |





In addition to the geotechnical reports listed above, Golder also reviewed building permit information provided by the City for 222 and 230 Saskatchewan Crescent East and 229, 233-236, 239, 241, and 303 – 11<sup>th</sup> Street East.

### 3.5 Summary of Existing Foundation Plans

Foundation plans provided to the City as part of the building permit process were reviewed to determine the type and depths of foundation for those buildings located near the Cherry Lane slope failure, and are summarized in Table 2. It is not known if the installed foundations match the proposed building plans provided for review.

| Location                                                                                                                                            | Foundation Type              | Foundation Size                                                                                                                                                       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 222 Saskatchewan<br>Crescent East                                                                                                                   | cast-in-place concrete piles | 23 – 305 mm diameter, 6 m long<br>88 – 406 mm diameter, 6 m to 14 m long<br>20 – 600 mm diameter, 10 m to 14 m long                                                   |  |  |  |  |
|                                                                                                                                                     | battered concrete piles      | 5 – 406 mm diameter, 8 m to 10 m long                                                                                                                                 |  |  |  |  |
| 230 Saskatchewan<br>Crescent East                                                                                                                   | cast-in-place concrete piles | 2 – 500 mm diameter, 7.6 m long<br>25 – 406 mm diameter, 6.1 m to 7.9 m long<br>17 – 406 mm diameter, 3.0 m to 5.8 m long<br>8 – 406 mm diameter, 0.6 m to 2.7 m long |  |  |  |  |
| 306 Saskatchewan                                                                                                                                    | cast-in-place concrete piles | 2 – 254 mm diameter, 3.0 m deep (garage)<br>1 – 203 mm diameter, 3.0 m deep (garage)                                                                                  |  |  |  |  |
| Crescent East                                                                                                                                       | concrete footings            | 610 mm square, 203 mm thick and 1,372 mm square, 229 mm thick, step down (ground floor)                                                                               |  |  |  |  |
|                                                                                                                                                     | cast-in-place concrete piles | 10 – 305 mm diameter, 6.1 m long                                                                                                                                      |  |  |  |  |
| 229 – 11 <sup>th</sup> Street East                                                                                                                  | concrete footings            | 610 mm square, 203 mm thick, step down, minimum 1.2 m deep                                                                                                            |  |  |  |  |
| 231 – 11 <sup>th</sup> Street East                                                                                                                  | Demolished                   | N/A                                                                                                                                                                   |  |  |  |  |
| 233/235 – 11 <sup>th</sup> Street<br>East                                                                                                           | cast-in-place concrete piles | 5 – 305 mm diameter, 6.1 m long<br>15 – 406 mm diameter, 6.1 m to 9.1 m long<br>15 – 406 mm diameter, 10.7 m to 13.7 m long                                           |  |  |  |  |
| 237/239 – 11 <sup>th</sup> Street<br>East cast-in-place concrete piles                                                                              |                              | 1 – 305 mm diameter, 6.1 m long<br>17 – 406 mm diameter, 7.6 m to 9.1 m long<br>14 – 406 mm diameter, 10.7 m to 12.2 m long                                           |  |  |  |  |
| 241 – 11 <sup>th</sup> Street East                                                                                                                  | concrete footings            | 610 mm strip, 305 mm thick                                                                                                                                            |  |  |  |  |
| 303 - 11 <sup>th</sup> Street Eastcast-in-place concrete piles44 - 305 mm diameter, 4.9 m to 5.8 m long<br>8 - 406 mm diameter, 5.8 m to 7.0 m long |                              |                                                                                                                                                                       |  |  |  |  |
| 305 – 11 <sup>th</sup> Street East                                                                                                                  | cast-in-place concrete piles | 8 – 305 mm diameter, 3.7 m long (rear addition)                                                                                                                       |  |  |  |  |
| 307 – 11 <sup>th</sup> Street East                                                                                                                  | cast-in-place concrete piles | 10 – 254 mm diameter, 6.1 m long (back porch)<br>1 – 203 mm diameter, 2.4 m long (2 <sup>nd</sup> floor addition)                                                     |  |  |  |  |
|                                                                                                                                                     | concrete footings            | 610 mm square, 305 mm thick (front veranda)                                                                                                                           |  |  |  |  |

Table 2: Summary of Building Foundations in Building Permits

mm = millimetre; m = metre

Buildings located along Saskatchewan Crescent East are founded on piles and/or strip footings. Foundation elevations of the buildings at 222 and 306 Saskatchewan Crescent East appeared to be below the till/clay contact (i.e., shear zone) and likely have an insignificant effect on the slope movement. The retaining wall and foundation system of 230 Saskatchewan Crescent East, which extended further upslope, appears to have a positive effect to the stability of the upper slope south of this building. However, it is unknown to what degree this retaining wall and foundation system can sustain slope movement.

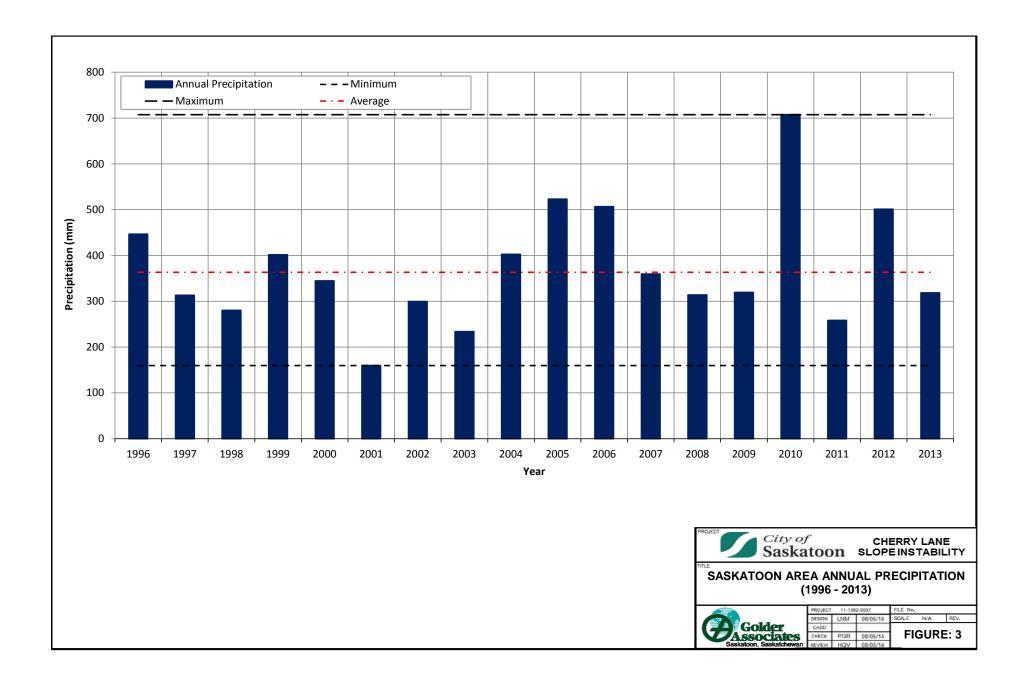


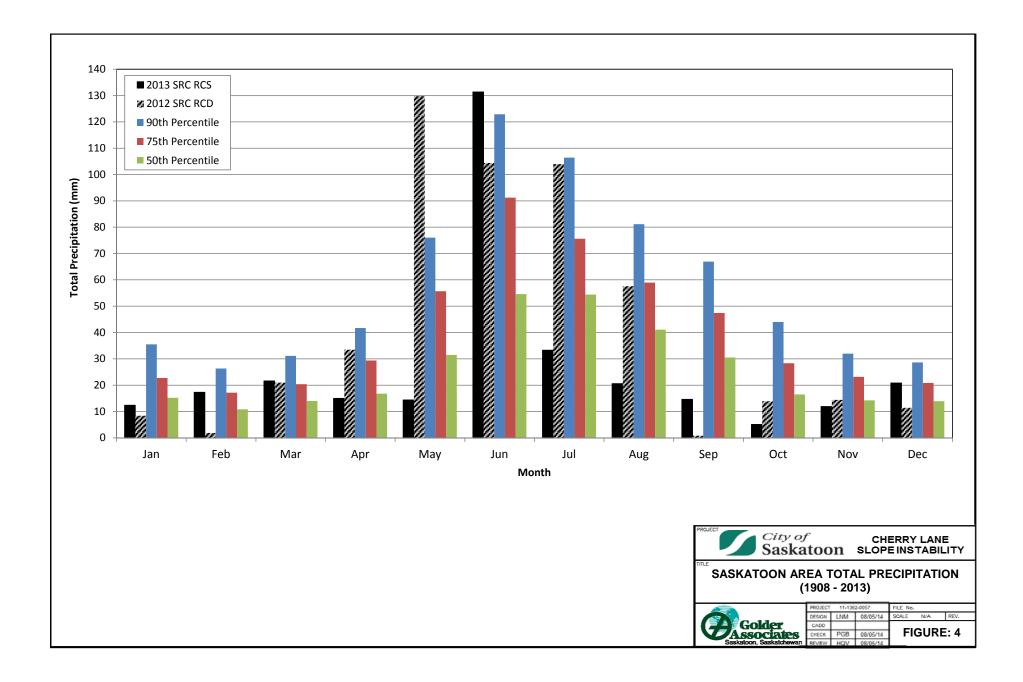


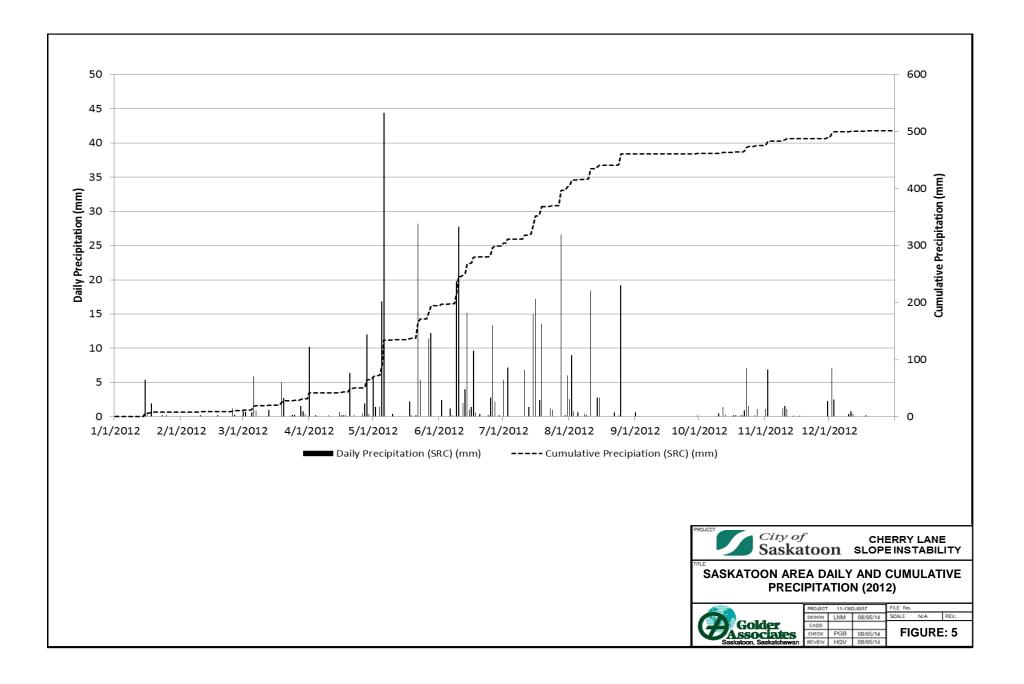
### 3.6 **Precipitation Data and Changes in Groundwater Table**

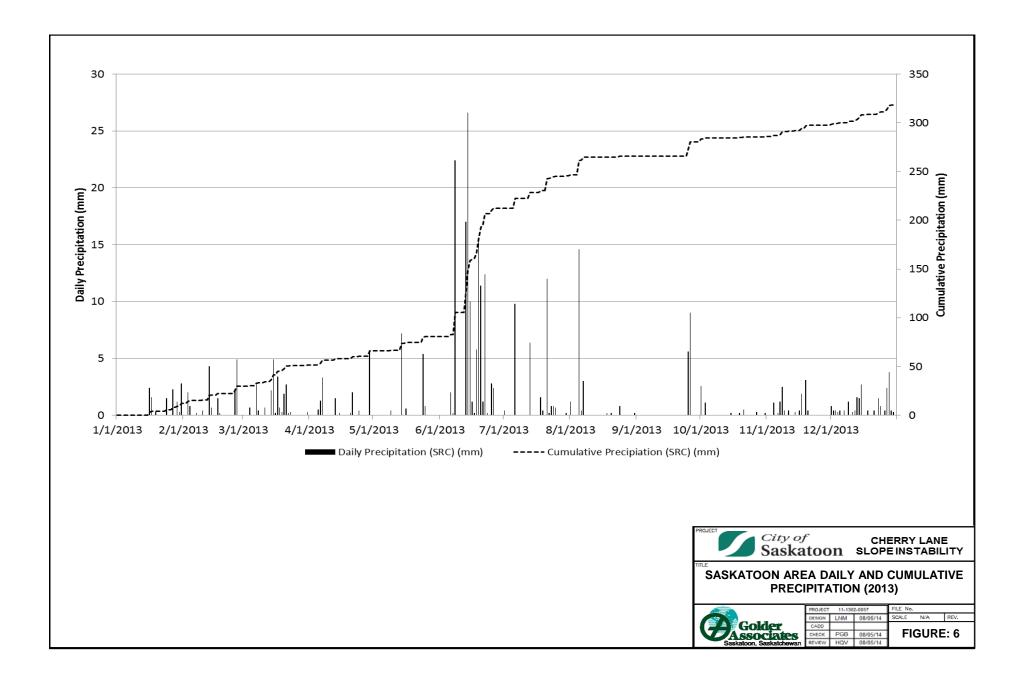
Groundwater levels in the SSD, especially in the clay layer overlying till, have a significant influence on slope stability at the Site. Increases in groundwater elevation decrease the stability of the slope. In general, groundwater levels vary in response to the amount of water available at the ground surface and the amount of discharge or recharge potential of the soil profile, which are dependent on the variation of precipitation.

The 105 year daily total precipitation record for Saskatoon was analysed by Golder to determine the climatic conditions that may have influenced slope stability at the Site. The record was based on observations from the Environment Canada Reference Climate Station (EC 2013) for the years 1908 to 2007 and the Saskatchewan Research Council Climate Reference Station (SRC-CRS) (SRC 2013) from 2008 to present.


Saskatoon has experienced a wet cycle over the past ten years. Following a severe drought from 1997-2003, precipitation was above average between 2004 and 2006 (Figure 3) with 2005 and 2006 being the fourth and fifth wettest years on record, respectively. Although precipitation was below average between 2007 and 2009, the wettest year on record occurred in 2010 when 708 mm fell, almost double the historic average. High precipitation in 2010 created the antecedent conditions that led to flooding throughout the Prairie Provinces during 2011.


Although low through the winter of 2011-2012, precipitation was above normal during the spring and summer of 2012, particularly May and June (Figure 4). Several rain events between 10 and 25 mm led to a total precipitation of 129.8 mm in May 2012, making it the third wettest year observed between 1908 and 2012 and more than three times the median value of 31.5 mm: 69.6 mm of rain fell in the first week of May with 61.2 mm concentrated on May 5 and 6, 2012. On May 22 and 23, 2012, 33.6 mm of rain fell.


Rainfall in June 2012 was 104.4 mm, making it almost twice the median June precipitation of 54.6 mm (Figure 4). Sustained daily rainfall between June 9 and June 19, 2012 amounted to 81mm with 47.6 mm concentrated on June 9 and 10, 2012 (Figure 5). An additional 18.6 mm fell between June 24 and June 27, 2012.


The 2012-2013 winter snowpack leading up to the spring runoff was high. Cumulative winter precipitation from November 1, 2012 to March 4, 2013 exceeded 200% of average in Saskatoon (WSA 2013). There was below normal precipitation during April and May of 2013 (Figure 5). However, total June precipitation was approximately twice the median with 131.4 mm total precipitation of which 101.6 mm fell between June 13, 2013 and June 23, 2013 (Figure 6).













### 4.0 SITE RECONNAISSANCE

Visual inspection of the Site has been conducted yearly since 2006; more frequent inspection was conducted after the West Slide Failure in June 2012. Observations during the inspections are presented in Golder (2008a, 2008b, 2009, 2010, 2011, 2013a, 2013b). A summary of key observations and events from visual monitoring across the site has been broken down into a timeline, as follows. Photographs taken during the inspections are presented in Appendix C:

2006 to June 20, 2012

The site had experienced deformation and some movement prior to the West Failure event on June 20, 2012. During the annual site reconnaissance conducted by Golder, active land development (e.g., new house/building construction and landscaping work) was noted; deflected curbs and fences, drops in pavement and tension cracks were observed, as shown in Photos C.1, C.2, and C.3. However, no noticeable slope failure was observed. The toe of the upper slope, along Cherry Lane, prior to the West Failure event is shown in Photo C.4.

June 21, 2012

Golder was notified by the City that a slope failure (i.e., the West Failure) had occurred at Cherry Lane. During the site inspection conducted by Golder and the City, the following observations were noted:

- The failure was predominately in the backyards of 229, 231, 233/235 and 237/239 11<sup>th</sup> Street East, through Cherry Lane, and into the backyard of 222 Saskatchewan Crescent East.
- The head scarp of the slide crossed through the backyard of 233/235 11<sup>th</sup> Street East (Photo C.5).
- The toe of the slide crossed through the lane into the backyard of 222 Saskatchewan Crescent East (Photos C.6 and C.7).
- There was cracking behind and displacement of the bricks along the retaining wall in the backyard of 237/239 - 11<sup>th</sup> Street East (Photos C.8 and C.9).
- There was tension cracking along the lane, behind 237/239 11<sup>th</sup> Street East (Photo C.10).
- There was cracking along the head scarp of the East Failure location (behind 303 and 305 11<sup>th</sup> Street East, Photo C.11).
- After June 21, 2012

Subsequent to the West Failure, the following activities and observations were made in the summer of 2012. Field inspection and slope monitoring was restricted to portion of the Site owned by the City (i.e., Cherry Lane).

- The SaskEnergy gas line that runs along Cherry Lane was shut off and relocated to reduce the public safety hazard.
- Subsequent to the West Failure event, Golder initiated a slope monitoring program along the lane. The monitoring program included the installation of slope movement and groundwater monitoring equipment.



- Homeowners affected by the slide were advised to seek independent geotechnical advice on their residences.
- Golder continued to conduct visual inspections approximately every other day throughout July 2012. The frequency of site inspections decreased as the rate of slope movement decreased in the fall and winter seasons.
- No significant slope movement was recorded east of 230 Saskatchewan Crescent East along Cherry Lane in 2012.
- June 24, 2013

Golder was notified by the City that a second slide had occurred at Cherry Lane (i.e., the East Failure); predominantly in the backyards of 303 and 305 - 11<sup>th</sup> Street East, through Cherry Lane, and into the backyard of 306 Saskatchewan Crescent East. During the site inspection conducted by Golder and the City, the following observations were noted:

- The head scarp of the slide crossed though the backyards of 303 and 305 11<sup>th</sup> Street East; the ground surface had dropped approximately 0.6 m to 0.9 m (Photos C.12 and C.13).
- The toe of the slide was located in the backyard of 306 Saskatchewan Crescent East (Photo C.14).
- There was severe cracking along the lane behind 305 11<sup>th</sup> Street East; the ground surface had dropped approximately 0.5 m (Photo C.15).
- There was tension cracking along the lane behind 303 11<sup>th</sup> Street East (Photo C.16).
- Damage to the retaining wall in the backyard of 237/239 11<sup>th</sup> Street East, in the West Slide area, was also noted to be more extensive during the site inspection on June 24, 2013, compared to the observations noted on June 4 and 20, 2013 (Photos C.17, C.18, and C.19).
- July to August 2013

Site reconnaissance and monitoring had been conducted for the entire Site. Subsequent to the East Failure, the following activities and observations were made in the summer of 2013.

- Golder conducted daily site inspections for the remainder of June 2013 and the majority of July 2013.
   Additional slope movement and groundwater monitoring equipment was installed in July and August 2013.
- Homeowners affected by the slide were advised to seek independent geotechnical advice on their residences.
- Cracking along Cherry Lane, between 303 and 305 11<sup>th</sup> Street East and 306 Saskatchewan Crescent East became more severe in the weeks following the East Failure. The drop in the pavement observed behind 305 11<sup>th</sup> Street East increased to approximately 0.5 m by June 4, 2013 (Photo C.20).
- On July 5 and 6, 2013, the City's Public Works was on site to seal tension cracking along the lane and re-grade the section of Cherry Lane behind 305 11<sup>th</sup> Street East (Photo C.21). That night there was a rainfall event that continued into the following morning. That afternoon (July 6, 2013), Golder and the City were notified by the owners of 306 Saskatchewan Crescent East that runoff was flowing from the





parking lot of the apartment building at 328 Saskatchewan Crescent East, along the lane and into the backyard of 306 Saskatchewan Crescent East. The runoff was causing erosion along the lane (Photo C.22) and washing the cold patch material that had been used to re-grade the section of the lane behind 305 - 11<sup>th</sup> Street East into the backyard of 306 Saskatchewan Crescent East. The City subsequently re-graded the eroded area and constructed a soil berm along the north edge of the lane, adjacent to the backyard of 306 Saskatchewan Crescent East (Photo C.23).

July 7, 2013

During the site inspection the following observations were noted:

- A trench was being excavated, by one of the residents, along the east side of the concrete retaining wall between 230 and 306 Saskatchewan Crescent East (Photo C.24). The retaining wall had been flexing and cracking under the loading of the adjacent soil on the lower slope (Photo C.25 and C.26).
- New tension cracks had appeared along the section of lane that had been re-graded, behind 305-11<sup>th</sup> Street East (Photo C.27). The City's Public Works returned to site to re-grade the lane and seal tension cracks again on July 12 and 21, 2013.
- July 12, 2013

The City implemented a voluntary evacuation notice due to the accelerated rate of movement that was observed at that time.

July 17, 2013

It was noted that the trench that had been excavated along the east side of the concrete retaining wall between 230 and 306 Saskatchewan Crescent East had been partially backfilled with soil (Photo C.28).

August 18, 2013

The City Public Works constructed an asphalt berm on the north edge of Cherry Lane, between 303 and 305 - 11th Street East and 306 Saskatchewan Crescent East. A V-shaped berm was installed on the lane, behind 311 - 11<sup>th</sup> Street East to capture runoff from the parking lot of 328 - 11<sup>th</sup> Street East and direct the water to a 200 mm diameter pipe on the surface of the lane (Photo C.29).

Fall 2013

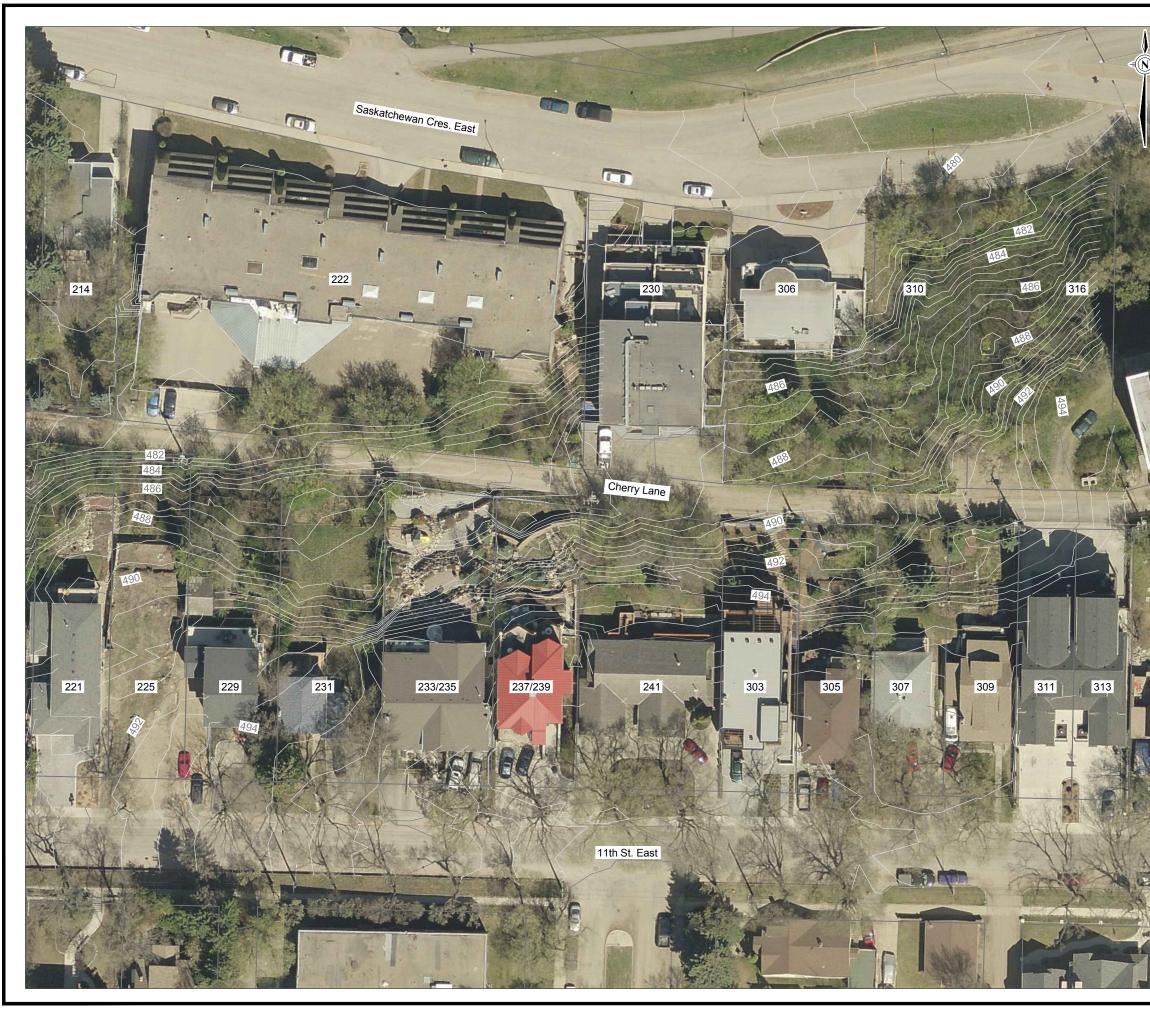
The frequency of site inspections decreased as slope movement decreased in the fall and winter seasons.



# 5.0 TOPOGRAPHIC SURVEY, GEOTECHNICAL INVESTIGATION AND INSTRUMENTATION INSTALLATION

### 5.1 **Topographic Survey**

Topographic survey was conducted for the West Failure by the City and Golder in 2012 (Golder 2013a) after the West Failure occurred, and then for the entire Site (including 219 to 313 – 11<sup>th</sup> Street East, 212 to 316 Saskatchewan Crescent East, and Cherry Lane) by Meridian Surveys Ltd. of Saskatoon during the period from July 16 to July 25, 2013, after the East Slide occurred. The survey included the property outlines, roads and landslide features surrounding Cherry Lane. An additional survey of installed instrumentation was completed on September 4, 2013. The surface feature elevations in 2013 were tied to the City Benchmark D1-008 (Orthometric Elevation 499.033 masl), located at the southwest abutment of the Broadway Bridge. The survey is referenced to the NAD 83 Universal Transverse Mercator coordinate system. Figure 7 shows the plan view of the survey area contours and survey features completed in 2013. Locations and co-ordinates of control points and Bench Mark used by Meridian Survey are shown in Appendix D.


#### 5.2 Geotechnical Investigation and Instrumentation Installation

Geotechnical investigation and instrumentation installation for the slope failure study of the Site were completed in 2012 for the West Failure, and in 2013 for both the West Failure and East Failure area. The site investigation was conducted, to supplement the historical site investigation programs, to provide information for assessing soil stratigraphy, soil properties, groundwater, and slope stability conditions for the Site.

A representative of Golder was on site during the field investigation to monitor the borehole drilling, install instrumentation, and collect samples for further laboratory testing. Borehole locations were selected in advance of drilling to determine whether conflicts with utilities or site access existed. Boreholes were drilled through the pavement, surficial stratified deposits, and into glacial till to depths of up to 7.6 metres below ground surface (mbgs) during the 2012 drilling and up to 16.8 mbgs during the 2013 drilling.

Disturbed samples and Shelby Tube samples were collected from each borehole and returned to Golder's Saskatoon Laboratory for further testing and analysis. Disturbed samples were collected from the auger flights at the intervals noted on the Record of Borehole sheets. Shelby tube samples were collected to provide undisturbed samples for further testing. Groundwater conditions at the time of drilling were noted and the boreholes were backfilled with a bentonite-cement grout mixture to ground surface upon the completion of drilling.





| 10<br>SC/                      | ALE 1:600                | 0   | 10<br>METRES            |                          |
|--------------------------------|--------------------------|-----|-------------------------|--------------------------|
| PROJECT City of Sask           | of<br>atoo               | n   |                         | ERRY LANE<br>INSTABILITY |
| TOPOGRAPHIC SURVEY PLAN (2013) |                          |     |                         |                          |
|                                | _                        |     |                         | 、 <i>`</i>               |
|                                | PROJEC                   | T 1 | 1-1362-0057             | FILE No.                 |
| TOPOGRAPI                      | PROJEC<br>DESIGN         | T 1 | 1-1362-0057<br>08/05/14 | 、 <i>`</i>               |
|                                | PROJEC<br>DESIGN<br>CADD | T 1 | 1-1362-0057<br>08/05/14 | FILE No.                 |

REFERENCE CONTOURS PROVIDED BY MERIDIAN SURVEYS, AUGUST 2013 CONTOURS SHOWN AT 0.5m INTERVALS AERIAL PHOTOGRAPH PROVIDED BY CITY OF SASKATOON, MAY 15, 2011

LEGEND CONTOURS (MAJOR / MINOR) 303 LOT NUMBER

Downhole instrumentation included slope inclinometer to measure slope movement, and vibrating wire and/or standpipe piezometers to monitor pore water pressure. Vibrating wire piezometers were attached to the slope inclinometer casing or installed in a separate borehole, and the boreholes were backfilled with a bentonite-cement grout mixture to ground surface upon the completion of drilling. The standpipe piezometers installed by Golder consisted of a 50 mm (2 inch) polyvinyl chloride pipe with a 1.5 m (5 ft) slotted screen which were covered with commercial filter sand and then backfilled with a bentonite-cement grout mixture to ground surface. In general, a flush mount casing was installed over the piezometer/slope inclinometer location to protect it from damage. Borehole locations were located in the field by Golder in 2012 and by Meridian Surveys Ltd. in 2013.

A field log was prepared for the boreholes to record the description and relative position of the soil strata, the location of samples, and the instrumentation installation details, in addition to other drilling notes. The Record of Borehole sheets are included in Appendix E.

In addition, six boreholes were drilled and standpipe piezometers installed by PMEL in the area of the East Slide, these piezometers are designated as TH13-1 to TH13-6. A cone penetration test (CPT) was conducted by PMEL at TH13-1 location.

Table 3 provides a summary of installed downhole instrumentation, locations of boreholes are shown in Figure 2, and locations of installed instrumentation are shown in Figure 8. Borehole records and instrumentation installation details are provided in Appendix E.

A Health and Safety Plan was developed prior to the start of drilling activities. All workers involved in the field investigation conducted a daily field hazard level assessment and toolbox meeting prior to starting work in order to identify potential site hazards and to address health and safety concerns.

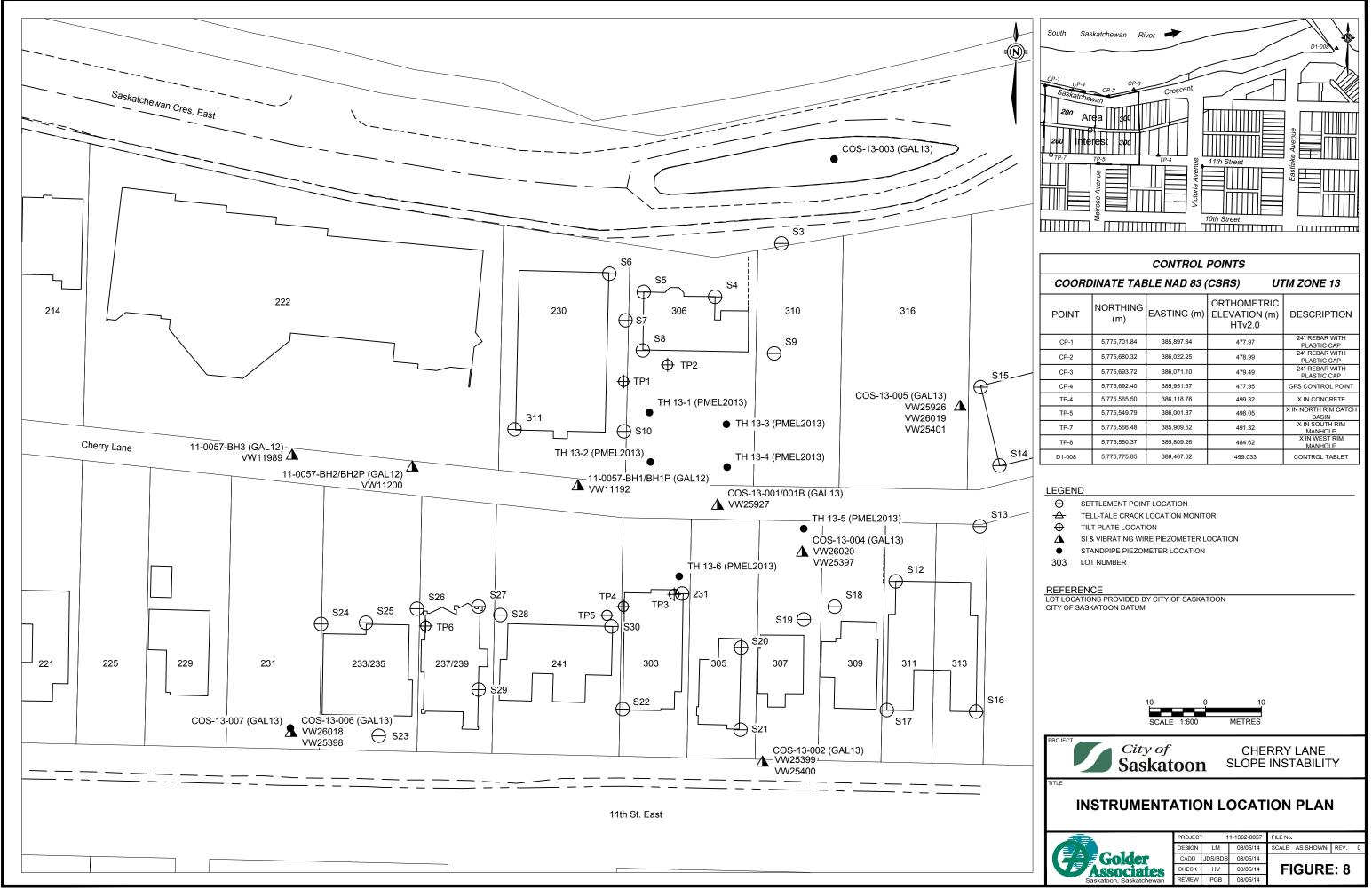
| Borehole No. | Slope<br>Inclinometer | VW<br>Piezometer   | Standpipe<br>Piezometer | Location                                                      | Date of<br>Installation |
|--------------|-----------------------|--------------------|-------------------------|---------------------------------------------------------------|-------------------------|
| 11-0057-BH1  | SI1                   | VW11192            |                         | behind 241-11 <sup>th</sup> Street East on Cherry Lane        | 23-Jun-12               |
| 11-0057-BH2  | SI2                   | VW11200            |                         | behind 233/235-11 <sup>th</sup> Street East<br>on Cherry Lane | 23-Jun-12               |
| 11-0057-BH3  | SI3                   | VW11984            |                         | behind 231-11 <sup>th</sup> Street East on<br>Cherry Lane     | 23-Jun-12               |
| COS-13-001B  | COS-13-001B           | VW25927            |                         | behind 305-11 <sup>th</sup> Street East on<br>Cherry Lane     | 26-Jul-13               |
| COS-13-002   | COS-13-002            | VW25400<br>VW25399 |                         | front yard of 307-11 <sup>th</sup> Street East                | 25-Jul-13               |
| COS-13-003   |                       |                    | COS-13-003              | Saskatchewan Crescent East                                    | 26-Jul-13               |
| COS-13-004   | COS-13-004            | VW26020            |                         | backyard of 307-11 <sup>th</sup> Street East                  | 10 Aug 13               |
| 003-13-004   | 005-13-004            | VW25397            |                         | Dackyalu of 507-11 Stielet East                               | 19-Aug-13               |

 Table 3: Summary of Installed Downhole Instrumentation





| Table 5.     | Summary of mistalied Downhole instrumentation (continued) |                  |                         |                                               |                         |  |
|--------------|-----------------------------------------------------------|------------------|-------------------------|-----------------------------------------------|-------------------------|--|
| Borehole No. | Slope<br>Inclinometer                                     | VW<br>Piezometer | Standpipe<br>Piezometer | Location                                      | Date of<br>Installation |  |
|              |                                                           | VW25926          |                         |                                               | 20-Aug-13               |  |
| COS-13-005   | COS-13-005                                                | VW26019          |                         | empty lot 316 Saskatchewan<br>Crescent East   |                         |  |
|              |                                                           | VW25401          |                         |                                               |                         |  |
| COS-13-006   | COS-13-006                                                | VW26018          |                         | empty lot 231-11 <sup>th</sup> Street East    | 21-Aug-13               |  |
|              | 003-13-000                                                | VW25398          |                         |                                               |                         |  |
| COS-13-007   |                                                           |                  | COS-13-007              | empty lot 231-11 <sup>th</sup> Street East    | 21-Aug-13               |  |
| TH 13-1      |                                                           |                  | TH 13-1                 | backyard of 306 Saskatchewan<br>Crescent East | 17-Jul-13               |  |
| TH 13-2      |                                                           |                  | TH 13-2                 | backyard of 306 Saskatchewan<br>Crescent East | 17-Jul-13               |  |
| TH 13-3      |                                                           |                  | TH 13-3                 | backyard of 306 Saskatchewan<br>Crescent East | 17-Jul-13               |  |
| TH 13-4      |                                                           |                  | TH 13-4                 | backyard of 306 Saskatchewan<br>Crescent East | 17-Jul-13               |  |
| TH 13-5      |                                                           |                  | TH 13-5                 | backyard of 307-11 <sup>th</sup> Street East  | 18-Jul-13               |  |
| TH 13-6      |                                                           |                  | TH 13-6                 | backyard of 30311 <sup>th</sup> Street East   | 18-Jul-13               |  |


#### Table 3: Summary of Installed Downhole Instrumentation (continued)

VW = vibrating wire

The 2012 soil investigation and instrumentation installation program was completed on June 23, 2012. Boreholes were drilled on Cherry Lane using Solid Stem Augers through the pavement, surficial stratified deposits, and into glacial till. The drilling was conducted by Paddock Drilling Ltd. with Acker MP-5 drill rig and monitored by Golder. The 2012 field program consisted of five (5) boreholes drilled to the depth ranging between 3.4 to 7.6 mbgs; three (3) slope inclinometers (in boreholes 11-0057-BH1, 11-0057-BH2 and 11-0057-BH3); and three (3) vibrating wire piezometers (in boreholes 11-0057-BH1P, 11-0057-BH2P and 11-0057-BH3).

The 2013 soil investigation and instrumentation installation program was completed using hollow and solid stem augers. The 2013 drilling program consisted of three phases: 1) on July 25 and 26, 2013 with a CME75 truck mounted drill rig operated by Boss Drilling Ltd. of Saskatoon, SK; 2) on August 19, 2013 with an MC4T track mounted drill rig operated by Mobile Augers and Research Ltd. of Saskatoon, SK; and 3) on August 20 and 21, 2013 with an M10 truck mounted drill rig operated by Mobile Augers and Research Ltd. of Saskatoon, SK; and 3) on August 20 and 21, 2013 with an M10 truck mounted drill rig operated by Mobile Augers and Research Ltd. of Saskatoon, SK. The 2013 field program conducted by Golder consisted of eight (8) boreholes drilled to depths ranging between 9.1 m and 16.8 m below ground surface (mbgs); five (5) slope inclinometer casings were installed to depths ranging between 7.5 and 15.5 mbgs (in boreholes COS-13-001B, COS-13-002, and COS-13-004 to COS-13-006); ten (10) vibrating wire piezometers installed to depths ranging between 5.7 mbgs and 16.1 mbgs (in boreholes COS-13-001B, COS-13-002, and COS-13-002, and COS-13-004 to COS-13-006); and two (2) standpipe piezometers installed to depths of 7.6 mbgs and 4.1 mbgs (in boreholes COS-13-003 and COS 13-007). Six standpipe piezometers installed by PMEL in the area of the East Failure are designated as TH13-1 to TH13-6.





### 5.3 Summary of Installed Instrumentation

In addition to the downhole instrumentation (e.g., slope inclinometers, vibrating wire piezometers and standpipe piezometers) other instrumentation was also installed on the ground surface (e.g., survey pins) to monitor ground surface movement, and on the house/building structures (e.g., tilt plate, settlement points, and tell-tale crack monitors) to monitor potential tilt, vertical movement and cracks of the structures.

The following sections summarize the instrumentation installed by Golder to investigate and evaluate slope stability conditions near Cherry Lane. Monitoring data for the instrumentation is included in Appendix F of this report.

#### 5.3.1 Slope Inclinometers

Slope inclinometers are used to determine the magnitude, rate, direction, depth, and type of slope movement. Inclinometer casings were installed in boreholes, in 2012 and 2013, at depths shown in Table 4 to serve as an access tube to guide an inclinometer probe down the borehole. Slope inclinometers were installed 3 m or more into the till (i.e., below the expected zone of movement). The 70 mm diameter glue and snap inclinometer casings were supplied by RST Instruments.

| Borehole No. | Date of Base<br>Reading | Ground<br>Elevation (masl) | Clay/Till Contact<br>Elevation (masl) |
|--------------|-------------------------|----------------------------|---------------------------------------|
| 11-0057-BH1P | 25-Jun-12               | 488.25                     | 484.64                                |
| 11-0057-BH2P | 25-Jun-12               | 485.87                     | 483                                   |
| 11-0057-BH3  | 25-Jun-12               | 484.06                     | N/A                                   |
| COS-13-001B  | 27-Jul-13               | 489.34                     | 482.79                                |
| COS-13-002   | 30-Jul-13               | 498.48                     | 484.46                                |
| COS-13-004   | 28-Aug-13               | 491.74                     | 483.05                                |
| COS-13-005   | 28-Aug-13               | 494.48                     | 482.14                                |
| COS-13-006   | 28-Aug-13               | 494.77                     | 484.25                                |

| Table 4: | Slope Inclinometer | Casing | Summary | 7 Table |
|----------|--------------------|--------|---------|---------|
|----------|--------------------|--------|---------|---------|

masl = metres above sea level

#### 5.3.2 **Piezometers**

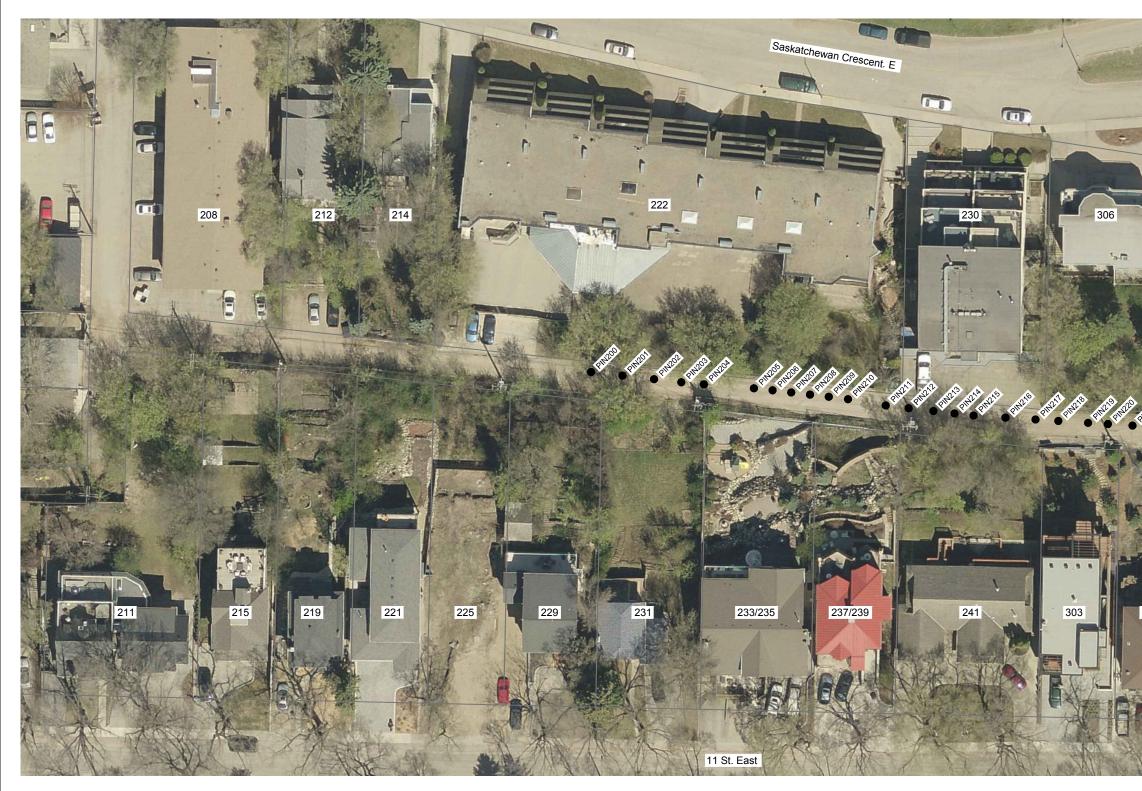
Both vibrating wire type and standpipe type piezometers were installed. Vibrating wire piezometers consist of a pressure transducer, which outputs a frequency signal, and an integral thermistor, which measures the temperature of the transducer and its surroundings. The frequency output and temperature reading are used to calculate piezometric levels in the soil. The installed vibrating wire piezometers were supplied by RST Instruments. The vibrating wire piezometers were equipped with data loggers programmed to record measurements every eight hours. The data was downloaded periodically to evaluate fluctuations in pore-water conditions with time.

Standpipe piezometers consist of slotted and solid sections of polyvinyl chloride (PVC) pipe, and were installed to monitor groundwater elevations within the area. The area around the section of slotted PVC pipe (the intake zone) was backfilled with sand, allowing pore-water to flow into the standpipe. The groundwater elevation near the intake zone was determined by measuring the water elevation in the standpipe.

## CHERRY LANE GEOTECHNICAL INVESTIGATION AND EVALUATION

Table 5 summarizes the piezometers installed near Cherry Lane by Golder in 2012 and 2013, including six standpipe piezometers installed by PMEL. The targeted piezometer completion depths were at the Clay/Till contact, in the SSD and in the Till. Locations of piezometers are shown in Figure 8.


| Piezometer<br>Serial No. | Borehole No. | Туре      | Ground<br>Elevation<br>(masl) | Clay/Till<br>Contact<br>Elevation<br>(masl) | Tip<br>Elevation<br>(masl) | Water Level<br>(Oct 30) | Material at<br>Tip<br>Elevation |
|--------------------------|--------------|-----------|-------------------------------|---------------------------------------------|----------------------------|-------------------------|---------------------------------|
| VW11192                  | 11-0057-BH1P | VW        | 488.25                        | 484.64                                      | 485.05                     | 485.98                  | Clay                            |
| VW11200                  | 11-0057-BH2P | VW        | 485.87                        | 483.0                                       | 483.43                     | 483.84                  | Clay                            |
| VW11984                  | 11-0057-BH3  | VW        | 484.06                        | -                                           | 482.84                     | dry                     | Clay                            |
| VW25927                  | COS-13-001B  | VW        | 489.34                        | 482.79                                      | 483.53                     | 485.91                  | Clay                            |
| VW25400                  | COS-13-002   | VW        | 498.48                        | 484.46                                      | 485.38                     | 490.80                  | Clay                            |
| VW25399                  | COS-13-002   | VW        | 498.48                        | 484.46                                      | 482.33                     | 490.12                  | Till                            |
| -                        | COS-13-003   | Standpipe | 480.34                        | -                                           | 471.20                     | 473.65                  | Gravel                          |
| VW26020                  | COS-13-004   | VW        | 491.74                        | 483.05                                      | 483.38                     | 486.86                  | Clay                            |
| VW25397                  | COS-13-004   | VW        | 491.74                        | 483.05                                      | 481.50                     | 485.08                  | Till                            |
| VW25926                  | COS-13-005   | VW        | 494.48                        | 482.14                                      | 487.30                     | dry                     | Sand                            |
| VW26019                  | COS-13-005   | VW        | 494.48                        | 482.14                                      | 482.73                     | 485.93                  | Clay                            |
| VW25401                  | COS-13-005   | VW        | 494.48                        | 482.14                                      | 479.68                     | 484.30                  | Till                            |
| VW26018                  | COS-13-006   | VW        | 494.77                        | 484.25                                      | 484.56                     | dry                     | Clay                            |
| VW25398                  | COS-13-006   | VW        | 494.77                        | 484.25                                      | 481.51                     | dry                     | Till                            |
| -                        | COS-13-007   | Standpipe | 494.80                        | -                                           | 489.21                     | dry                     | Clay                            |
| -                        | TH 13-1      | Standpipe | 486.55                        | 483.5                                       | 482.7                      | 482.73                  | Till                            |
| -                        | TH 13-2      | Standpipe | 487.84                        | 484.0                                       | 482.0                      | 483.53                  | Till                            |
| -                        | TH 13-3      | Standpipe | 487.85                        | 482.8                                       | 482.0                      | 483.07                  | Clay/Till                       |
| -                        | TH 13-4      | Standpipe | 488.60                        | 483.3                                       | 482.2                      | 483.59                  | Sand and<br>Gravel/Till         |
| -                        | TH 13-5      | Standpipe | 491.39                        | 484.2                                       | 482.5                      | 484.79                  | Till                            |
| -                        | TH 13-6      | Standpipe | 492.73                        | 484.4                                       | 484.1                      | 489.83                  | Clay/Till                       |


#### Table 5: Piezometer Summary Table

masl = metres above sea level

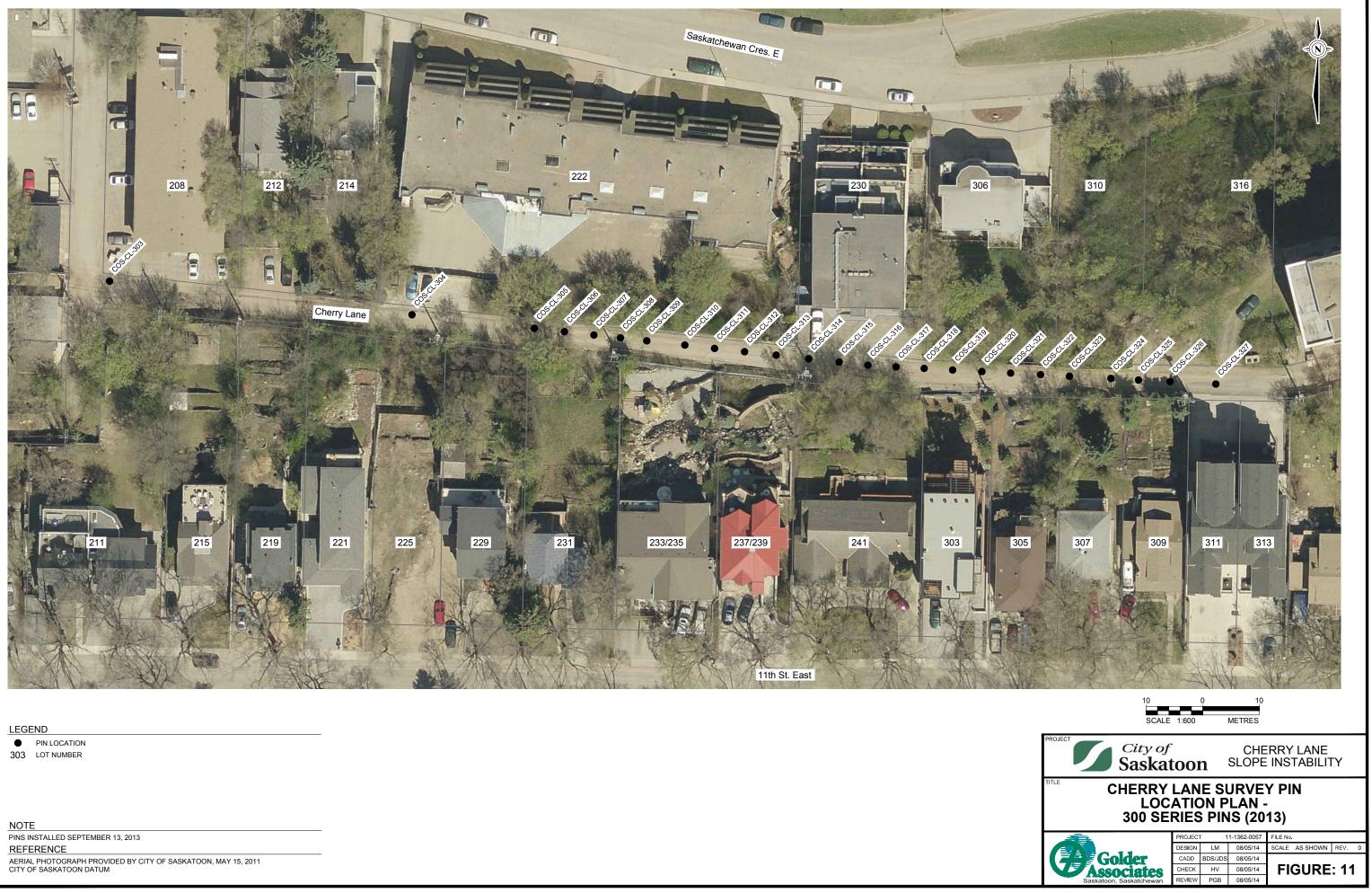
#### 5.3.3 Survey Pins

Three series of pins; 100, 200 and 300 series, were installed for monitoring of ground movement (primarily downslope, horizontal movement) along Cherry Lane. The pins were intended to be surveyed at regular intervals with reference to a reference line and a stable reference mark on Remai Arts Centre building. Pins were replaced in series over time as old pins were damaged or covered over, and to improve the monitoring accuracy. Survey markers were installed for the 300 series of survey pins. Figure 9, Figure 10 and Figure 11 show the location of survey pins of 100 series, 200 series, and 300 series installed by Golder along Cherry Lane, respectively. Survey pins consisted of nails driven into the surface of Cherry Lane. Survey markers consisted of square topped steel pins driven into the surface of Cherry Lane.





#### LEGEND


PIN LOCATION303 LOT NUMBER

NOTE PINS 200-216 INSTALLED JUNE 4, 2013 PINS 217-228 INSTALLED JUNE 25, 2013

REFERENCE

AERIAL PHOTOGRAPH PROVIDED BY CITY OF SASKATOON, MAY 15, 2011 CITY OF SASKATOON DATUM

| BURA BEE | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A CAR    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | PROJECT City of CHERRY LANE<br>Saskatoon SLOPE INSTABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | TITLE CHERRY LANE SURVEY PIN<br>LOCATION PLAN -<br>200 SERIES PINS (2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | Golder         PROJECT         11-1362-0057         FILE No.           DESIGN         LM         08/05/14         SCALE         AS SHOWN         REV.         0           CADD         JDS         08/05/14         CADD         JDS         08/05/14         FIGURE:         10           CADD         JDS         08/05/14         REVL         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0< |



#### 5.3.4 Tell-Tale Crack Monitors

Crack monitors were installed on selected retaining walls where there was an existing crack. The crack monitors consisted of two plates, which were installed to overlap for part of their length, and move relative to each other as a crack opened or closed. Standard Tell-Tale crack monitors were used on flat surfaces, to monitor movement across cracks in vertical and horizontal directions.

Crack monitors were installed at the following locations (Figure 8):

- north face of the retaining wall behind 306 Saskatchewan Crescent East;
- east face of the retaining wall between 230 and 306 Saskatchewan Crescent East; and
- west face of the retaining wall between 230 and 306 Saskatchewan Crescent East.

#### 5.3.5 Tilt Plates

Stainless steel tilt plates were installed on selected external house foundations and retaining walls. Changes in the tilt of the structure were measured using a tilt meter, which allows the tilt of a structure to be monitored on a vertical plane. Measurements were taken periodically, and cover plates were placed on the tilt plates to protect them between readings.

Tilt plates were installed at the following locations (Figure 8):

- North-south retaining wall between 230 and 306 Saskatchewan Crescent East;
- East-west retaining wall at 306 Saskatchewan Crescent East;
- North side of house at 303 11<sup>th</sup> Street East;
- West side of house at 303 11<sup>th</sup> Street East;
- North side of house at 241 11<sup>th</sup> Street East; and
- West side of house at 237 11<sup>th</sup> Street East.

#### 5.3.6 Settlement Points

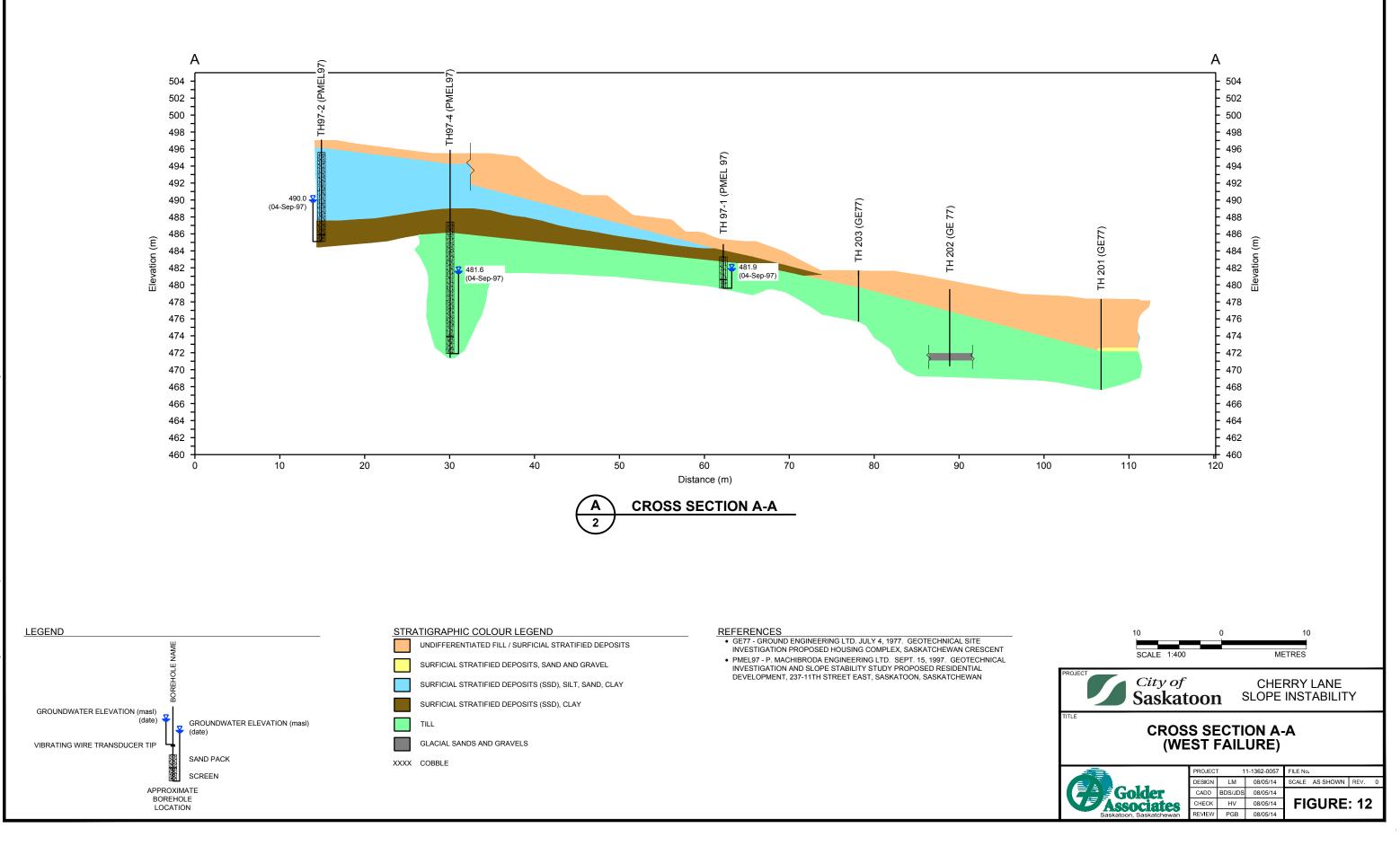
Building settlement points were installed at selected locations to monitor long term vertical movement of the structure. The settlement points were monitored using precise leveling equipment. Point S14, installed in the southwest corner of 328 Saskatchewan Crescent East, is used as a local temporary bench mark for the settlement monitoring. Elevation of Point S14 has been referenced to the COS D1-008 benchmark elevation. The building settlement surveys are conducted by precise levelling method using Leica DN03 precise digital level equipment. Settlement points were installed at the locations shown on Figure 8.

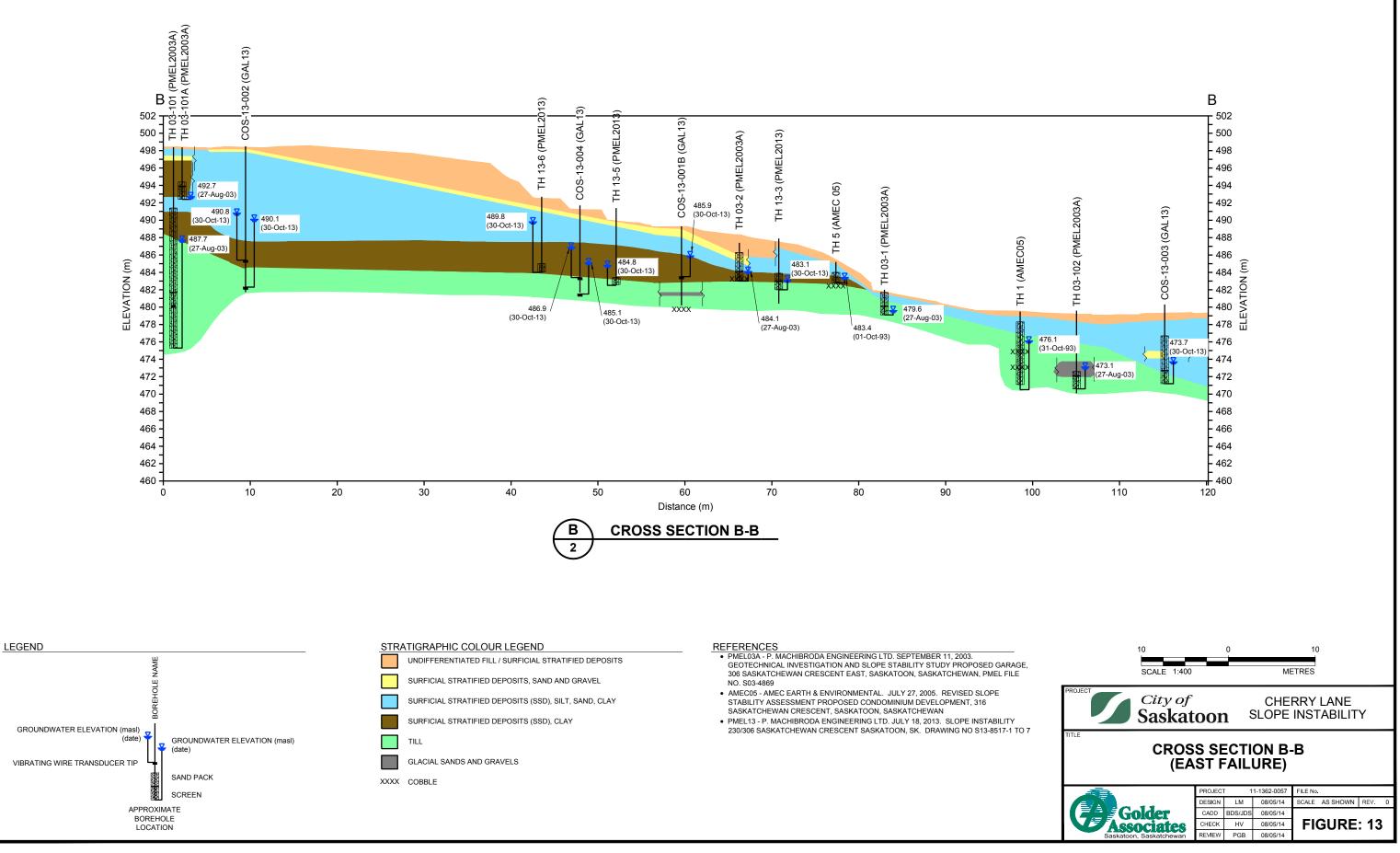


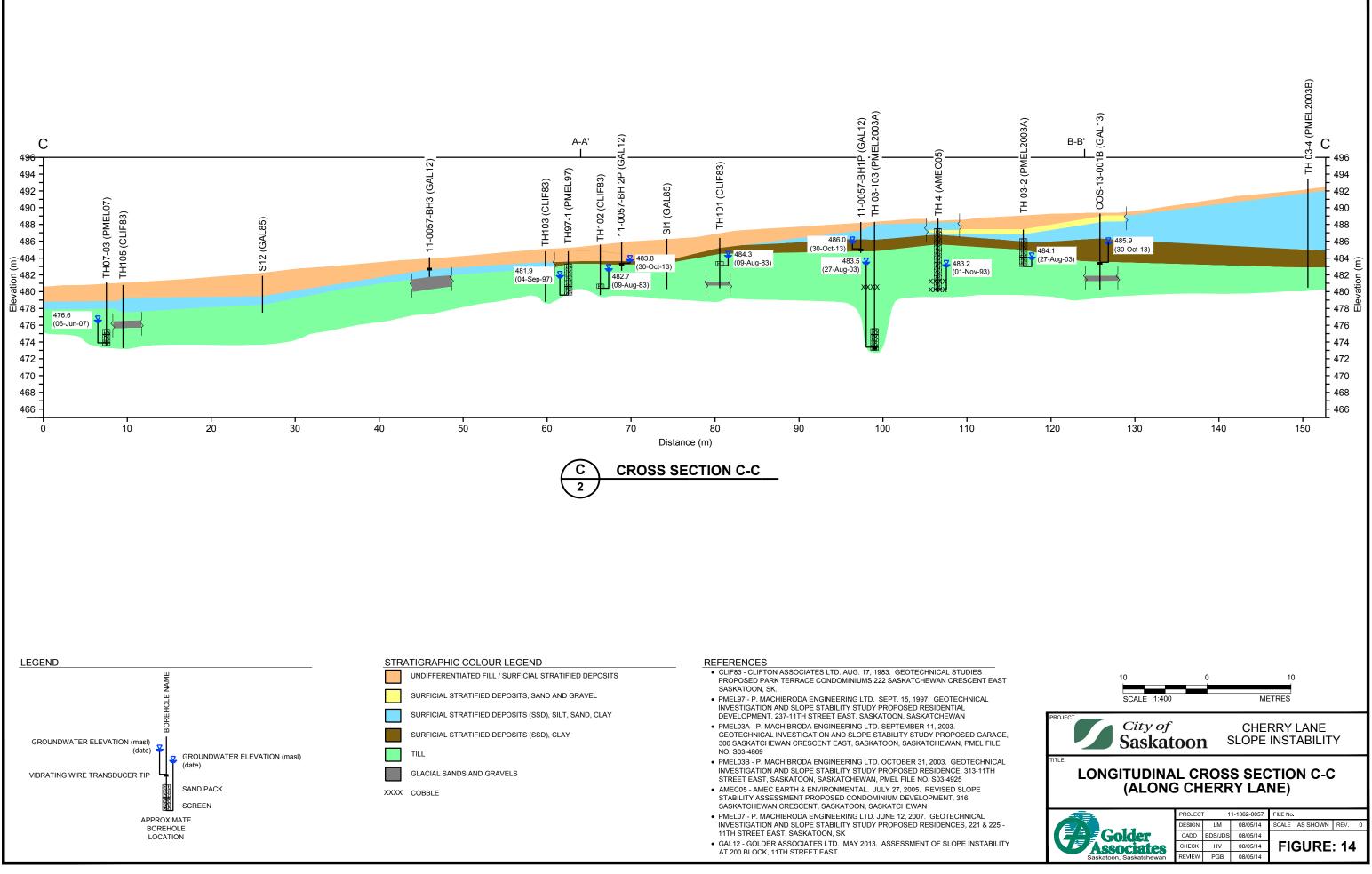


### 6.0 TOPOGRAPHY AND STRATIGRAPHY

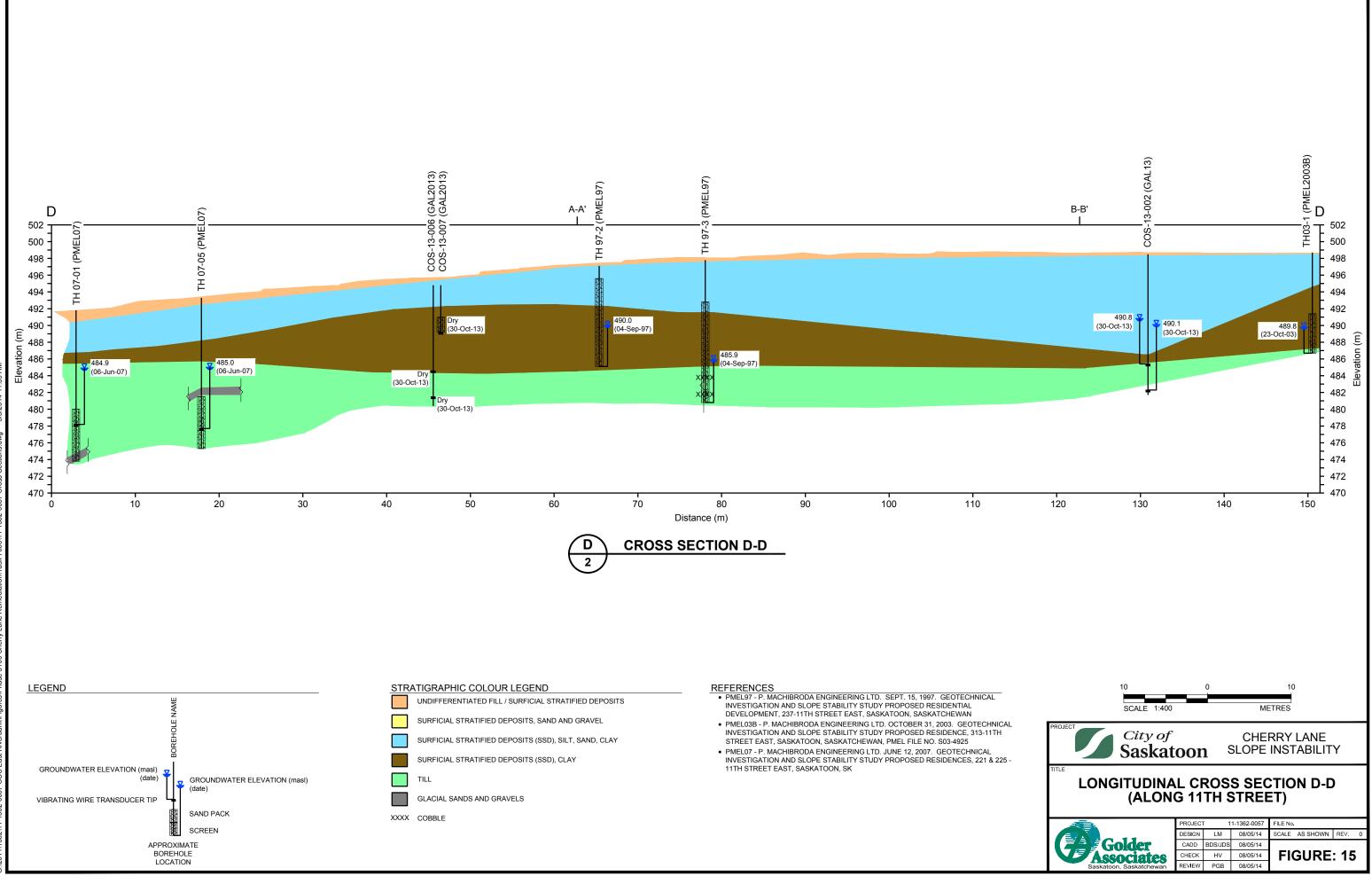
Borehole information from the various geotechnical reports listed in Section 3.3 was compiled to construct a physical model of the soils at the Site. The boreholes used to construct all cross-sections were obtained from many different studies, and have likely been located using various coordinate systems and survey datums. Efforts were made to reconcile the different elevation datums; however, there may still be some discrepancies in the elevation data due to the use of unknown or older elevation datums, or slope movement. Soil descriptions and laboratory test results were also reviewed and interpreted according to Golder's classification system to provide a more consistent classification of the soils. Two cross-sections, A-A' and B-B' were selected as representative cross-sections for the West Failure and East Failure, respectively. Stratigraphic cross-sections A-A' and B-B' are shown in Figure 12 and Figure 13, respectively. Soil stratigraphic conditions along Cherry Lane and 11<sup>th</sup> Street East are shown in Figure 14 (longitudinal stratigraphic section C-C') and Figure 15 (longitudinal stratigraphic section D-D'), respectively. Locations of cross sections and longitudinal sections are shown in Figure 2.


In general, the soil profile from 11<sup>th</sup> Street East to Saskatchewan Crescent East at this location consists of, in descending order: topsoil and/or fill, silty clay or clay of surficial stratified deposits (SSD), and glacial till. The ground elevation varies from approximately 496 m above sea level (masl) to 498 masl along 11<sup>th</sup> Street East, 481 to 486 masl along Cherry Lane and 474 to 479 masl along Saskatchewan Crescent East. The till/clay contact, at the failure area, is at elevation ranging from 482.8 to 484.6 masl. The silty clay and clay layer overlying till is up to 14 m thick. The topography of the area generally slopes downward to the northwest and the South Saskatchewan River. The river water elevation is at approximately 472 masl.


Topsoil thicknesses were generally less than 0.15 m at the borehole locations, and asphalt and fill up to 3 m deep were noted in various locations. The SSD at TH 97-3 location consist of less than 1 m of poorly graded sands and silty sands, less than 1 m of silt and clayey silt, 1 m to 2 m of poorly graded sands and silty sands, up to 2 m of silts and silty clay, and up to 5 m of highly plastic clay, in descending order.


The highly plastic clay unit is encountered above the till along the 11<sup>th</sup> Street East (Figure 14) and east portion of the Cherry Lane from TH101 (Figure 15). The contact between this highly plastic clay unit and till is at elevation approximately 485 masl along the 11<sup>th</sup> Street East, and at elevation approximately from 483 to 487 masl along the Cherry Lane. Extent of this highly plastic clay unit in the northwest portion of the West Failure was not known.

Much of the upper soil profile has been classified as fill in this report due to the unknown extent of slope modification and soil mixing caused by landscaping and slope movement. The layer thicknesses vary across the site, generally decreasing in thickness and daylighting in the lower slope between Cherry Lane and Saskatchewan Crescent East. The deposits of sand, silt and clay are present at the bottom of the slope, in addition to fill which was placed for landscaping and building construction.


The sand layers within the SSD were typically described as wet in the borehole logs reviewed. High sand content and layers of cobbles were noted in the silty clay till material at elevation approximately 467 masl below the SSD (at the TH 101 location).







11/1362/11-1362-0057 COS East Riverbank/Figures/Phase 5100 Cherry Lane Remediation/Task 7000/11-1362-0057 Cross Sections dwg 5/8/2014

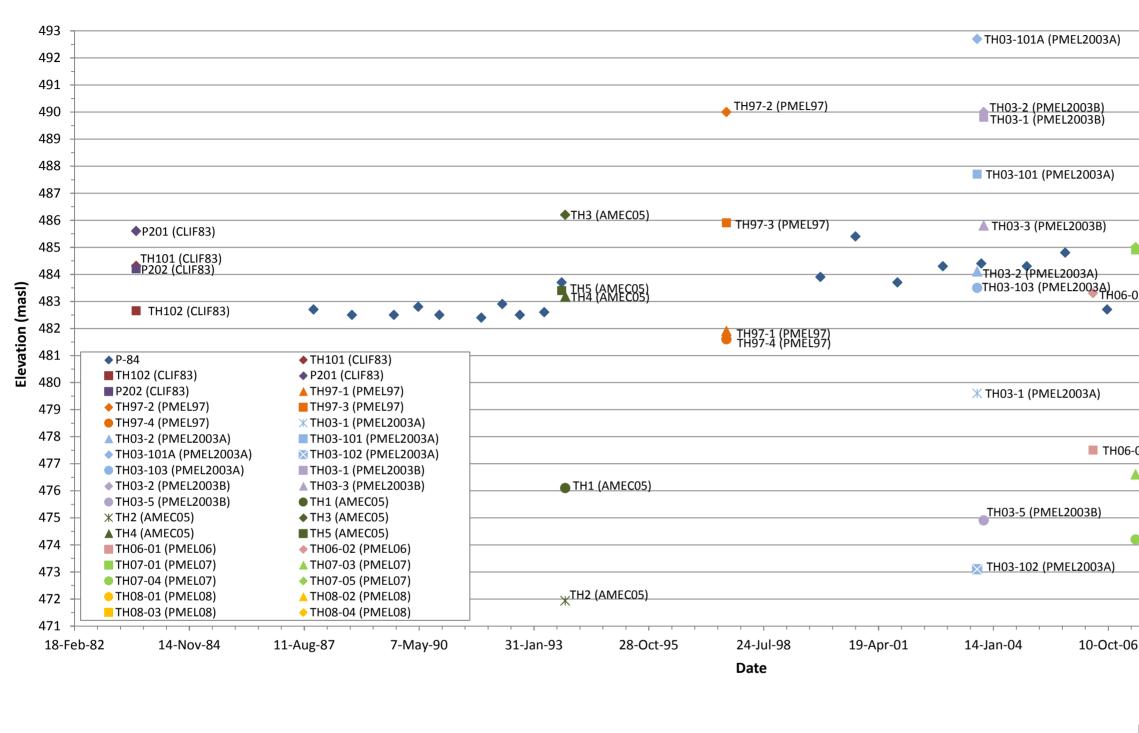




### 7.0 GROUNDWATER CONDITION

Groundwater levels in the surficial stratified deposits (SSD), particularly in the clay above the till, and in the intertill sand and gravel have significant influence on slope stability in the east riverbank geologic setting. High water levels in the soil can be expected immediately following spring thaw, following intensive irrigation, or after prolonged precipitation. The minimum water table condition is reached during winter when there is minimum recharge. Most slope instability occurs following spring thaw, or after periods of prolonged precipitation (Clifton 1985).

Hamilton and Tao (1977) reported the results of groundwater level measurements in SSD, spanning from six to fourteen years in three study areas in Saskatoon. Groundwater levels vary depending on annual weather cycles, the season of the year, and depending on rainfall and surface runoff conditions. It was reported that groundwater level rises of 6.1 m are reasonable, and 3.0 to 3.7 m might be considered average in clay soils for the typically semi-arid climatic conditions of Saskatoon. It was also reported that annual variation in groundwater levels can range from 0.6 m to more than 2.4 m, depending on many variables related to soil and weather conditions.


Historical groundwater levels (i.e., total head) in the area of Cherry Lane were compiled from data provided in the geotechnical reports reviewed and the East River Bank Monitoring Program reports provided by AMEC (2005b, 2009, 2013), PMEL (1994) and Ireland (2000) and are summarized in Figure 16. The groundwater table slopes downwards across the site from 11<sup>th</sup> Street to the river. Adjacent to 11<sup>th</sup> Street, the water table measured in September 1997 in TH07-2 was at about elevation 489.2, approximately 7 m below the ground surface. It should be noted that all groundwater elevations taken from the PMEL (1997) report have been converted from a local elevation presented in the report to be consistent with the surveyed elevations of the slope. It was noted that seepage was encountered during the August 5, 1997 investigation from sand layer at 490.3 masl in TH97-2, located in the front yard of 233/235 11<sup>th</sup> Street East.

With the exception of the data from piezometer P-84 (Figure 16), which was monitored on an annual basis from 1987 to 2012, there is insufficient data to interpret historical groundwater levels in this area. The highest groundwater elevation measured in P-84 was at 485.9 masl, or approximately 0.3 m below ground surface. It was recorded at this location in May 2012 prior to the occurrence of the West Failure. It should be noted that groundwater levels for this piezometer were generally monitored in fall or winter (October to December), when there is little recharge on ground surface and groundwater levels are expected to be at the lowest. High water table condition can be expected following spring thaw, or after heavy, prolonged precipitation during the summer.

During site walkovers immediately after the West Failure in 2012, water was observed in tension crack at the backyard of house 231 on June 21, 2012 which was approximately 0.5 mbgs. There was also seepage on the slope at the interface between Cherry Lane and Lot 231 immediately after the West Failure; the seepage was lessening since the West Failure occurred.

Groundwater levels recorded from the piezometers installed in 2012 and 2013 are presented and discussed in Section 9.2.





| D. 04                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------|
| TH07-05 (PMEL07)                                                                                                                   |
| TH07-01 (PMEL07)                                                                                                                   |
| TH08-04 (PMEL08)<br>02 (PMEL06)                                                                                                    |
| ♦                                                                                                                                  |
| TH08-03 (PMEL08)                                                                                                                   |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
| -01 (PMEL06)                                                                                                                       |
| ▲ TH07-03 (PMEL07)                                                                                                                 |
|                                                                                                                                    |
|                                                                                                                                    |
| TH07-04 (PMEL07)<br>TH08-01 (PMEL08)                                                                                               |
|                                                                                                                                    |
|                                                                                                                                    |
| 6 6-Jul-09 1-Apr-12 27-Dec-14                                                                                                      |
| υ-σμι-υσ<br>υ-σμι-υσ<br>υ-σμι-υz<br>27-Det-14                                                                                      |
|                                                                                                                                    |
|                                                                                                                                    |
| City of CHERRY LANE<br>Saskatoon SLOPE INSTABILITY                                                                                 |
|                                                                                                                                    |
| HISTORICAL GROUNDWATER LEVELS                                                                                                      |
| HISTORICAL GROONDWATER LEVELS                                                                                                      |
| PROJECT         11-1382-0057         FILE No.           DESIGN         LNM         08/05/14         SCALE         N/A         REV. |
| Golder CADD FIGURE: 16                                                                                                             |
| Saskatoon, Saskatchewan REVIEW PGB 08/05/14                                                                                        |



### 8.0 LABORATORY TESTING

Laboratory tests conducted on representative soil samples included visual classification, water content, Atterberg limits, unit weight, specific gravity, grain size analysis, and direct shear tests. The test results are presented in Appendix G.

Table 6 presents the results of water content tests and Atterberg limit tests for the selected samples. The samples were obtained from the field investigation conducted in 2012 and 2013 along Cherry Lane. Grain size analysis was completed using both the mechanical method (for cohesionless soils) and the hydrometer method (for cohesive soils) for soil classification.

Table 7 presents the results of grain-size analysis. Specific gravity and dry density tests were completed to assess the volume and density relationships of the soil. Dry density tests were completed on select undisturbed samples, the results of which are shown in Table 8.

Direct Shear tests were completed on select undisturbed samples to provide additional material property information for slope stability modelling, the results of which are shown in Table 9.

The silty clay was medium plastic. Measured water contents varied from 23 percent (%) to 35%. Atterberg limit tests for three samples of silty clay indicated that the plastic limit varied from 13% to 25%, liquid limit varied from 31% to 49%, and plasticity index varied from 12% to 29%. Dry density values of 1,371 and 1,306 kilograms per cubic metre (kg/m<sup>3</sup>) were determined for sample BH1P-1 and COS-13-005-9, respectively.

The clay was high plastic. Measured water contents varied from 25% to 36%. Atterberg limit tests for four samples of clay indicated that the plastic limit varied from 18% to 27%, liquid limit varied from 50% to 74%, and plasticity index varied from 29% to 50%. Dry density values determined for BH1P-3 and BH2P-2 were 1,405 kg/m<sup>3</sup> and 1,415 kg/m<sup>3</sup>, respectively.

The glacial till consisted of a silty clay matrix with some sand and gravel. Measured water contents varied from 8% to 16%. Atterberg limits for sample BH2-5 indicated the till was low plasticity with a plastic limit of 12%, liquid limit of 18% and plasticity index of 6%.





#### Table 6: Atterberg Limit Test Results

| Borehole     | Material              | Sample Number | Sample<br>Elevation (masl) | Water Content<br>(%) | Plastic Limit (%) | Liquid Limit (%) | Plastic Index |
|--------------|-----------------------|---------------|----------------------------|----------------------|-------------------|------------------|---------------|
| COS-13-005   | Silty clay            | 005-5         | 488.9                      | 23.2                 | 20                | 49               | 29            |
| COS-13-005   | Silty clay            | 005-8         | 486.6                      | 29.5                 | 22                | 38               | 16            |
| 11-0057-BH1P | Silty clay            | BH1P-1        | 486.4                      | 34.6                 | 21                | 43               | 22            |
| 11-0057-BH1  | Silty clay            | BH1-3         | 486.0                      | 33.9                 | 20                | 39               | 19            |
| COS-13-006   | Silty clay            | 006-10        | 486.0                      | 29.5                 | 13                | 41               | 28            |
| COS-13-004   | Silty clay            | 004-8         | 484.4                      | 33.7                 | 21                | 46               | 25            |
| COS-13-005   | Silty clay            | 005-12        | 483.5                      | 28.7                 | 21                | 33               | 12            |
| 11-0057-BH2  | Silty Clay            | BH2-4         | 483.3                      | 30.4                 | 25                | 48               | 23            |
| COS-13-005   | Silty clay            | 005-13        | 482.8                      | 29.3                 | 19                | 34               | 15            |
| 11-0057-BH3  | Silty clay            | BH3-2         | 482.7                      | 24.3                 | 17                | 31               | 14            |
| COS-13-005   | Silty clay            | 005-14        | 482.2                      | 29.4                 | 14                | 40               | 26            |
| COS-13-005   | Clayey sand           | 005-4         | 490.3                      | 11.5                 | 15                | 35               | 20            |
| 11-0057-BH3  | Clayey sand           | BH3-3         | 482.1                      | 28.4                 | 18                | 28               | 10            |
| COS-13-005   | Sandy, clayey<br>silt | 005-10        | 485.0                      | 28.2                 | 25                | 32               | 7             |
| COS-13-006   | Clay                  | 006-3         | 492.9                      | 25.3                 | 22                | 65               | 43            |
| COS-13-006   | Clay                  | 006-8         | 488.4                      | 34.0                 | 23                | 72               | 49            |
| COS-13-004   | Clay                  | 004-5         | 487.2                      | 33.6                 | 24                | 74               | 50            |
| 11-0057-BH1P | Clay                  | BH1P-3        | 485.2                      | 35.0                 | 21                | 50               | 29            |
| COS-13-002   | Clay                  | 002-17        | 485.2                      | 32.7                 | 21                | 69               | 48            |
| COS-13-001   | Clay                  | 001-6         | 484.3                      | 33.9                 | 18                | 56               | 38            |
| 11-0057-BH1  | Clay                  | BH1-5         | 484.7                      | 36.3                 | 22                | 62               | 40            |





| Borehole     | Material | Sample Number | Sample<br>Elevation (masl) | Water Content<br>(%) | Plastic Limit (%) | Liquid Limit (%) | Plastic Index |
|--------------|----------|---------------|----------------------------|----------------------|-------------------|------------------|---------------|
| 11-0057-BH2P | Clay     | BH2P-2        | 483.4                      | 34.5                 | 27                | 72               | 45            |
| 11-0057-BH2  | Clay     | BH2-2         | 484.5                      | 31.8                 | 24                | 55               | 31            |
| COS-13-003   | Clay     | 003-5         | 475.4                      | 32.3                 | 19                | 57               | 38            |
| 11-0057-BH2  | Till     | BH2-5         | 482.4                      | 12.9                 | 12                | 18               | 6             |
| COS-13-001B  | Till     | 001B-3        | 482.4                      | 11.0                 | 11                | 23               | 12            |
| COS-13-004   | Till     | 004-11        | 481.8                      | 10.8                 | 12                | 19               | 7             |

#### Table 6: Atterberg Limit Test Results (continued)

masl = metres above sea level; % = percent

#### Table 7: Grain-size Analysis Results

| Borehole     | Material           | Sample Number | Sample Elevation<br>(masl) | Percent Sand (%) | Percent Silt (%) | Percent Clay (%) |
|--------------|--------------------|---------------|----------------------------|------------------|------------------|------------------|
| COS-13-004   | Silty clay         | 004-2         | 491.3                      | 1                | 68               | 31               |
| COS-13-002   | Silty clay         | 002-13        | 488.6                      | 12               | 69               | 17               |
| COS-13-005   | Silty clay         | 005-8         | 486.6                      | 1                | 72               | 25               |
| 11-0057-BH1P | Silty clay         | BH1P-1        | 486.4                      | 3                | 69               | 28               |
| COS-13-006   | Silty clay         | 006-10        | 486.0                      | 1                | 66               | 33               |
| COS-13-005   | Silty clay         | 005-12        | 483.5                      | 7                | 74               | 19               |
| COS-13-005   | Silty sand         | 005-1         | 494.3                      | 66               | 23               | 11               |
| COS-13-006   | Silty sand         | 006-13        | 482.5                      | 59               | 31               | 10               |
| COS-13-001   | Silty sand         | 001-9         | 481.3                      | 51               | 41               | 8                |
| COS-13-005   | Sandy, clayey silt | 005-10        | 485.0                      | 14               | 68               | 18               |
| COS-13-005   | Sandy, clayey silt | 005-11        | 484.3                      | 12               | 73               | 15               |
| 11-0057-BH3  | Clayey sand        | BH3-3         | 482.1                      | 39               | 47               | 14               |



#### Sample Elevation Percent Sand (%) Percent Silt (%) Percent Clay (%) **Borehole** Material Sample Number (masl) 11-0057-BH1P Clay BH1P-3 485.2 37 1 62 3 11-0057-BH1 Clay BH1-5 484.7 62 35 COS-13-001 Clay 001-6 484.3 3 51 46 11-0057-BH2P Clay BH2P-2 483.4 1 47 52 Till 482.4 44 COS-13-001B 001B-3 36 18 COS-13-004 Till 004-11 481.8 49 36 12

 Table 7:
 Grain-size Analysis Results (continued)

masl = metres above sea level; % = percent

### Table 8: Dry Density Test Results

| Borehole     | Material   | Sample Number | Sample Elevation<br>(masl) | Water Content (%) | Dry Density<br>(kg/m <sup>3</sup> ) | Specific Gravity |
|--------------|------------|---------------|----------------------------|-------------------|-------------------------------------|------------------|
| 11-0057-BH1P | Silty clay | BH1P-1        | 486.4                      | 34.6              | 1,371                               | -                |
| COS-13-004   | Silty clay | 004-7         | 485.8                      | 30.1              | 1,699                               | 2.61             |
| COS-13-005   | Silty clay | 005-9         | 485.8                      | 23.9              | 1,306                               | 2.59             |
| 11-0057-BH1P | Clay       | BH1P-3        | 485.2                      | 35.0              | 1,405                               | -                |
| COS-13-002   | Clay       | 002-17        | 485.2                      | 32.7              | -                                   | 2.63             |
| COS-13-001   | Clay       | 001-6         | 484.3                      | 33.9              | -                                   | 2.63             |
| 11-0057-BH2P | Clay       | BH2P-2        | 483.4                      | 34.5              | 1,415                               | -                |
| COS-13-001B  | Till       | 001B-3        | 482.4                      | 11.0              | 2,057                               | -                |

kg/m<sup>3</sup> = kilogram per cubic metre; m = metre; % = percent



| Borehole         |            | Sample        | Sample              | Pe                    | ak                | Resi                  | dual              |
|------------------|------------|---------------|---------------------|-----------------------|-------------------|-----------------------|-------------------|
|                  | Material   | Number (masl) | Elevation<br>(masl) | Friction<br>Angle (°) | Cohesion<br>(kPa) | Friction<br>Angle (°) | Cohesion<br>(kPa) |
| COS-13-004       | Silty Clay | 004-8         | 484.4               | 14.2                  | 32                | 11.4                  | 0                 |
| COS-13-005       | Silty Clay | 005-13        | 482.7               | 31.3                  | 9                 | 31.3                  | 0                 |
| 11-0057-<br>BH2P | Clay       | BH2P-2        | 483.4               | 23.7                  | 18                | 22.0                  | 0                 |
| 11-0057-<br>BH1P | Clay       | BH1P-3        | 485.2               | 30.0                  | 0                 | 11.4                  | 0                 |
| COS-13-<br>001B  | Clay       | 001B-1        | 483.8               | 26.6                  | 12                | 21.7                  | 0                 |

#### Table 9: Direct Shear Test Results

mbgs = metres below ground surface; kPa = kiloPascal; ° = degrees; % = percent

### 9.0 INSTRUMENTATION MONITORING RESULTS

#### 9.1 Slope Inclinometer Results

The monitoring results for the slope inclinometers are included in Appendix F. Location of historical inclinometers (i.e., SI84-1CL and SI85-511) are shown in Figure 2. Location of inclinometers installed by Golder in 2012 and 2013 are shown on Figure 8.

SI84-1CL: This inclinometer was blocked in 2004. A cumulative movement of 20 mm was recorded between November 2, 1992 and October 12, 2001, approximately 15 mm of which occurred for the period from October 31, 2000 to October 12, 2001.

SI85-511: This inclinometer was bent and not in service since 2006. Approximately 32 mm of cumulative movement was recorded for the period from August 1985 to October 2005. This inclinometer shows a zone of movement at approximately 2.5 mbgs.

11-0057-BH1: Less than 5 mm of cumulative movement was measured between June 25, 2012 and October 30, 2013.

11-0057-BH2: This inclinometer sheared off in June, 2013. A cumulative movement of 30 mm was recorded between June 25 and June 26, 2012. An approximate movement rate of 22 mm/day was recorded before it sheared off. This inclinometer shows a zone of movement at the clay/till interface at approximately elevation 483 masl (about 3.7 mbgs).

11-0057-BH3: Approximately 10 mm of cumulative movement was recorded between June 25, 2012 and October 30, 2013.

COS-13-001B: This inclinometer sheared off sometime between August and October, 2013. A cumulative movement of approximately 65 mm was recorded between July 27 and August 28, 2013. This inclinometer shows a consistent zone of movement at the clay/till interface at approximately elevation 482.8 masl (about 6.5 mbgs).

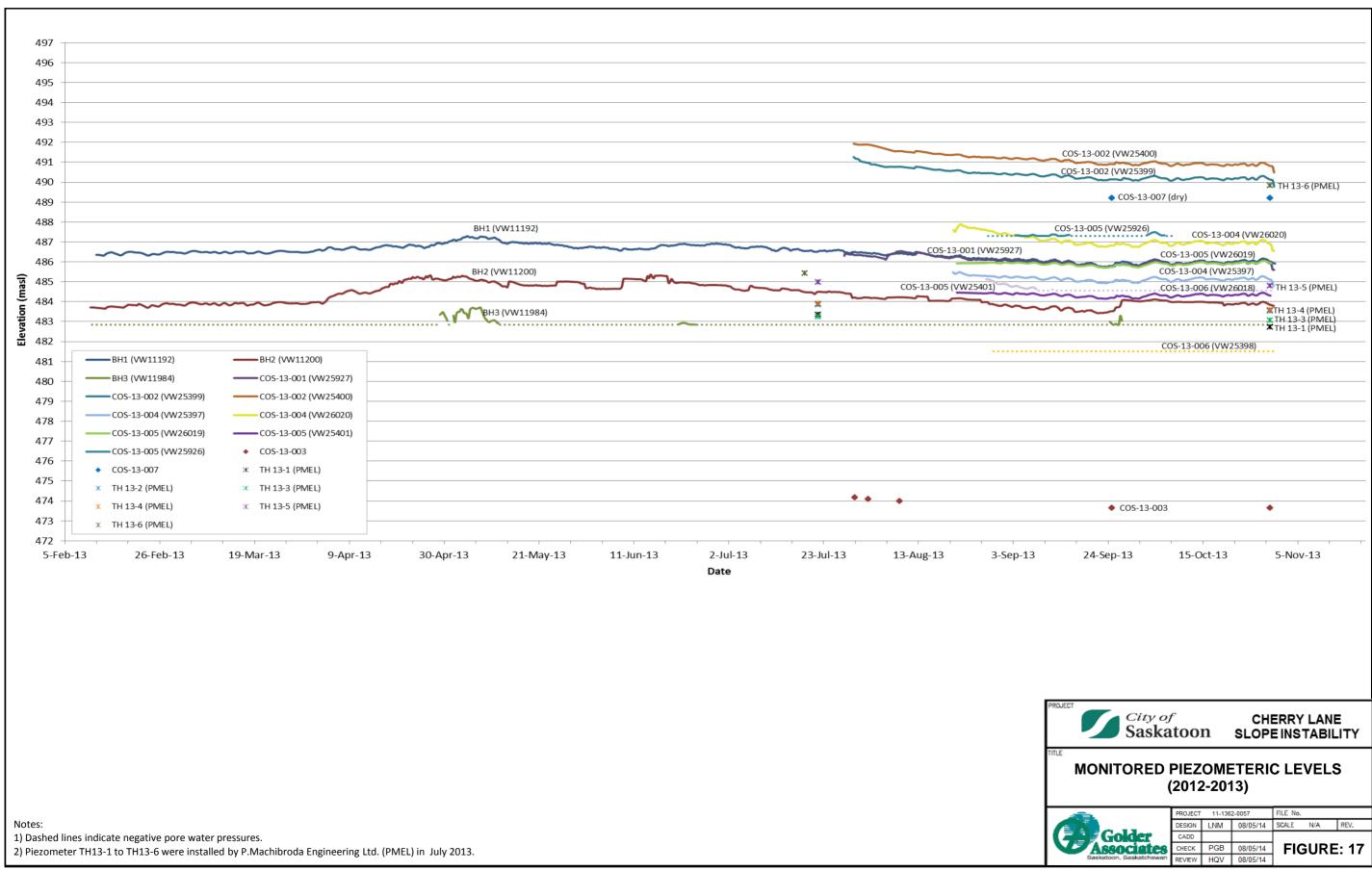
COS-13-002: Less than 5 mm of movement was recorded between July 30 and October 30, 2013.

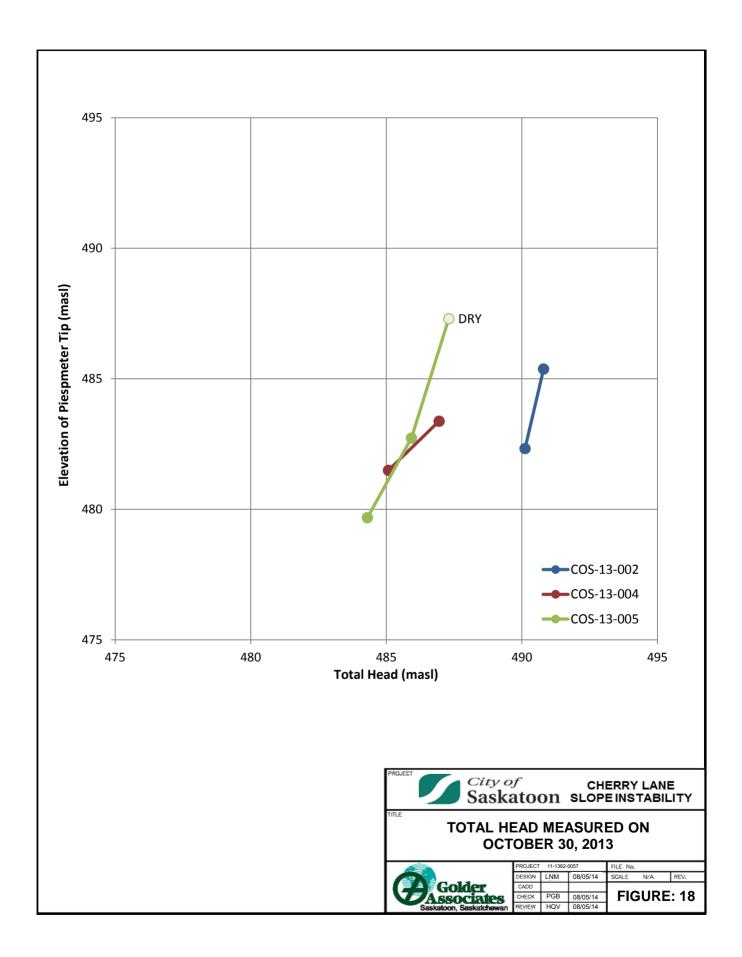
COS-13-004: Less than 5 mm of movement was measured in the inclinometer installed in borehole COS-13-004 between August 28 and November 1, 2013.



COS-13-005: Less than 5 mm of movement was recorded between August 28 and October 30, 2013.

COS-13-006: Less than 5 mm of movement was recorded between August 28 and October 30, 2013.


### 9.2 **Piezometers**


The results of historical piezometer monitoring are presented and discussed in Section 7.0. Groundwater levels collected from the piezometers installed in 2012 and 2013 is included in Figure 17 for both types of piezometers (e.g., vibrating wire and standpipe). Piezometric levels recorded on October 30, 2013 are presented in Table 5, with the ground surface and till/clay contact elevation, and graphically presented in Figure 18, cross-sections A-A', B-B', and longitudinal sections C-C' and D-D'.

The vibrating wire piezometers installed in boreholes 11-1362-0057 BH1, BH2, and BH3 were installed during a period of high groundwater levels (June 2012); groundwater levels decreased approximately 0.5 m to 1.0 m during the fall and winter seasons. The trends in these vibrating wire piezometers throughout 2013 were as follows:

- Groundwater levels measured on October 30, 2013 show strong downward gradients at the piezometer nests, e.g., a gradient of 0.22 at COS-13-004, 0.53 at COS-13-005 and up to 0.95 at COS 13-004.
- Data collected from the vibrating wire piezometers revealed an increasing trend in groundwater levels starting around April 3, 2013 (at boreholes 11-1362-0057 BH1 and BH2).
- Measured annual variation in groundwater levels in 2013 was 0.86 m at 11-0057 BH3 and 1.93 m at 11-0057 BH2.
- The highest groundwater level recorded at borehole 11-1362-0057 BH1 was 487.3 masl (about 1.0 mbgs) on May 4, 2013.
- High groundwater levels recorded at borehole 11-1362-0057 BH2 were 485.3 masl (about 0.6 mbgs) and 485.4 masl (about 0.5 mbgs), recorded on April 27 and June 14, 2013, respectively.
- The highest groundwater level recorded in borehole 11-1362-0057 BH3 was 483.7 masl (about 0.4 mbgs) on May 8, 2013.
- Groundwater levels recorded at 11-0057 BH1 and BH2 started to decrease early in July 2013.









## 9.3 Survey Pin Monitoring

#### 9.3.1 June 21 to June 28, 2012

A network of survey pins was installed within the West Failure area and monitored daily for the period from June 21 to June 28, 2012, immediately after the West Failure occurred using a Total Station. Figure 19 presents locations of the survey pins installed for this monitoring period and horizontal movement vectors for selected survey pins. The horizontal movement vectors were determined for the period from June 22 to June 24, 2012. A summary of the results of ground movement monitoring for this period is as follows:

- Cherry Lane behind 233-11<sup>th</sup> Street East (Pin 18 location) moved 260 mm down slope and pushed up 0.05 m for the monitoring period from June 22 to 28. The rate of movement reduced from 110 mm/day from June 22 to June 23, to approximately 27 mm/day from June 24 to June 28, 2012.
- Cherry Lane behind 237-11<sup>th</sup> Street East (Pin 34) moved 220 mm down slope and dropped 30 mm for the monitoring period from June 22 to 28.
- The toe of the failure in the backyard of 222 Saskatchewan Crescent East (Pin 31) moved 150 mm from June 22 to June 24, 2012.

#### 9.3.2 June 28, 2012 to Jun 4, 2013 (100 series pins)

Survey Pins 100 to 142 (Figure 9) were installed on June 28, 2012, along Cherry Lane at approximately 5 m intervals, to monitor the slope movement along the lane using a survey line. This series of pins was surveyed from July 4, 2012 to June 4, 2013. Horizontal movement of this series of survey pins was monitored every third day from June 28 to August 2, 2012; the rate of movement then reduced, and the frequency of monitoring was reduced to weekly. Cumulative horizontal movements and rates of movement between June 28, 2012 and June 4, 2013 are shown in Figure 20 and Figure 21, respectively.

A summary of the results of ground movement monitoring for this series of survey pins is as follows:

- Monitoring results show that a 45 m section of Cherry Lane, from Pin 112 to Pin 125, was impacted. No significant movement was measured east of Pin 112 or west of Pin 125.
- Total horizontal movement of 115 mm was measured behind 233/235 11<sup>th</sup> Street East (Pin 120 location) from June 28 to September 13, 2012.
- Recorded rate of movement reduced significantly from 12 mm/day at the start of monitoring (June 28, 2012) to less than 1 mm/day in early September 2012. Less than 5 mm of movement was monitored between February 4 and June 4, 2013

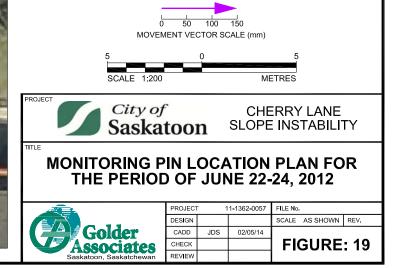
#### 9.3.3 June 28, 2012 to June 28, 2013 (100 series pins)

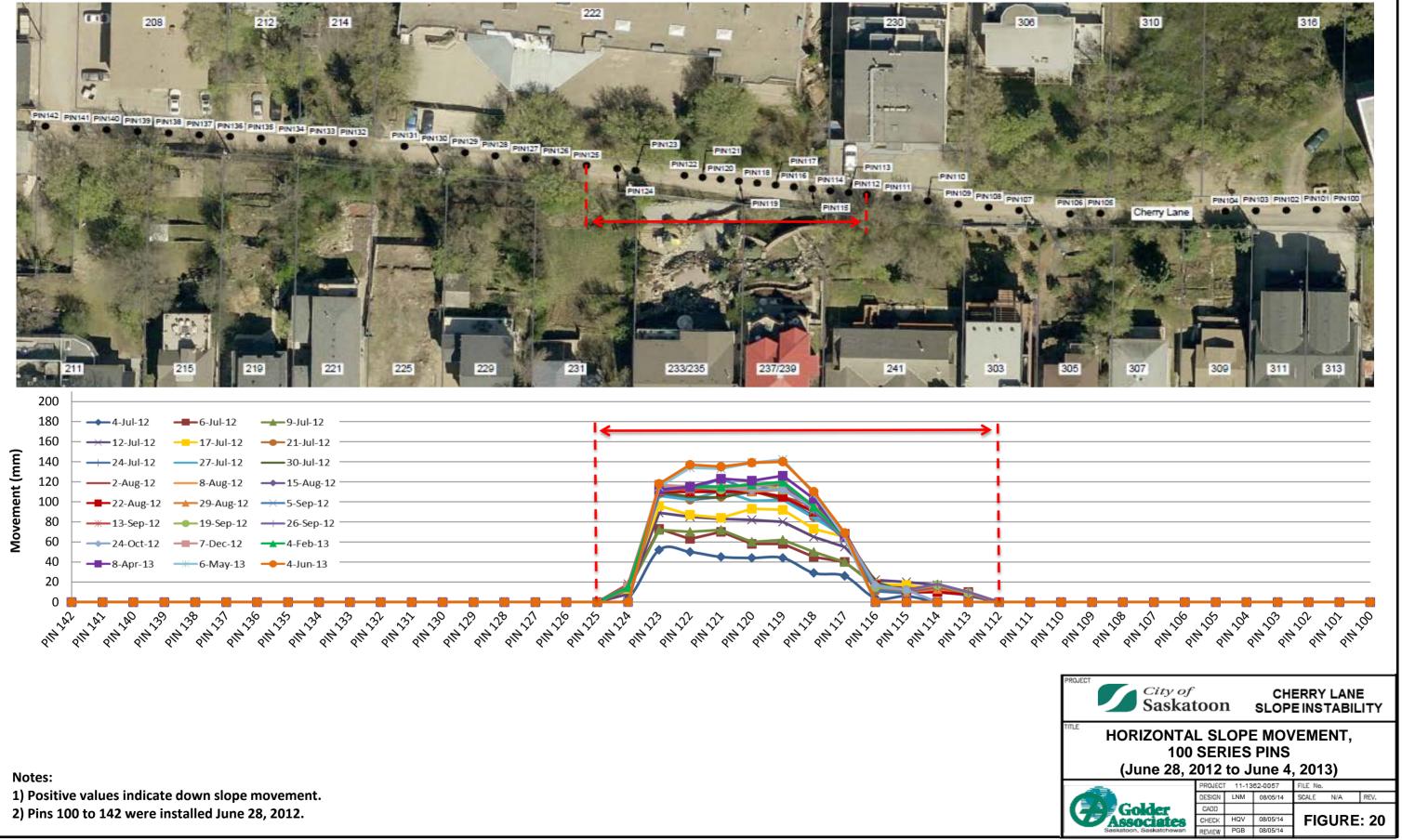
Figure 22 presents the results of GPS survey of the 100 series pins between June 28, 2012 and June 27, 2013 for the Cherry Lane at the East Failure. The results show 765 mm of horizontal movement for Pin 106, 555 mm for Pin 107, and 366 mm for Pin 108. Most of these movements occurred in June 2013 because less than 5 mm of movement was measured by line survey for this location up to June 4, 2013 (Figure 20).

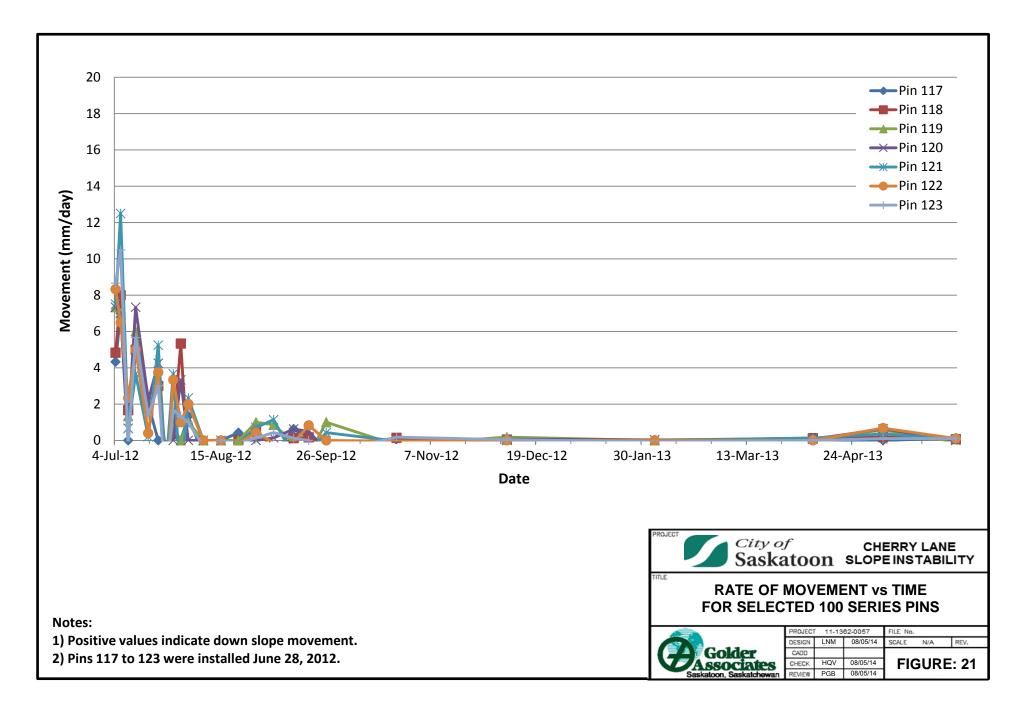


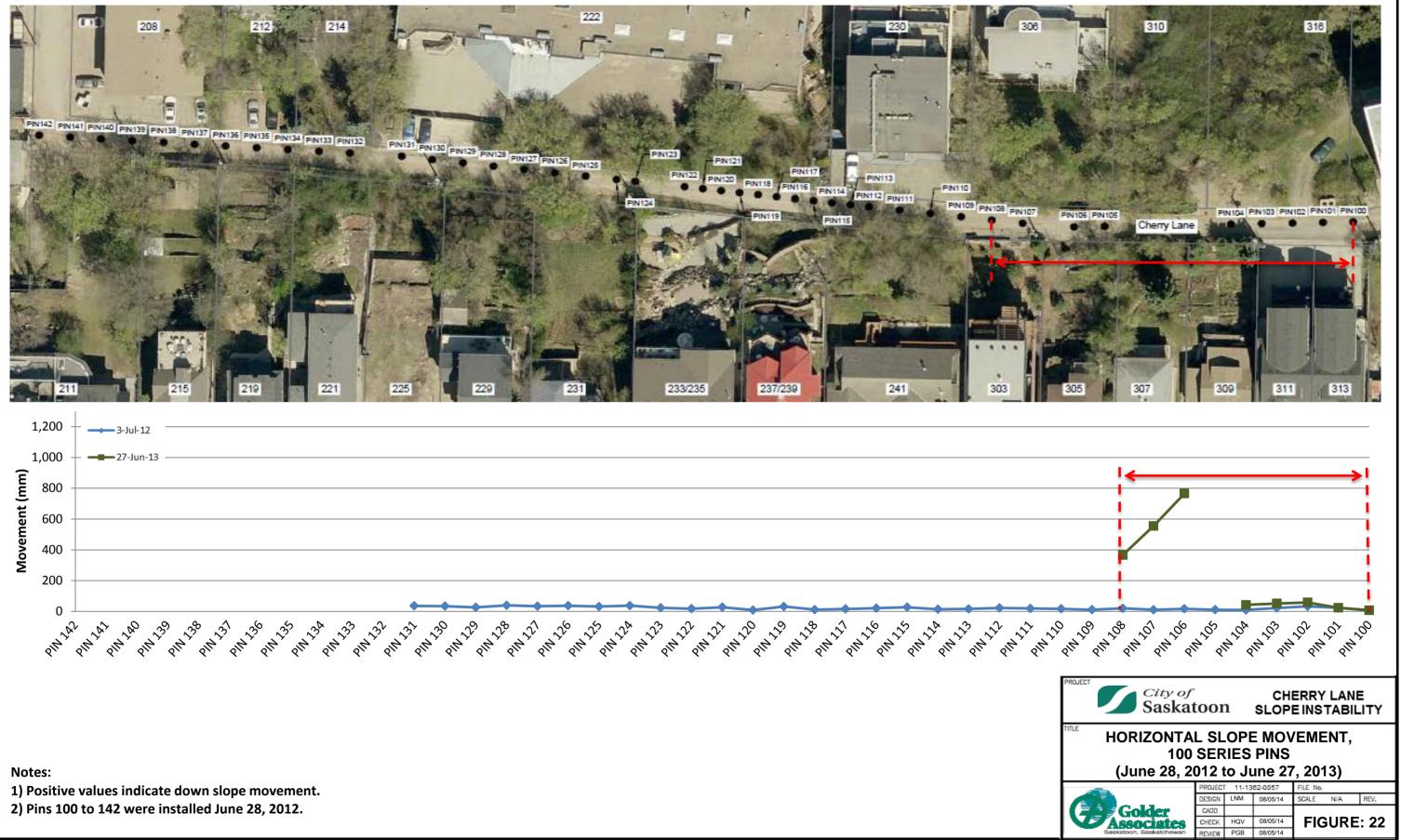


| PIN MOVEMEN | PIN MOVEMENT (BETWEEN JUNE 22-24, 2012) |  |  |  |  |  |
|-------------|-----------------------------------------|--|--|--|--|--|
| PIN NUMBER  | RECORDED MOVEMENT (mm)                  |  |  |  |  |  |
| PIN13       | 20                                      |  |  |  |  |  |
| PIN14       | 70                                      |  |  |  |  |  |
| PIN15       | 91                                      |  |  |  |  |  |
| PIN16       | 81                                      |  |  |  |  |  |
| PIN17       | 90                                      |  |  |  |  |  |
| PIN18       | 150                                     |  |  |  |  |  |
| PIN19       | 76                                      |  |  |  |  |  |
| PIN21       | 73                                      |  |  |  |  |  |
| PIN22       | 91                                      |  |  |  |  |  |
| PIN23       | 30                                      |  |  |  |  |  |
| PIN29       | 112                                     |  |  |  |  |  |
| PIN30       | 41                                      |  |  |  |  |  |
| PIN31       | 150                                     |  |  |  |  |  |
| PIN32       | 81                                      |  |  |  |  |  |
| PIN33       | 89                                      |  |  |  |  |  |
| PIN34       | 100                                     |  |  |  |  |  |
| PIN35       | 110                                     |  |  |  |  |  |
| PIN37       | 36                                      |  |  |  |  |  |


#### LEGEND





PIN MOVEMENT VECTOR CRACK LOCATION TOE OF SLUMP


REFERENCE

AERIAL PHOTOGRAPH PROVIDED BY CITY OF SASKATOON









#### 9.3.4 June 25, 2013 to September 11, 2013


The 100 series pins were replaced with Survey Pins 200 to 228 (Figure 10) to monitor horizontal slope movement along the Cherry Lane. This series of pins was surveyed from June 25 to September 11, 2013. Cumulative horizontal movements and rates of movement during this period are shown in Figure 23 and Figure 24, respectively. A summary of the ground movement monitoring for this series of survey pins is as follows:

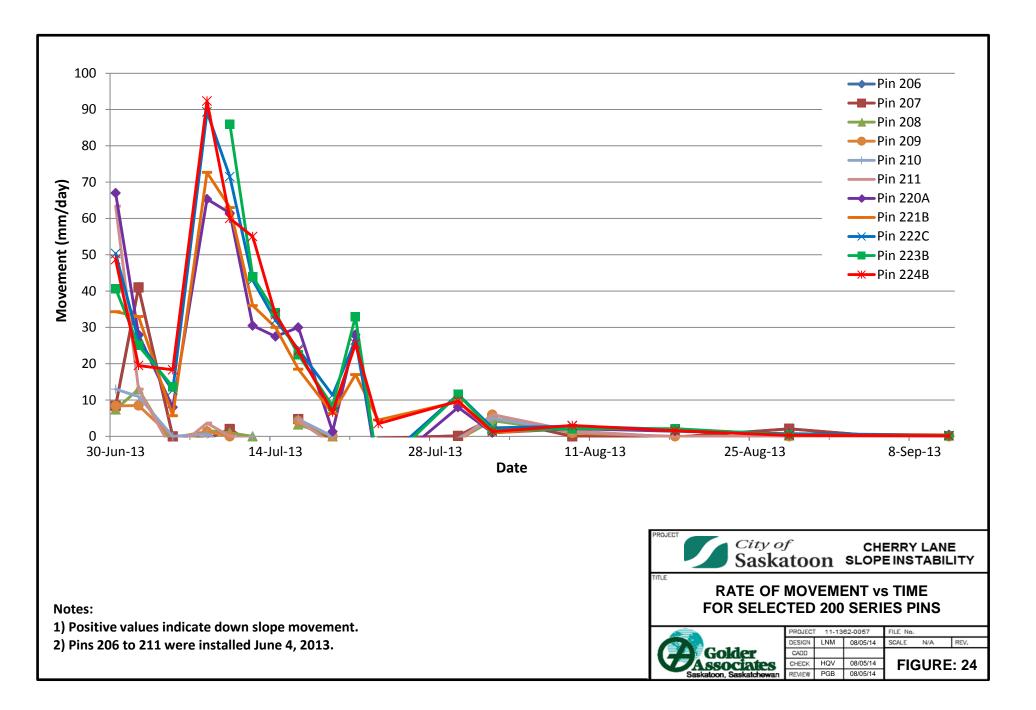
- Monitoring results show that a 45 m section of Cherry Lane, from Pin 202 to Pin 213, was impacted within the West Failure area and a 35 m section of Cherry Lane, from Pin 218 to Pin 226, was impacted within the East Failure area.
- West Failure:
  - Rate of movement of approximately 1.8 mm/day was measured behind 233/235 and 237/239 11<sup>th</sup> Street East (Pin 205 to 210 locations) between June 4 and 25, 2013.
  - Rate of movement of approximately 63 mm/day was measured behind 237/239 11<sup>th</sup> Street East (Pin 211 location) between June 25 and 30, 2013; the rate of movement at this location decreased to approximately 13 mm/day, between June 30 and July 2, 2013.
  - Rate of movement of approximately 41 mm/day measured behind 233/235 11<sup>th</sup> Street East (Pin 206 location) between June 30 and July 2, 2013.
  - Movement between zero and 7.5 mm/day was measured within the West Failure area between July 2 and September 11, 2013; except for behind 233/235 11<sup>th</sup> Street East (Pin 207 location) where a rate of movement of 12.5 mm/day was measured between July 12 and 14, 2013.
- East Failure:
  - Rate of movement measured behind 303, 305, and 307 11<sup>th</sup> Street East (Pin 220 to 224 location) was approximately 50 mm/day to 75 mm/day between June 25 and 30, 2013; the rate of movement at this location decreased to approximately 8 mm/day to 33 mm/day between June 30 and July 5, 2013; rate of moment at this location then increased to approximately 13 mm/day to 92 mm/day between July 5 and 8, 2013.
  - Rate of moment behind 305 11<sup>th</sup> Street East (Pin 223) increased from approximately 13 mm/day, during the June 5 to 8, 2013 monitoring period, to 195 mm/day, during the June 8 to10, 2013 monitoring period.
  - Rate of movement generally decreased after July 10, 2013; movements between zero and 12 mm/day were measured after July 24, 2013.

The rate of movement for the 200 series of pins has been less than 5 mm since July 2013 at the West Failure and since August 2013 at the East Failure.








Notes:

1) Positive values indicate down slope movement.

2) Pins 200 to 216 were installed June 4, 2013.

3) Pins 217 to 228 were installed June 25, 2013.





#### 9.3.5 September 11, 2013 to October 31, 2013 (300 series pins)

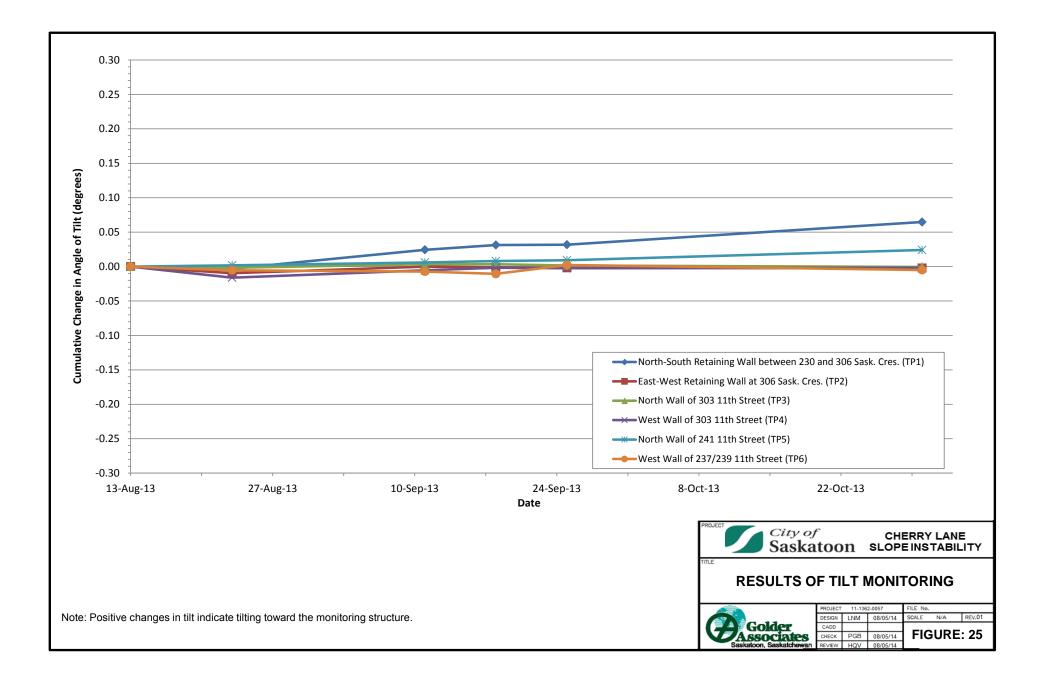
More permanent survey markers, numbered 303 to 327 were installed on September 13, 2013 to monitor slope movement along Cherry Lane, and will continue to be monitored over time. Locations of these survey markers are shown in Figure 11. The 300 series pins were surveyed on September 16, September 25 and October 31, 2013. Less than 5 mm of movements, which are in a range of measurement accuracy, were measured between September 13 and October 31, 2013.

### 9.4 Monitoring of Structures

#### 9.4.1 Tell-Tale Crack Monitors

Tell-tale cracks monitors were monitored approximately every 10 days from August 7 to October 30, 2013. No noticeable crack developments were noticed for this monitoring period. Photographs of the crack monitors are included in Appendix F.

#### 9.4.2 Tilt Plates


Tilt plates were monitored approximately every 10 days from August 13 to October 30, 2013. The results of tilt plate measurement are shown in Figure 25. During the monitoring period, a tilt of approximately 0.065 degrees towards the west direction was measured at the tilt plate located on the north-south retaining wall between 230 and 306 Saskatchewan Crescent East. The tilt plate located at  $241 - 11^{\text{th}}$  Street has measured a steady increase in tilt angle to 0.024 degrees; however total tilt is near the expected range of measurement accuracy and movement for this structure. Monitoring of the remaining tilt plates have measured variable results which were within the expected range of movement for most structures depending on time of day, weather and other factors.

A tilt plate was installed on the north side of the building at  $1721 - 8^{\text{th}}$  Street E. (Golder Associates Ltd.) to provide a check of the expected range of tilt of building due to climate and temperature changes. During the monitoring period, the angle of tilt at this location ranged from 0 to -0.009 degrees.

#### 9.4.3 Settlement Points

Settlement Points were monitored on August 28 and 29, September 18, and November 28 and 29, 2013. The results of settlement monitoring from August 28 to November 29 are presented in Appendix F. The results of the settlement data analysis indicate that no noticeable differential settlement of the structures have been measured to date (November 2013).





### **10.0 SLOPE STABILITY ANALYSIS**

### 10.1 General

Stability analyses of the Cherry Lane site were performed in order to identify failure mechanisms at the site and to evaluate conceptual remedial options.

The following information was used to model the riverbank slope at the Site:

- Ground surface topography was obtained from the topographic survey completed by Meridian in July 2013.
- Stratigraphy was inferred from review of available geotechnical reports and field investigations by Golder.
- Groundwater conditions were inferred from existing piezometric data.
- Geometry of the slip surface was inferred from observed landslide features, inclinometer data and site stratigraphy.
- Soil parameters used in this report were based on site specific laboratory test results, back-analysed values, or based on typical values reported in the literature.

### **10.2 Method of Analysis**

The slope stability analysis was performed using the computer software SLOPE/W, marketed by Geo-Slope International Ltd. (2007). Two-dimensional analyses were conducted using the Morgenstern-Price limit equilibrium method.

### **10.3 Material Properties**

Material properties for the slope stability analysis were selected based upon current and historical laboratory testing results for the Cherry Lane area and Saskatoon region. Table 10 shows the shear strength properties used for the slope stability analysis. Shear strength parameters for the shear zone are back-analyzed values. Effective cohesion value of 10 kiloPascals (kPa) was used for the silty clay, and clay materials to account for the contribution from soil suction to the unsaturated shear strength of these materials. Assumed material properties of fill or modified soils for several conceptual remediation options are also included, based on typical values.

| Table 10: | Shear Strength | Parameters for | the Prelimina | ary Slope St | ability Analysis |
|-----------|----------------|----------------|---------------|--------------|------------------|
|           |                |                |               |              |                  |

| Material                | Unit Weight<br>(kN/m³) | Effective Cohesion<br>(kPa) | Effective Friction Angle<br>(degrees) |
|-------------------------|------------------------|-----------------------------|---------------------------------------|
| Fill                    | 19                     | 5                           | 22                                    |
| Silty Clay              | 19                     | 10                          | 25                                    |
| Clay                    | 19                     | 10                          | 22                                    |
| Shear Zone              | 19                     | 0                           | 12*                                   |
| Till                    | impenetrable           | -                           | -                                     |
| Shear Zone Modification | 20                     | 0                           | 30                                    |

\*Back analysed value; kN/m<sup>3</sup> = kiloNewtons per cubic metre; kPa = kiloPascal





### **10.4 Uncertainty of Input Parameters**

There is uncertainty in the input data (e.g., till/clay contact, soil properties and piezometric conditions) for the analysis. A sensitivity analysis, where the influence of variations in each input variable is isolated, can be conducted to evaluate the implications of uncertainty in the results. A probabilistic analysis can be used for assessing the reliability of the slope stability conditions. Sensitivity analysis and probabilistic analysis were not conducted at this stage of the study where a conceptual remediation is being developed. Further soil investigation and laboratory tests, sensitivity analysis and probabilistic analysis may be recommended for detailed design if one of the remediation options is to be constructed.

### 10.5 Recommended Factor of Safety

The stability condition of the slope is evaluated in terms of a calculated factor of safety, which is the ratio of the resisting forces/moments to the driving forces/moments. The factor of safety of a slope can be calculated in terms of all the forces and moments acting on the slope. Based on the limit equilibrium analysis, a computed factor of safety of 1.0 means the available resisting forces (e.g., the available shear strength of the soil along the sliding plane) have been mobilized and a condition of equilibrium exists and failure occurs. A computed factor of safety of greater than 1.0 means that the resisting forces are more than are required for a condition of limiting equilibrium and the slope is in a stable condition.

Determination of a minimum acceptable factor of safety (FS) for a slope stability model depends on several factors, including: i) the assumptions necessary to complete the analysis; ii) the reliability of the input data, particularly shear strength and pore-water pressure conditions; and iii) the consequence of failure. For the Cherry Lane area, potential changes in the slope geometry, additional structural loads and piezometric conditions can occur through unknown future development and landscaping work, therefore these potential unknown changes should be considered.

The consequence of failure (or risk) is an important factor to take into consideration when determining an acceptable factor of safety for design purposes. A lower factors of safety would be accepted on a slope where movement would result in little property damage or pose little hazard to public safety. A higher FS is typically required when risk to public safety and economic loss are involved.

Golder reviewed existing geotechnical reports for the site, the MVA policy (MVA 2004), and policies of other municipalities or government agencies that have high risk slope development. Existing geotechnical reports for the area specified a minimum FS of 1.3 to 1.5 depending on the site studied. In a slope instability study of the east riverbank conducted for MVA, Clifton (1985) recommended a desirable FS of 1.5 for slope improvement involving substantial risk of economic loss and some public safety considerations; and a minimum FS of 1.3 with monitoring was recommended. The MVA policy does not specify a minimum FS, with the caveat that any construction should not increase the instability of the slope, before or after construction.

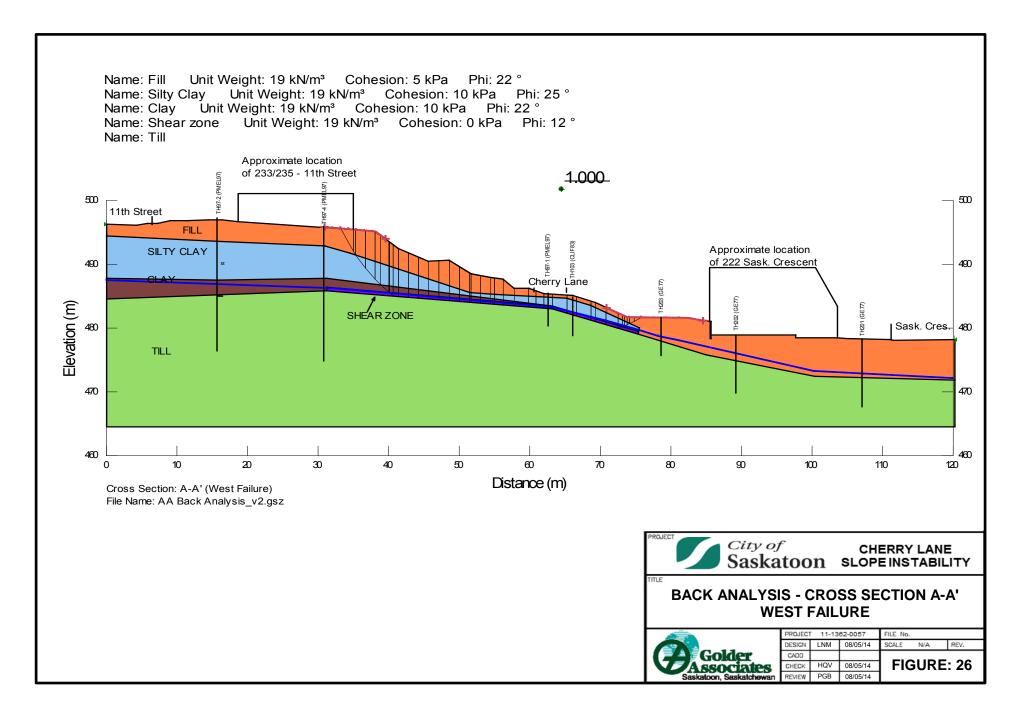
As this Site poses a high risk to the people and structures on the 200 to 300 blocks of 11<sup>th</sup> Street East and Saskatchewan Crescent East, difficulties in maintaining a monitoring program in the residential properties, and uncertainty associated with future development, a FS of 1.5 is recommended for the design criteria for the Site under consideration.

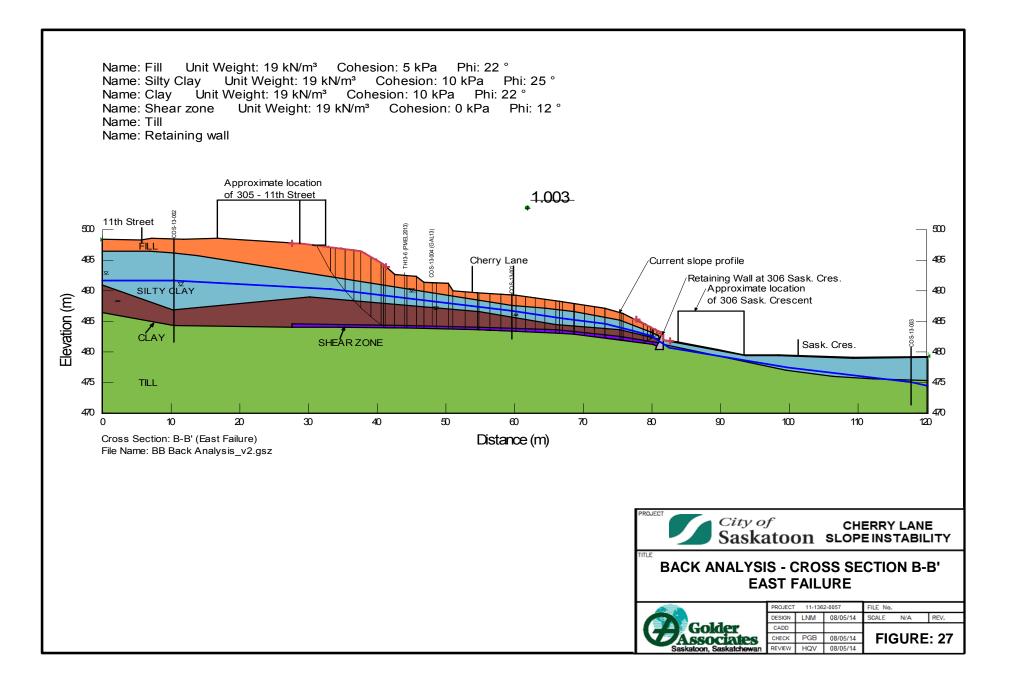




### 10.6 Back-Analysis of Failure Slope

As the slope has already failed, a stability back-analysis can be conducted. The back-analysis method models the geometry, soil, and groundwater conditions at failure, indicated by a factor of safety (FS) of 1.0. Back-analysis is shown in Figure 26 for the West Failure and Figure 27 for the East Failure.


The condition modelled for back-analysis was for a time after the initial failure when the topography was surveyed, but when the slope was still actively moving. As such, groundwater levels shown in the model may be lower than those at the time of initial failure; but they are higher than those measured in the fall or winter months (Figure 17). Effective shear strength parameters of the clay at shear zone were expected to be near or at residual (i.e., having undergone movement).


Loading was not applied to any part of the slope within the stability analyses as it is understood that the houses within this area are founded on piles and therefore their associated vertical loads are distributed to a founding layer outside of the sliding mass. The retaining walls and large boulders present within the backyards of Lots 233/235 and 235/237 were modelled as soil within the stability analysis due to unknown geometries of these features. Retaining walls for the residences along Saskatchewan Crescent East were modelled as gravity walls and were based upon the geometry provided in the building permit plans. The slope stability analyses assume that the existing reinforced concrete wall and slab system of the basement structure of 222 Saskatchewan Crescent East (cross-section A-A'), and retaining wall behind 306 Saskatchewan Crescent East (cross-section B-B') were impenetrable. To date, no noticeable movements were observed at these two structures. The resistance of these structures against landslide activity in the future is currently unknown.

The slip surface of the sliding soil mass is in surficial stratified deposits at the contact between the clay and the underlying till. Therefore, a composite slope failure along a slip surface at the interface between the clay and till was considered in the analyses.

Cross-sections A-A and B-B were selected as the primary section for analysis for the West Failure and East Failure, respectively. The location of the cross-sections is shown on Figure 2. Figure 12 and Figure 13 show the inferred stratigraphic soil profiles along each cross-section. Both the West Failure and East Failure were back-analysed to determine the residual (or large strain) shear strength parameters corresponding to failure or a FS of 1.0.









### **10.7 Conceptual Remedial Options**

A number of conceptual remedial options were considered for the remediation of the slope, including:

- do nothing;
- installation of sub-drainage system to lower groundwater tables;
- re-grading of existing slope; and
- modification of the shear zone to increase shear strength.

It was understood that the primary focus of the slope remediation was to preserve existing residences along 11<sup>th</sup> Street East and Saskatchewan Crescent East, and maintain vehicle access along Cherry Lane. As discussed in Section 10.5, the required slope factor of safety for the conceptual remedial options was at least 1.5. Constructability and cost effectiveness were also considered in the process of evaluating conceptual remedial options.

Options evaluated are conceptual in nature, meaning specific design details such as detailed geometry, method of construction, sourcing and supply of materials, coordination of activities, etc. have not been considered.

Table 11 summarizes the calculated factor of safety (FS) for a number of conceptual remedial options, which is discussed in detail in the following sections.

| Analysed Scenarios                                         | Cross-section | Calculated FS | Figure |
|------------------------------------------------------------|---------------|---------------|--------|
| Paak analysia                                              | A-A'          | 1.00          | 26     |
| Back analysis                                              | B-B'          | 1.00          | 27     |
| Option 1: Do pothing low groundwater table                 | A-A'          | 1.03          | 28     |
| Option 1: Do nothing, low groundwater table                | B-B'          | 1.09          | 29     |
| Option 1. Do pothing high groundwater table                | A-A'          | 0.89          | 30     |
| Option 1: Do nothing, high groundwater table               | B-B'          | 0.87          | 31     |
| Option 2: Installation of sub-drainage system              | A-A'          | 1.03          | 32     |
| Option 2. Installation of sub-drainage system              | B-B'          | 1.26          | 33     |
| Ontion 2: Site regrading with sub drainage system          | A-A'          | 1.51          | 34     |
| Option 3: Site regrading with sub-drainage system          | B-B'          | 1.50          | 35     |
| Option 4: Shoor zone medification with sub-drainage system | A-A'          | 1.51          | 37     |
| Option 4: Shear zone modification with sub-drainage system | B-B'          | 1.51          | 38     |

Table 11: Calculated Factor of Safety for Remedial Options

FS = Factor of Safety

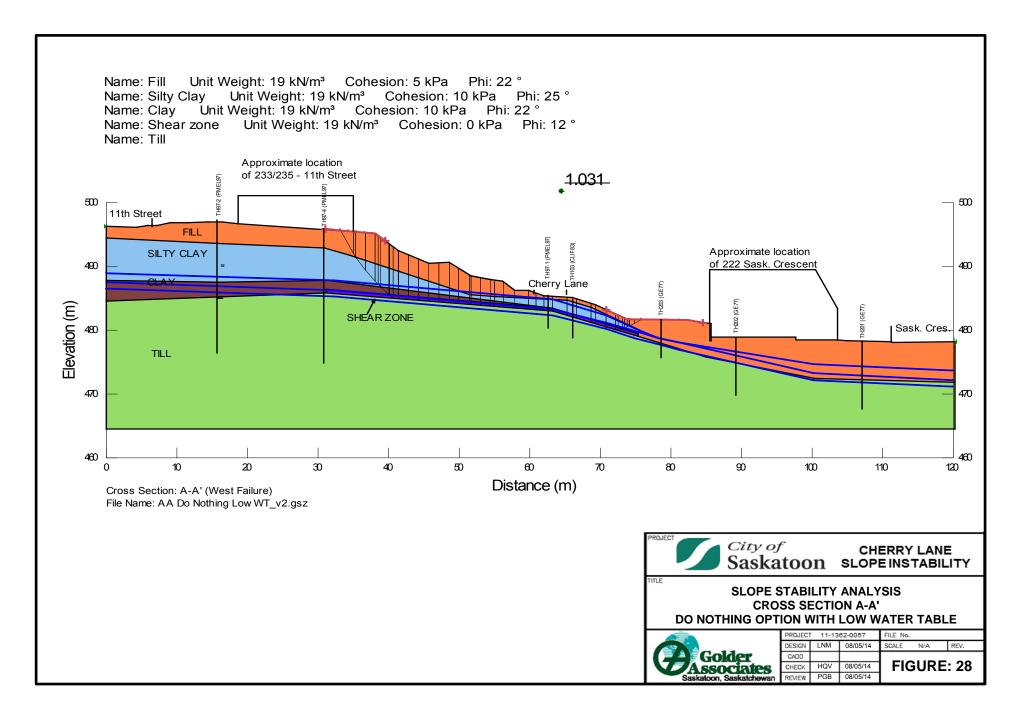
#### **10.7.1** Option 1 – Do Nothing

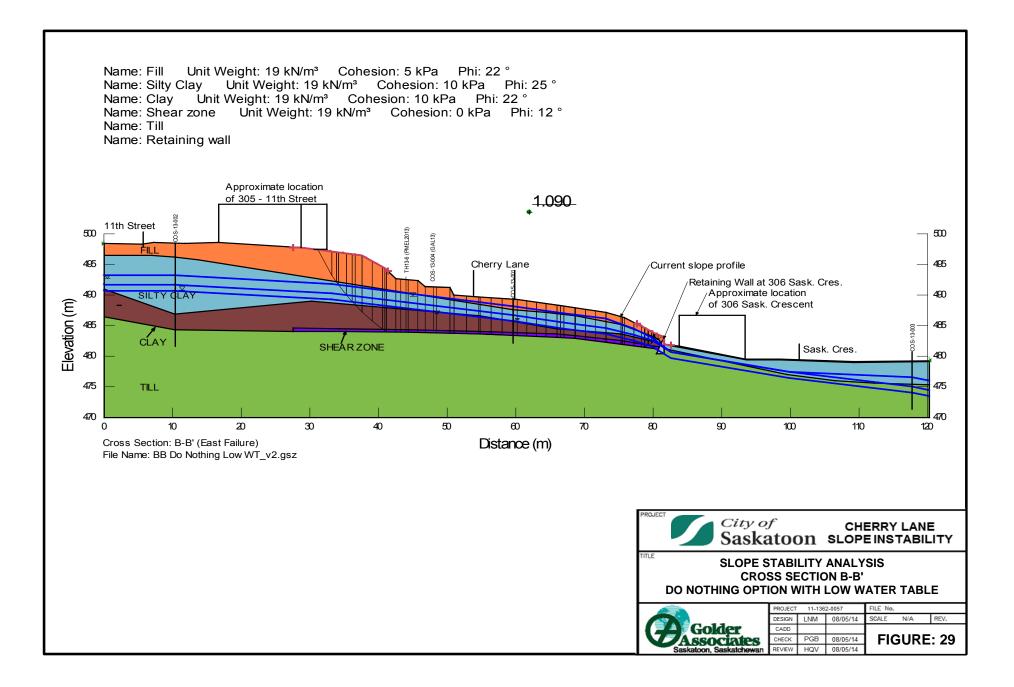
The first remedial option considered was leaving the slope in its existing condition. Based on the slope stability analysis conducted, it is likely that the slope at the East and West Failure locations will continue to move, likely on a seasonal basis with higher rates of movement in the spring when groundwater levels in the area are high. Rates of movement are expected to be low in the winter months and in dry years where the groundwater table is at or near the contact surface between the glacial till and surficial stratified deposits. As noted in Sections 3.6 and 7.0, groundwater level fluctuations of up to 2 m during a year and up 6 m in the long term are measured.

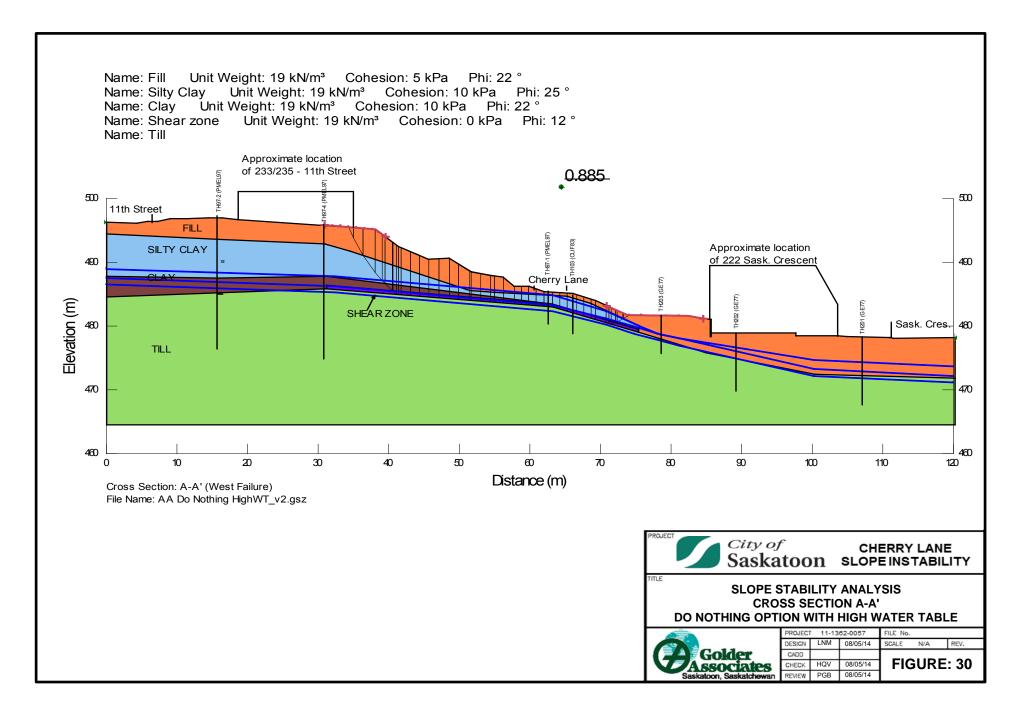


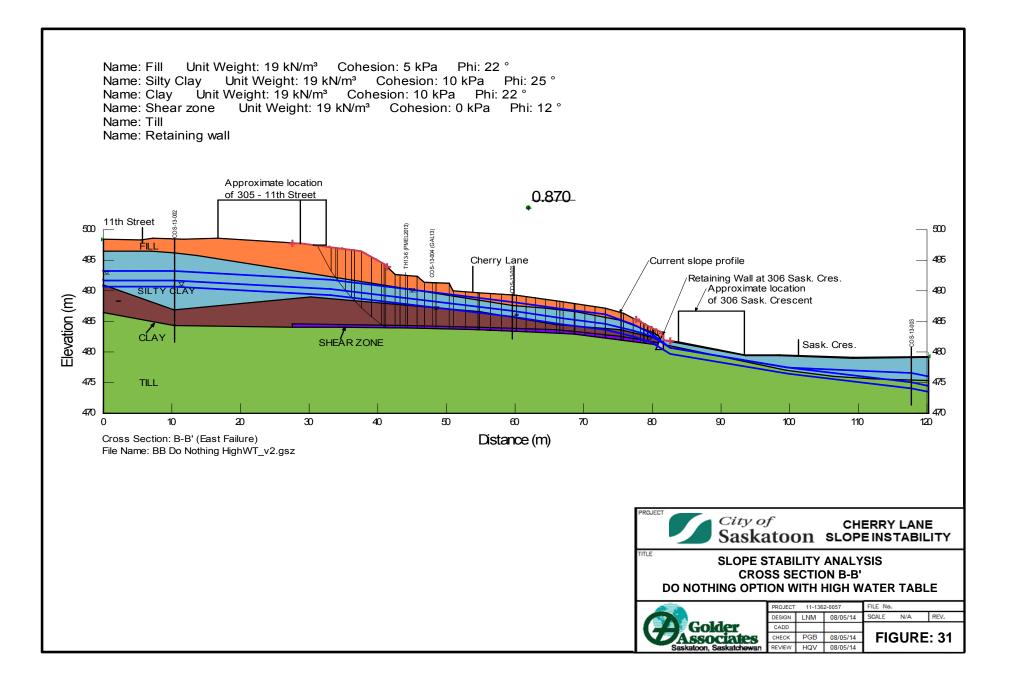
Figure 28 and Figure 29 show the stability analyses for the do nothing option, with the piezometric levels approximately 1 m lower than those used on the back-analysis to represent slope instability conditions. The calculated factors of safety are 1.03 and 1.09 for cross-sections A-A' and B-B', respectively, for the case where nothing is done other than lowering the groundwater table.

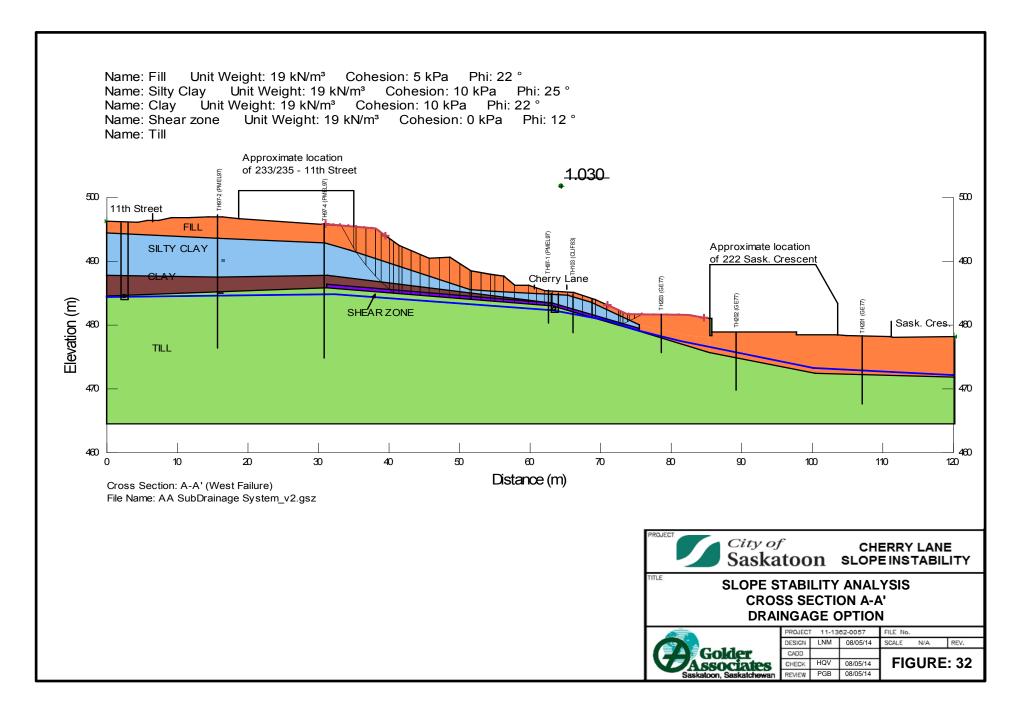
Figure 30 and Figure 31 show the stability analyses for the do nothing option, with the piezometric level elevated approximately 1.5 m above those used in the back-analysis to represent slope instability. The calculated factor of safety is 0.89 for cross-section A-A' and 0.87 for cross-section B-B' when the raised groundwater level is used in the analysis. There is also a significant potential for additional sloughing of the material at the scarps of the failure areas, where there is up to 2 m of vertical drop. There is also a buildup of material at the toe and the slope has reached a flatter angle. Advancement of the failure toward 11<sup>th</sup> Street East will result in undermining of existing building foundations. Additionally, properties located below 11<sup>th</sup> Street East may experience damage from debris or additional soil loading as material collects at the toe of the sliding zone. It is expected that there will continue to be slope movement along Cherry Lane as the slope failure progresses, disrupting traffic access and power service along the lane.

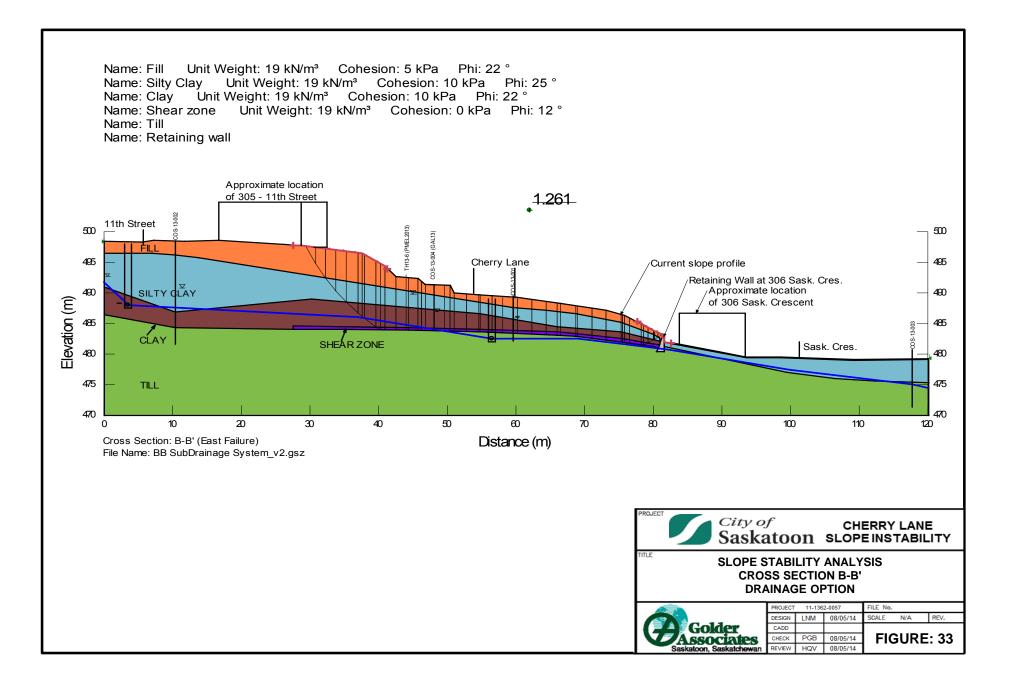

#### 10.7.2 Option 2 – Installation of Sub-Drainage System


Pore-water pressures in surficial stratified deposits, especially in the highly plastic clay overlying the till, have significant influence on slope stability as indicated by the occurrence of the East and West Failures when groundwater levels were above average in both 2012 and 2013. Installation of sub-drainage system to lower groundwater levels and maintain it at low levels will result in an increase in the factor of safety of the slope and minimize the effect of seasonal and long term groundwater level variation.


Drainage systems installed in 11<sup>th</sup> Street East can be used to intercept groundwater prior to entering the slope, however the drains will not account for pore-water pressures that are generated from surface infiltration downslope of 11<sup>th</sup> Street East. A second or alternate drainage system could be installed along Cherry Lane to reduce the pore-water pressures near the middle of the slope. Drainage systems will have to be designed to reduce pore-water pressures over the entire area of potential slope instability to prevent mounding and increased instability between individual locations. Drainage systems would require regular maintenance to ensure that blockages do not occur, and to ensure that the system is effectively draining the slope.


For the slope stability analysis, groundwater conditions where drainage systems were installed along 11<sup>th</sup> Street East approximately 10 mbgs and along Cherry Lane between 3 mbgs and 8 mbgs were considered. Installation of drainage systems in both locations for the existing slope will be more effective than a single drainage system. For the West Failure (cross-section A-A'), the post-failure pore-water conditions along 11<sup>th</sup> Street East were already near the clay and till interface, resulting in marginal increase to FS when the level was lowered, however lowering the pore-water pressures along the East Failure (cross-section B-B') resulted in an approximate 20% increase in FS. It should be noted that this increase in slope FOS will not be achieved immediately after the sub-drainage system construction because pore-water pressure in clay slope may take several years to dissipate.


Figure 32 and Figure 33 show the stability analyses for this conceptual remedial option for the West Failure and East Failure, respectively. Installation of a drainage system in 11<sup>th</sup> Street East will require a minimum length of 135 m and a depth ranging between 8.6 m and 12.5 m. Installation of a drainage system in Cherry Lane will require a length of 135 m at a depth between 3.6 m and 8 m. Detailed design will refine the overall dimensions of this option.
















. .

Installation of a sub-drainage system would require disturbance to roadways (11<sup>th</sup> Street East and Cherry Lane) and underground utilities in the area, but would result in only localized disturbance to the residences in this area and pose little additional risk for slope instability during construction. Construction of the drainage outlet would require connection to the sewer system or construction of a new drainage outlet downslope.

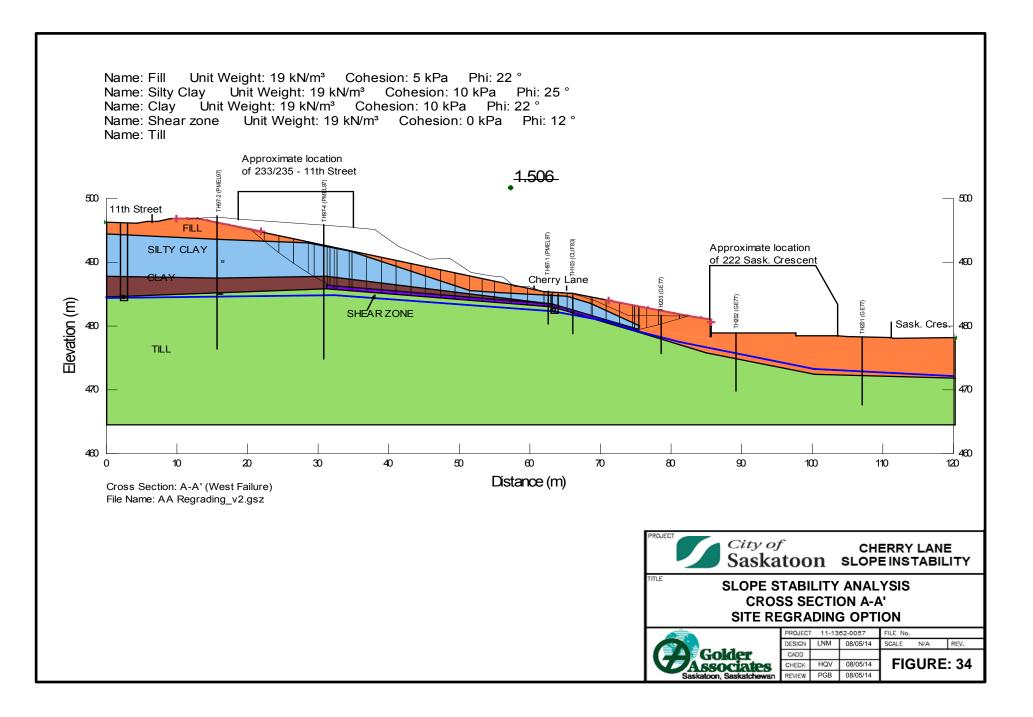
### **10.7.3** Option 3 – Site Re-grading

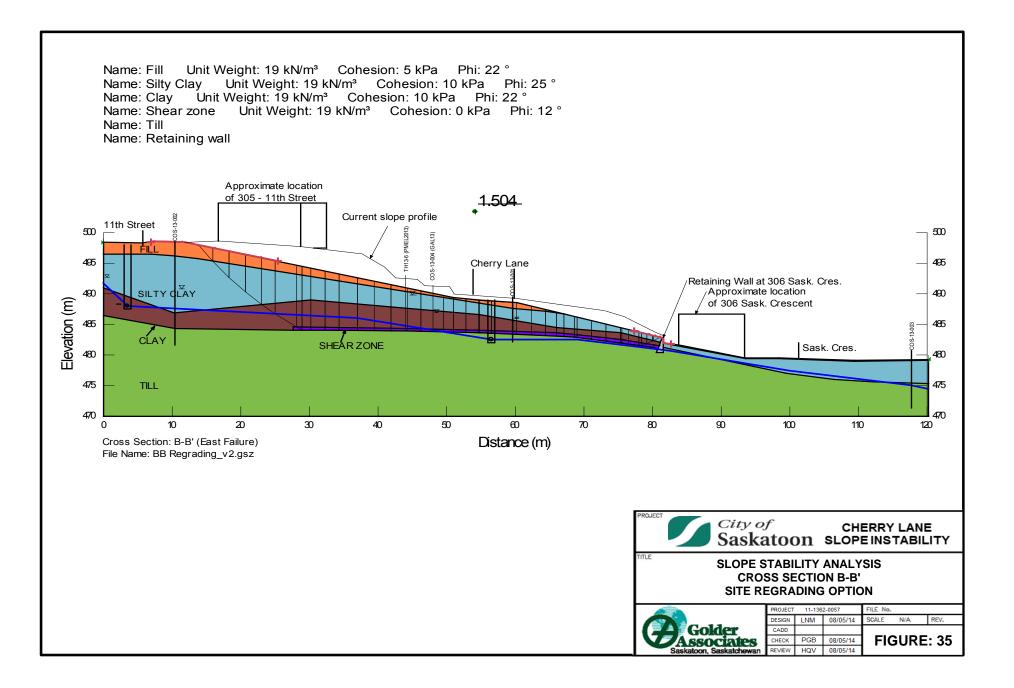
Site re-grading (e.g., slope flattening) reduces material weight at the top of the slope and, in some cases, increases weight at the toe of the slope; therefore improves the slope stability condition.

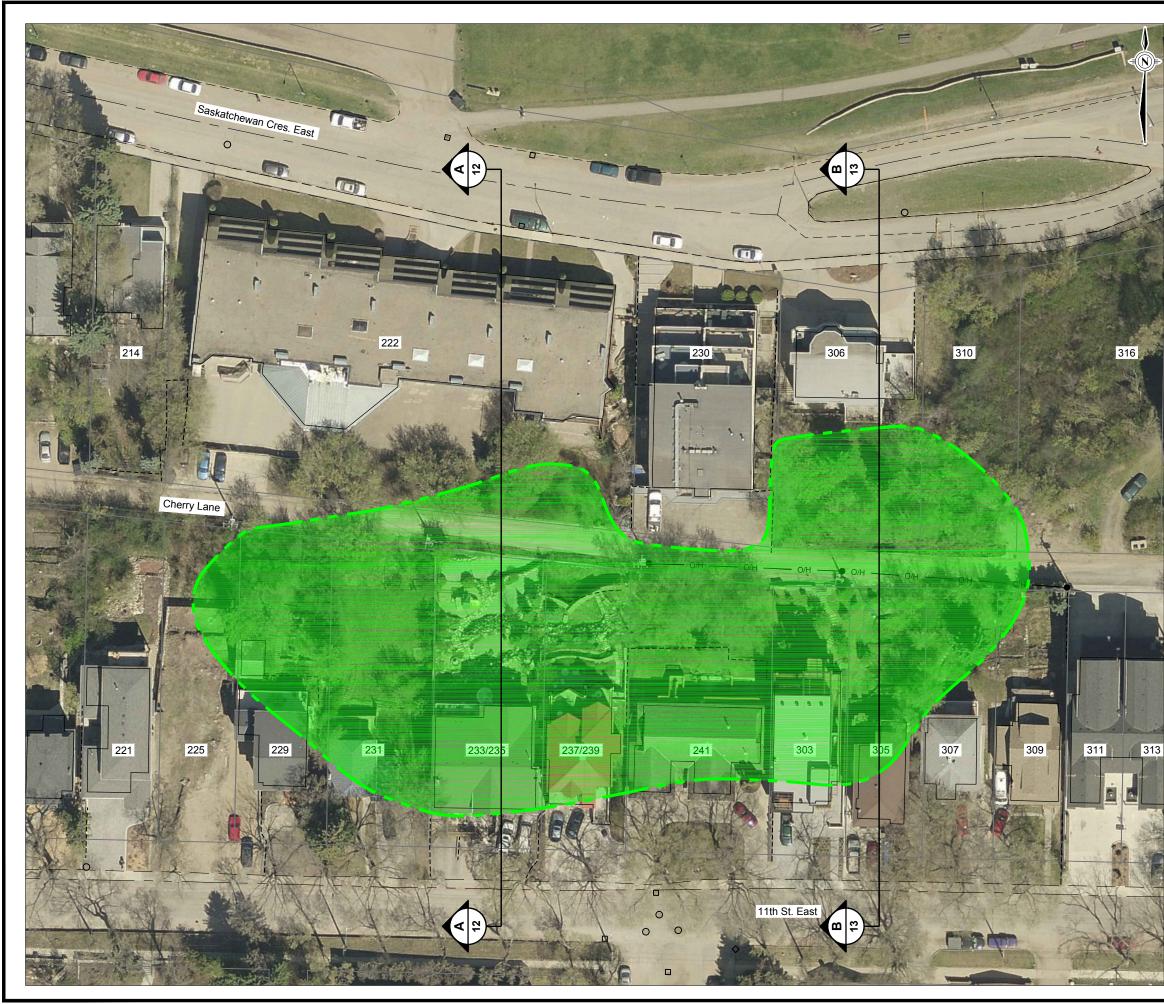
Review of the upper slope topography shows that the current slope has an average slope of 2.5H:1V along cross-section A-A' (West Failure), and 1.9H:1V along cross-section B-B' (East Failure).

Slope stability analyses for cross-section A-A' and B-B' were conducted to determine the required level of slope flattening (conceptual slope geometry) of the site to obtain a minimum FS = 1.5, as shown in Table 12. It is assumed that installation of a drainage system along Cherry Lane will be required in conjunction with the slope re-grading in order to maintain pore-water pressures at or below the till contact.

| Table 12: | Average Slope Gradient for Conceptual Option 3 – Re-grading |  |  |
|-----------|-------------------------------------------------------------|--|--|
|           | Average Slope Gradient                                      |  |  |


| Cross Section |             |             |  |
|---------------|-------------|-------------|--|
|               | Upper Slope | Lower Slope |  |
| West Failure  | 4.4H:1V     | 4.8H:1V     |  |
| East Failure  | 3.9H:1V     | 2.5H:1V     |  |

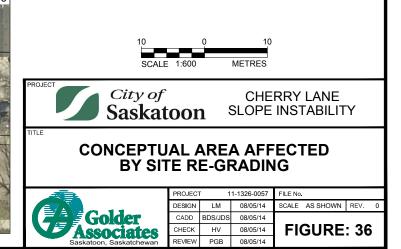

Figure 34 and Figure 35 show the stability analyses for this conceptual remedial slope flattening option. Figure 36 shows the plan view of the estimated extents of slope re-grading required to re-establish the slope to a minimum FS = 1.5. The approximate dimension of the conceptual slope re-grading is an area approximately 135 m long by 17 m to 67 m wide. Detailed design will refine the overall dimensions of this option.


Implementation of this option will cause significant disruption to residences along 11<sup>th</sup> Street East and Saskatchewan Crescent East, as well as the above ground power lines and landscaping in the area. Site access will be limited and large volumes of fill and debris will need to be hauled from site. Access to 11<sup>th</sup> Street East and Cherry Lane will be restricted during construction, but should not be affected in the long term.

Installation of a drainage system will be required along 11<sup>th</sup> Street East and Cherry Lane in order to maintain long term stability of the slope with this option.










### LEGEND

- POWER POLE
- CATCH BASIN
- O MANHOLE
- OVERHEAD POWER LINE
- 303 LOT NUMBER

#### REFERENCE AERIAL PHOTOGRAPH PROVIDED BY CITY OF SASKATOON, MAY 15, 2011 CITY OF SASKATOON DATUM





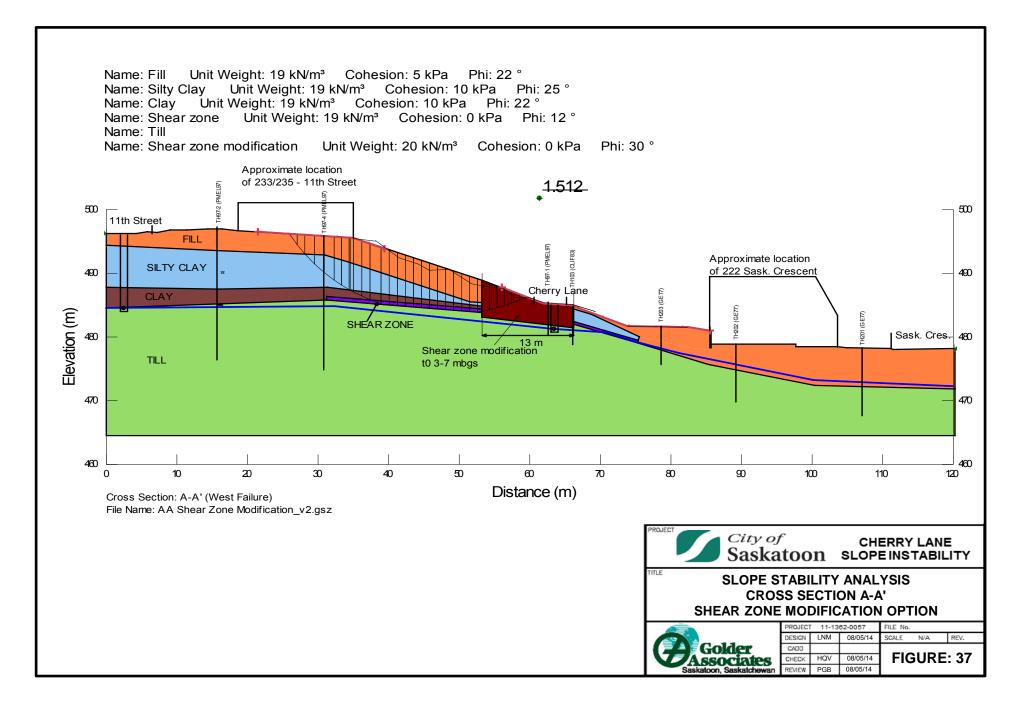
## **10.7.4** Option 4 – Shear Zone Modification

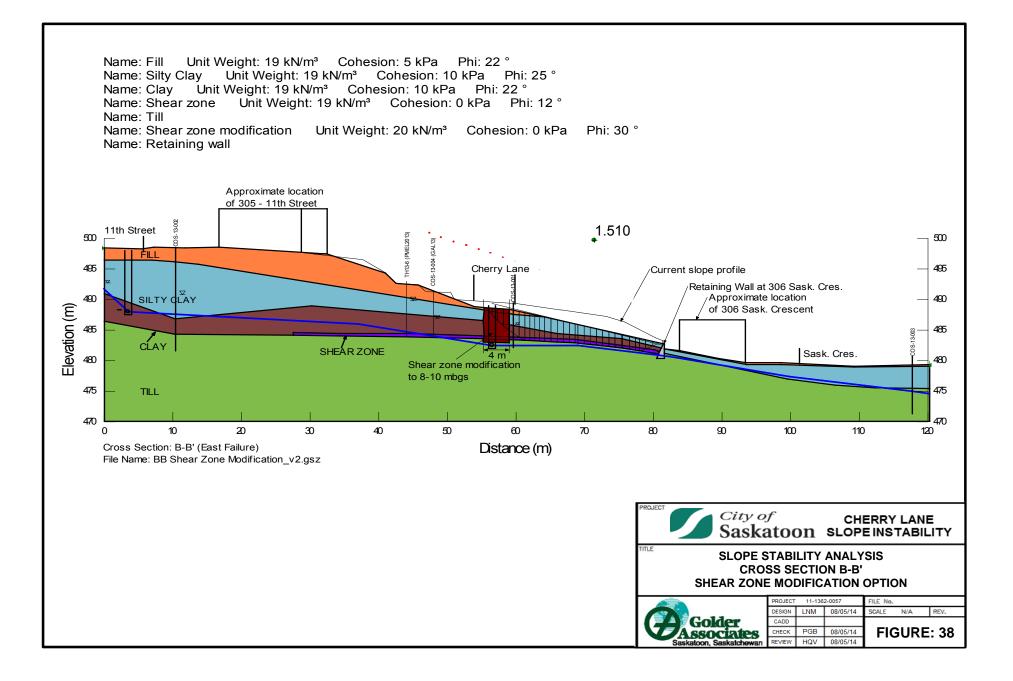
Shear zone modification, such as the installation of shear key, stone column, concrete or steel piles, or using a cutter soil mixing (CSM) method, can be undertaken to improve the shear strength of the shear zone, thus improving slope stability conditions.

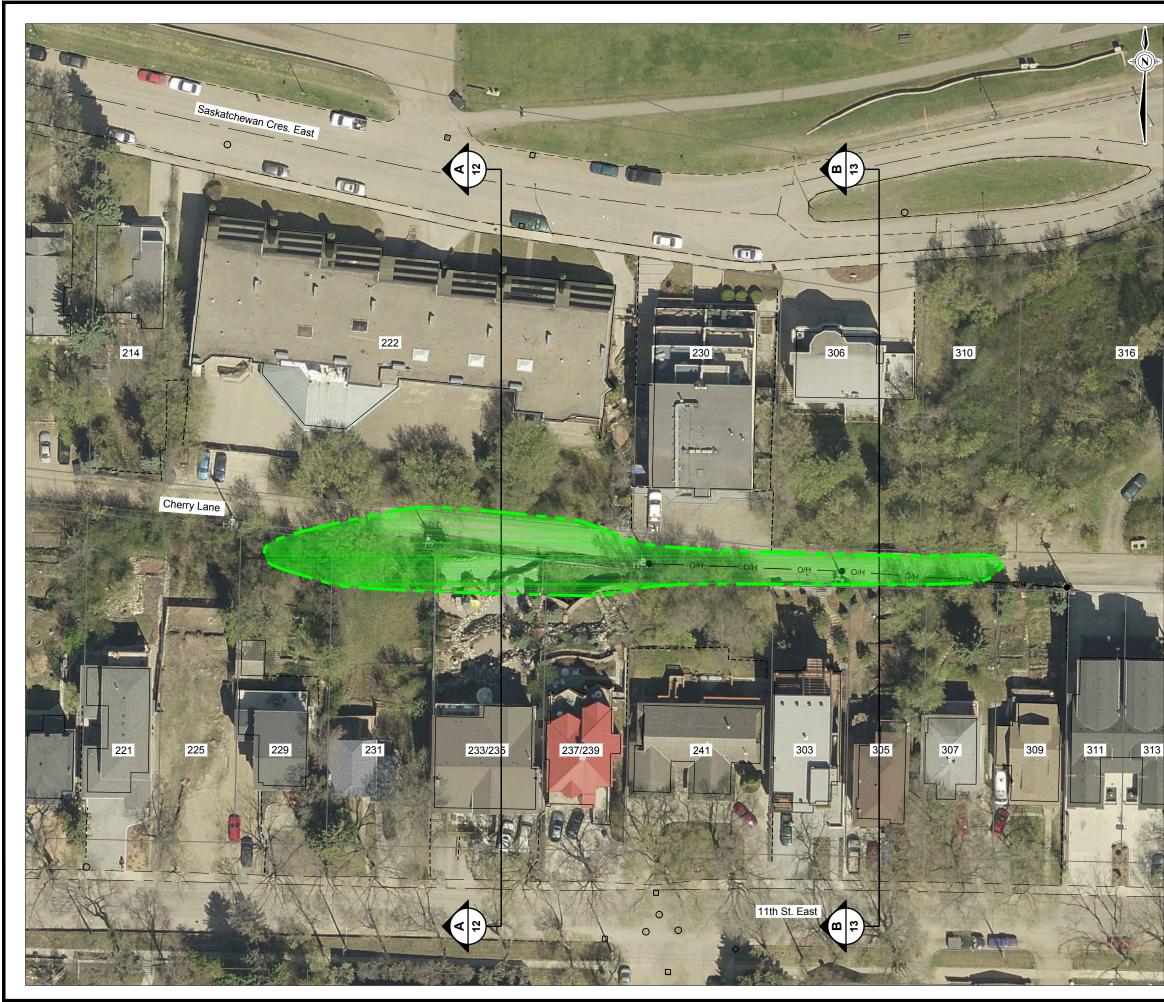
Slope stability analyses were conducted to evaluate the extent of the shear zone modification required to obtain a minimum FS = 1.5, as shown in Table 13. A material with an equivalent 30 degree effective friction angle and zero cohesion was assumed for the modified shear zone area. It is assumed that a dewatering system has been installed upslope of the shear zone modification in order to maintain the pore-water pressures at or below the till contact.

| Cross Section | Shear Zone Dimensions |              | Commente                                                |
|---------------|-----------------------|--------------|---------------------------------------------------------|
| Closs Section | Width (m)             | Depth (mbgs) | Comments                                                |
| West Failure  | 13                    | 7            | Modification in Cherry Lane extending up and down slope |
| East Failure  | 4                     | 7            | Modification in Cherry Lane                             |

#### Table 13: Shear Zone Modification Dimensions for Conceptual Option 4


m = metre; mbgs = metres below ground surface

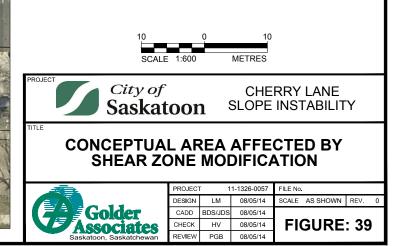

Figure 37 and Figure 38 show the stability analyses for this conceptual remedial option. Figure 39 shows the plan view of the estimated extent of shear zone modification required along Cherry Lane to achieve a minimum FS = 1.5. The approximate extent of the conceptual shear zone modification area is approximately 120 m long and 4 to 13 m wide. Detailed design will refine the overall dimensions of this option.


Implementation of this option will cause significant disruption to access and services along Cherry Lane, as well as the backyards of the residences along 11<sup>th</sup> Street East. Due to the unstable nature of this slope, the use of an open excavation method would not be acceptable. Construction methods where limited excavation is necessary would be required, such as stone columns, *in situ* cutter soil mixing, etc. Site access will be limited and large volumes of fill and debris will need to be hauled from site. Access to Cherry Lane will be restricted during construction.

Installation of a drainage system will be required along 11<sup>th</sup> Street East and Cherry Lane in order to maintain long term stability of the slope with this option.










#### LEGEND

- POWER POLE
- CATCH BASIN
- O MANHOLE
- OVERHEAD POWER LINE
- 303 LOT NUMBER

#### REFERENCE AERIAL PHOTOGRAPH PROVIDED BY CITY OF SASKATOON, MAY 15, 2011 CITY OF SASKATOON DATUM





## 11.0 SUMMARY

The slope failures along Cherry Lane are most likely the result of a combination of the natural geology of the soils along the riverbank, the heavy and prolonged precipitation in the spring of 2012 and 2013 that resulted in increased groundwater levels, and changes to the geometry and landscaping of the slope. As such, this section of the riverbank is at a high risk of continuing slope failure. Action should be taken to reduce the risk to the public, infrastructure, and property in the area.

Conceptual slope remediation options were developed for the Site. Table 14 provides a summary of cost estimates, risks, and benefits associated with each of the conceptual options.

The conceptual cost estimate, shown in Table 14, was prepared by comparing the conceptual remedial options to similar projects conducted in and around the City of Saskatoon and scaling the costs to suit the estimated size and scope of the remedial option. A contingency of 50% has been added to the estimated costs to account for variations that will be generated from a more detailed analysis of the conceptual options. Similar projects include: shear key construction at Cosmopolitan Park in 2011, lightweight fill placement at 17<sup>th</sup> Street and Saskatchewan Crescent in 2013; and typical rates for CSM construction provided by Golder Construction. Costs associated with contractor mobilization, engineering design and support, and construction monitoring have been included. A more detailed breakdown of the costs for the conceptual estimates is provided in Appendix H.

It is recommended that shear zone modification with the installation of a sub-drainage system be considered as a remedial option for the properties affected by the slope movement at the Site. While the conceptual cost of the shear zone modification with drainage option is higher than the other options considered, this option will result in the least permanent disturbance to the surrounding properties, depending on the specific method of shear zone modification selected, and will achieve the required factor of safety for the remedial slope. Additionally, depending on the method selected, the majority of the remedial work can be confined to the area surrounding Cherry Lane, increasing accessibility for construction.





| Conceptual<br>Remediation Option                                          | Estimated Cost <sup>(a)</sup> | Benefit/Advantage                                                                                                                         | Risk/Disadvantage                                                                                                                                                              |                                                                                                                                                                      |
|---------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Option 1 – Do nothing                                                     | <\$500,000                    | Low cost                                                                                                                                  | High risk of continued failure, additional sloughing of the material at the scarps of the failure area<br>slope has reached a flatter angle.                                   |                                                                                                                                                                      |
|                                                                           |                               |                                                                                                                                           | <ul> <li>Failure likely to retrogress toward 11<sup>th</sup> Street East may affect building foundations along 11<sup>th</sup> Street structures.</li> </ul>                   |                                                                                                                                                                      |
|                                                                           |                               |                                                                                                                                           | <ul> <li>Properties located below 11<sup>th</sup> Street East may experience damage from debris or additional soil failure.</li> </ul>                                         |                                                                                                                                                                      |
|                                                                           |                               |                                                                                                                                           | <ul> <li>Ongoing cracking and movement along Cherry Lane as the slope movement progress, disruptin</li> </ul>                                                                  |                                                                                                                                                                      |
| Option 2 – Installation of                                                | \$4,500,000                   | <ul> <li>The FS for the slope increases for the existing failure areas.</li> </ul>                                                        | Does not improve the Factor of Safety for the slope to target 1.5.                                                                                                             |                                                                                                                                                                      |
| Sub- Drainage System                                                      |                               |                                                                                                                                           | It may take several years for the remediation to be effective because dissipation of pore-water p                                                                              |                                                                                                                                                                      |
|                                                                           |                               | Decreasing and maintaining the pore-water<br>pressures along the slope will decrease the risk of                                          | Installation of a drainage system will require disturbance to roadways (11 <sup>th</sup> Street East and Cher                                                                  |                                                                                                                                                                      |
|                                                                           |                               | additional slope movement during high precipitation years.                                                                                | <ul> <li>Construction of the drainage outlet would require connection to the sewer system or construction<br/>affect properties along Saskatchewan Crescent East.</li> </ul>   |                                                                                                                                                                      |
|                                                                           |                               | <ul> <li>Little additional risk for slope instability during<br/>construction.</li> </ul>                                                 | <ul> <li>Cross drains connecting between 11<sup>th</sup> Street East and Cherry Lane may require some disturban<br/>block of 11<sup>th</sup> Street East.</li> </ul>           |                                                                                                                                                                      |
|                                                                           |                               | <ul> <li>Only localized disturbance to the residences in this area.</li> </ul>                                                            | Long term maintenance and monitoring of the drainage system is required.                                                                                                       |                                                                                                                                                                      |
| Option 3- Slope Re-<br>grading and Installation of<br>Sub-Drainage System | \$6,500,000                   | <ul> <li>Target Factor of Safety of 1.5 for the slope in this<br/>area is achievable.</li> </ul>                                          | <ul> <li>Construction will cause significant disruption to residences along 11<sup>th</sup> Street East and Saskatcher<br/>power lines and landscaping in the area.</li> </ul> |                                                                                                                                                                      |
| Sub-Drainage System                                                       |                               | <ul> <li>Reduced risk of shallow failures in the upper slope</li> </ul>                                                                   | Site access will be limited and large volumes of fill and debris will need to be hauled from site.                                                                             |                                                                                                                                                                      |
|                                                                           |                               | due to the flatter grade.                                                                                                                 | <ul> <li>Access to 11<sup>th</sup> Street East and Cherry Lane will be restricted during construction.</li> </ul>                                                              |                                                                                                                                                                      |
|                                                                           |                               |                                                                                                                                           | <ul> <li>Decreasing and maintaining the pore-water<br/>pressures along the slope will decrease the risk of</li> </ul>                                                          | Installation of a drainage system will require disturbance to roadways (11 <sup>th</sup> Street East and Cher                                                        |
|                                                                           |                               | additional slope movement during high precipitation years.                                                                                | <ul> <li>Construction of the drainage outlet would require connection to the sewer system or construction<br/>affect properties along Saskatchewan Crescent East.</li> </ul>   |                                                                                                                                                                      |
|                                                                           |                               | <ul> <li>Access to 11<sup>th</sup> Street East and Cherry Lane should<br/>not be affected in the long term.</li> </ul>                    | <ul> <li>Cross drains connecting between 11<sup>th</sup> Street East and Cherry Lane may require some disturban<br/>block of 11<sup>th</sup> Street East.</li> </ul>           |                                                                                                                                                                      |
|                                                                           |                               |                                                                                                                                           | Long term maintenance and monitoring of the drainage system is required.                                                                                                       |                                                                                                                                                                      |
| Option 4 - Shear Zone<br>Modification and                                 | \$10,500,000                  | Target Factor of Safety of 1.5 for the slope in this                                                                                      | Construction will cause significant disruption to Cherry Lane and the backyards and power line a                                                                               |                                                                                                                                                                      |
| Installation of Sub-                                                      |                               |                                                                                                                                           | area is achievable.                                                                                                                                                            | Temporary slope stabilization methods will need to be installed above Cherry Lane to reduce the                                                                      |
| Drainage System                                                           |                               | <ul> <li>Majority of work can be confined to Cherry Lane,<br/>resulting in less disruption to residences along 11<sup>th</sup></li> </ul> | <ul> <li>Access to 11<sup>th</sup> Street East and Cherry Lane will be restricted during construction.</li> </ul>                                                              |                                                                                                                                                                      |
|                                                                           |                               | Street East and Saskatchewan Crescent East.                                                                                               | Installation of a drainage system will require disturbance to roadways (11 <sup>th</sup> Street East and Cher                                                                  |                                                                                                                                                                      |
|                                                                           |                               | <ul> <li>Decreasing and maintaining the pore-water<br/>pressures along the slope will decrease the risk of</li> </ul>                     | <ul> <li>Construction of the drainage outlet would require connection to the sewer system or construction<br/>affect properties along Saskatchewan Crescent East.</li> </ul>   |                                                                                                                                                                      |
|                                                                           |                               |                                                                                                                                           | additional slope movement during high precipitation years.                                                                                                                     | <ul> <li>Cross drains connecting between 11<sup>th</sup> Street East and Cherry Lane may require some disturban<br/>block of 11<sup>th</sup> Street East.</li> </ul> |
|                                                                           |                               | <ul> <li>Access to 11<sup>th</sup> Street East and Cherry Lane should<br/>not be affected in the long term.</li> </ul>                    | Long term maintenance and monitoring of the drainage system is required.                                                                                                       |                                                                                                                                                                      |

Table 14:
 Risk/Benefit Summary of Conceptual Remediation Options

<sup>(a)</sup> Costs for alterations to existing properties, including removal of debris and landscaping, removal of structures, property purchase, and changes to existing utilities have not been considered in this estimate. Costs have been rounded to the nearest \$500,000.

reas, and for buildup of material at the toe until the

Street East, and may cause movement of the

bil loading as material collects at the toe of the

ting traffic access and power service along the lane.

pressure in clay takes time.

nerry Lane) and underground utilities in the area. tion of a new drainage outlet downslope which will

ance in the yards of the residences on the 200 to 300

chewan Crescent East, as well as the above ground

nerry Lane) and underground utilities in the area. tion of a new drainage outlet downslope which will

ance in the yards of the residences on the 200 to 300

e along Cherry Lane. the risk of instability during construction.

nerry Lane) and underground utilities in the area. tion of a new drainage outlet downslope which will

ance in the yards of the residences on the 200 to 300

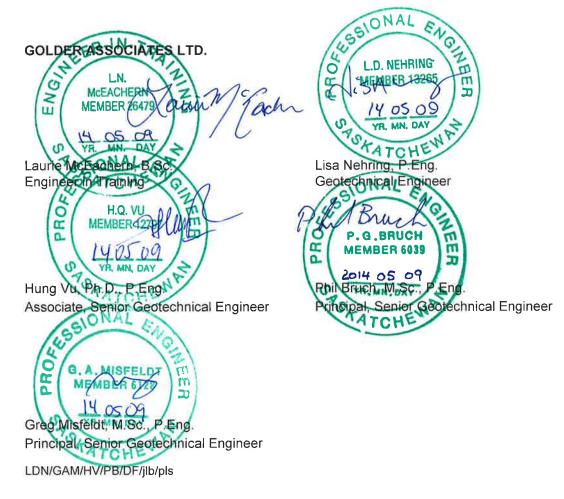




## 12.0 CLOSURE

The findings of this report are based upon the results of field and laboratory investigations conducted by Golder. If conditions encountered at the surface or at depth during construction appear to be different than indicated in the report, or if the stated assumptions are not consistent with design, this office should be notified for review and adjustment of recommendations, if necessary.

Soil conditions are, by nature, are highly variable across a construction site. The placement of fill and prior construction activities can contribute to variables in the near-surface conditions. A contingency should be included in any construction budget to allow for the possibility of variation of soil conditions that may result in modification of design and construction procedures.


This report was prepared for the City of Saskatoon for the proposed works described in the text. The data and recommendations should not be used for any other purpose, or by any other parties, without written consent from Golder Associates Ltd. The findings and recommendations of this report were prepared in accordance with generally accepted professional engineering principles and practice. No other warranty, expressed or implied, is given.





# CHERRY LANE GEOTECHNICAL INVESTIGATION AND EVALUATION

## **Report Signature Page**



Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

n:\active\2011\1362\11-1362-0057 cos east riverbank\5100 cherry lane remediation\7000 report\11-1362-0057-5100 rpt 14 jan 27 cherry lane report final docx





## REFERENCES

- AMEC (AMEC Earth & Environmental.) 2005a. Revised Slope Stability Assessment, Proposed Condominium Development, 316 Saskatchewan Crescent, Saskatoon, Saskatchewan. Report prepared for Ehrenburg Homes Ltd., File No. SX01965, dated July 27, 2005.
- AMEC. 2005b. 2005 East River Bank Monitoring Program, Fall Monitoring Event, City of Saskatoon, Saskatchewan. Report prepared for the City of Saskatoon, AMEC Project No. SX-028507, dated December 19, 2005.
- AMEC. 2009. 2008 Fall East River Bank Monitoring Program, City of Saskatoon, Saskatchewan. Report prepared for the City of Saskatoon, Project No. SX0258510, dated March 2, 2019.
- AMEC. 2010. 2009 East River Bank Monitoring Program Fall Monitoring Event, City of Saskatoon, Saskatchewan. Report prepared for the City of Saskatoon, Project No. SX0258511, dated April 6, 2010.
- AMEC. 2013. 2013 East River Bank Monitoring Program, City of Saskatoon, Saskatchewan. Project No. SX02585.2013, report dated July 30, 2013.
- Christiansen, E.A. 1968. Pleistocene stratigraphy of the Saskatoon area, Saskatchewan. Canadian Journal of Earth Sciences, 5: 1167-1173.
- Christiansen, E.A. 1970. Physical Environment of Saskatoon, Canada. Ottawa: Saskatchewan Research Council in co-operation with The National Research Council of Canada.
- Christiansen, E.A. 1979. The Wisconsinan deglaciation of southern Saskatchewan and adjacent areas. Canadian Journal of Earth Sciences, 16:913-938.
- City of Saskatoon. 1985. Agreement for Monitoring Slope Instability, Meewasin Valley Authority/City of Saskatoon. File No. CK. 4205-5, dated October 7, 1985.
- Clifton Associates Ltd. 1983. Geotechnical Studies, Proposed Park Terrace Condominiums, 222 Saskatchewan Crescent East Saskatoon, SK. Report prepared for Starport Investments Ltd., dated August 17, 1983.
- Clifton Associates Ltd. 1985. Slope Instability Study, South Saskatchewan River Banks. Report prepared for Meewasin Valley Authority, file S134, dated December 23, 1985.
- Clifton, A.W., Krahn, J., and Fredlund, D.G. 1981. Riverbank Instability and Development Control in Saskatoon. Canadian Geotechnical Journal, 18: 95-105.
- EC (Environment Canada Meteorological Service of Canada). Climate Data Online. Available at: http://climate.weather.gc.ca/climateData. Accessed August 22, 2013.
- Eckel, B., Christiansen, E., Richardson, N., Schreiner, B. 2002. Trip B7: Riverbank instability in the city of Saskatoon, Saskatchewan, Canada. Geological Association of Canada, Mineralogical Association of Canada, Joint Annual Meeting, Saskatoon, Saskatchewan, Canada. GAC-MAC Saskatoon 2002 Local Organizing Committee.





- Golder Associates (Western Canada) Ltd. 1985. Progress Report No. 1 Slope Monitoring Program, Park Terrace Condominiums, 222 Saskatchewan Crescent East, Saskatoon, Saskatchewan. Project Number 852-6010, dated December 23, 1985.
- Golder (Golder Associates Ltd.) 1989. Feasibility of Horizontal Drains for Slope Stabilization, East Bank South Saskatoon, Saskatchewan. Report prepared for the Meewasin Valley Authority, Project Number 592-6905, dated April 1989.Golder Associates Ltd. 2006. Geotechnical Investigation, Proposed Idylwyld Lift Station Saskatoon, Saskatchewan. Report prepared for Earth Tech (Canada) Inc., Project Number 05-1362-209, dated February, 2006.
- Golder. 2008a. Storm Sewer Preservation, East River Bank Slope Stabilization, City of Saskatoon, File No. PW 8250-4/IS 7821-3. Report prepared for the City of Saskatoon, Project Number 06-1362-304, dated July 2008.
- Golder. 2008b. Spring 2008 Site Reconnaissance High Priority Sites along the East Riverbank of the South Saskatchewan River, Saskatoon, Saskatchewan. Report prepared for the City of Saskatoon, Report Number 06-1362-304, dated July 2008.
- Golder. 2008c. Slope Instability Investigation, Landslide South of the University Bridge, Saskatoon, Saskatchewan. Report prepared for the City of Saskatoon, Report number 06-1362-304/7000, dated December 2008.
- Golder. 2009. Spring 2009 Site Reconnaissance East Riverbank of the South Saskatchewan River. Report prepared for the City of Saskatoon, Report Number 06-1362-304/3002, dated October 2009.
- Golder. 2010. Spring 2010 Site Reconnaissance East Riverbank of the South Saskatchewan River. Report prepared for the City of Saskatoon, Report Number 06-1362-304/3003, dated March 2013.
- Golder. 2011. Spring 2011 Site Reconnaissance East Riverbank of the South Saskatchewan River. Report prepared for the City of Saskatoon, Report Number 11-1362-0057/1000, dated October 2011.
- Golder. 2013a. Assessment of Slope Instability at 200 Block, 11<sup>th</sup> Street East, Saskatoon. Report prepared for the City of Saskatoon, Report Number 11-1362-0057/5000, dated May 2013.
- Golder. 2013b. Spring 2012 Site Reconnaissance East Riverbank of the South Saskatchewan River. Report prepared for the City of Saskatoon, Report Number 11-1362-0057/2000, dated March 2013.
- Ground Engineering Ltd. 1976. Geotechnical Investigation 216, 218 and 220 Saskatchewan Crescent, Saskatoon, Saskatchewan. Report prepared for Saskatchewan Housing Corporation, Job No. GS-033, dated April 9, 1976.
- Ground Engineering Ltd. 1977. Geotechnical Site Investigation Proposed Housing Complex, Saskatchewan Crescent. Report prepared for Saskatchewan Housing Corporation, Job No. GS-033, dated July 4, 1977.
- Hamilton, J.J. and Tao, S.S. 1977. Impact of urban development on groundwater in glacial deposits. In Proceedings of the 30<sup>th</sup> Canadian Geotechnical Conference, Saskatoon, Saskatchewan. Canadian Geotechnical Society.





- Haug, M.D., Sauer, E.K, and Fredlund, D.G. 1977. Retrogressive Slope Failures at Beaver Creek, South of Saskatoon, Saskatchewan, Canada. Canadian Geotechnical Journal, 14: 228-301.
- Ireland, James. 2000. Overview of Slope Instability and Monitoring Equipment for the East River bank within the City of Saskatoon (draft). File # 0181-3.
- Meewasin Valley Authority. 2004. Policies and Guidelines Conservation Zone. http://meewasin.com/development/application-form/policy/.
- PMEL (P. Machibroda Engineering Ltd.) 1981. Geotechnical Investigation, Proposed Apartment Building, Saskatchewan Crescent, Saskatoon, Saskatchewan. Report prepared for Saskatchewan Housing Corporation, PMEL File No. S81-335, dated June 17, 1981.
- PMEL. 1994. Geotechnical Investigation Q1A/Q2A Transmission Line Tower No. 11 Relocation St. Henry Avenue Saskatoon Saskatchewan. Dated May 11, 1994.
- PMEL. 1997. Geotechnical Investigation and Slope Stability Study, Proposed Residential Development, 237-11<sup>th</sup> Street East, Saskatoon, Saskatchewan. Report prepared for Kindrachuck Agrey Architects Ltd., PMEL File No. S97-2778, dated September 15, 1997.
- PMEL. 2003a. Geotechnical Investigation and Slope Stability Study, Proposed Garage, 306 Saskatchewan Crescent East, Saskatoon, Saskatchewan, Report prepared for Orko Developments Ltd., PMEL File No. S03-4869, dated September 11, 2003.
- PMEL. 2003b. Geotechnical Investigation and Slope Stability Study, Proposed Residence, 313-11<sup>th</sup> Street East, Saskatoon, Saskatchewan. Report prepared for James D. Zimmer Architect, PMEL File No. S03-4925, dated October 31, 2003.
- PMEL. 2006. Geotechnical Investigation and Slope Stability Study, Proposed Condominium 316 -Saskatchewan Crescent East, Saskatoon, SK. Report prepared for Ehrenburg Homes Ltd., PMEL File NO. S06-5722, dated July 14, 2006.
- PMEL. 2007. Geotechnical Investigation and Slope Stability Study, Proposed Residences, 221 & 225 11<sup>th</sup> Street East, Saskatoon, SK, PMEL File No. S07-6078. Report prepared for North Ridge Development Corp, dated June 12, 2007.
- PMEL. 2008. Proposed Commercial/Residential Development 328 Saskatchewan Crescent East, Saskatoon, SK. Prepared for Think Enterprises, PMEL File No. S08-6500, dated July 8, 2008.
- PMEL. 2009. Supplementary Comments and Visual Review and Groundwater Monitoring Results, Proposed Condominium, 316-Saskatchewan Crescent East, Saskatoon, Saskatchewan. Report prepared for Ehrenburg Homes Ltd., PMEL File No. S09-5722.1, dated November 16, 2009.
- Sauer E.K. 1975. Urban Fringe Development and Slope Instability in Southern Saskatchewan. Canadian Geotechnical Journal, 12: 106-118.
- SRC (Saskatchewan Research Council). Precipitation Data. Purchased January 23, 2014.





- WSA (Water Security Agency of Saskatchewan). 2013. Spring Runoff Outlook: Based on Conditions as of March 5, 2013.
- Weir, H. No date. Historical Report of Riverbank Slides.





# **APPENDIX A**

Information and Limitations of this Report



### IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

**Standard of Care:** Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

**Basis and Use of the Report:** This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder can not be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

**Soil, Rock and Groundwater Conditions:** Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

#### IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT (cont'd)

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

**Sample Disposal:** Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

**Follow-Up and Construction Services:** All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

**Changed Conditions and Drainage:** Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.





**Aerial Photographs** 







Figure B.1. Aerial Photograph, 1939



Figure B.2. Aerial Photograph, 1958







Figure B.3. Aerial Photograph, 1961



Figure B.4. Aerial Photograph, 1970







Figure B.5. Aerial Photograph, 1974



Figure B.6. Aerial Photograph, 1977







Figure B.7. Aerial Photograph, 1987



Figure B.8. Aerial Photograph, 1997







Figure B.9. Aerial Photograph, 2001



Figure B.10. Aerial Photograph, 2006







Figure B.11. Aerial Photograph, 2011





# **APPENDIX C**

**Field Inspection Photographs** 





Photo C.1. Looking East at Deflection of Curb and Fence Line along Cherry Lane (Nov 5, 2006)



Photo C.2. Looking East at Deflection of Curb and Fence Line along Cherry Lane (May 27, 2010)





Photo C.3. Looking East at Deflection of Curb and Fence Line along Cherry Lane (April 26, 2012)



Photo C.4. Looking West at Toe of Upper Slope (April 26, 2012)





Photo C.5. Headscarp in the Backyard of 233-235 11th St. E. (June 21, 2012)



Photo C.6. Bulging Toe of Slide on Cherry Lane (June 21, 2012)





Photo C.7. Bulging Toe of Slide below Cherry Lane (June 21, 2012)



Photo C.8. Cracking Behind Retaining Wall in Backyard of 237-239 11th St. E. (June 21, 2012)





Photo C.9. Retaining Wall in Backyard of 237-239 11th St. E. (June 21, 2012)



Photo C.10. Looking East at Tension Cracking along Cherry Lane (June 21, 2013)





Photo C.11. Cracking along Headscarp of East Failure (June 21, 2012)



Photo C.12. Looking East at Headscarp of East Failure in Backyard of 305 11th St. E.; Approx. 90 cm Drop (June 24, 2013)



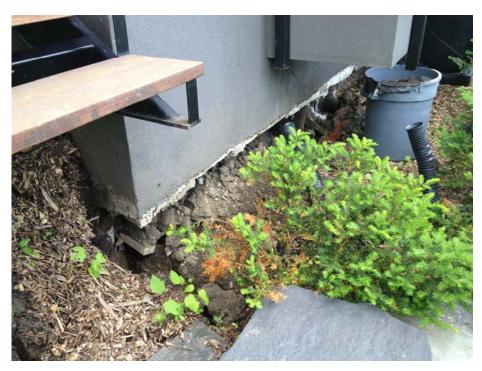



Photo C.13. Headscarp of East Failure in Backyard of 303 11th St. E.; Approx. 60 cm Drop (June 24, 2013)



Photo C.14. Looking East at Bulging Toe of Slide above Retaining Wall behind 306 Sask. Cres. E. (June 24, 2013)





Photo C.15. Looking East at Severe Cracking across Cherry Lane, Pavement; Approx. 50 cm Drop (June 24, 2013)



Photo C.16. Looking East at Scarp & Tension Cracking on Cherry Lane (June 24, 2013)





Photo C.17. Retaining Wall in Backyard of 237-239 11th St. E. (June 4, 2013)



Photo C.18. Retaining Wall in Backyard of 237-239 11th St. E. (June 20, 2013)





Photo C.19. Retaining Wall in Backyard of 237-239 11th St. E. (June 24, 2013)



Photo C.20. Looking East at Drop in Pavement behind 305 11th St. E.; Approx 53 cm Drop (June 4, 2013)





Photo C.21. Looking East at Public Works Filling Cracks and Regrading Lane (June 5, 2013)



Photo C.22. Looking West at Erosion along Cherry Lane (June 6, 2013)



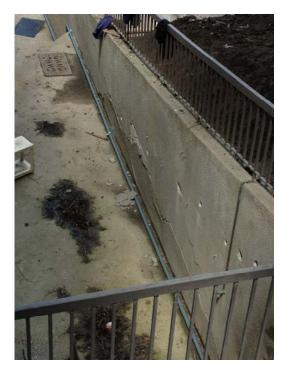



Photo C.23. Looking West at Berm Along North Edge of Cherry Lane, behind 306 Sask. Cres. E. (July 7, 2013)



Photo C.24. Looking Northeast at Trench being Excavated Adjacent to Wall between 230 & 306 Sask. Cres. E. (July 7, 2013)





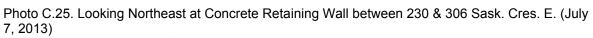





Photo C.26. Looking North at Concrete Retaining Wall between 230 & 306 Sask. Cres. E. (July 7, 2013)





Phtoo C.27. Looking East at New Tension Craking Forming on Regraded Lane (July 7, 2013)

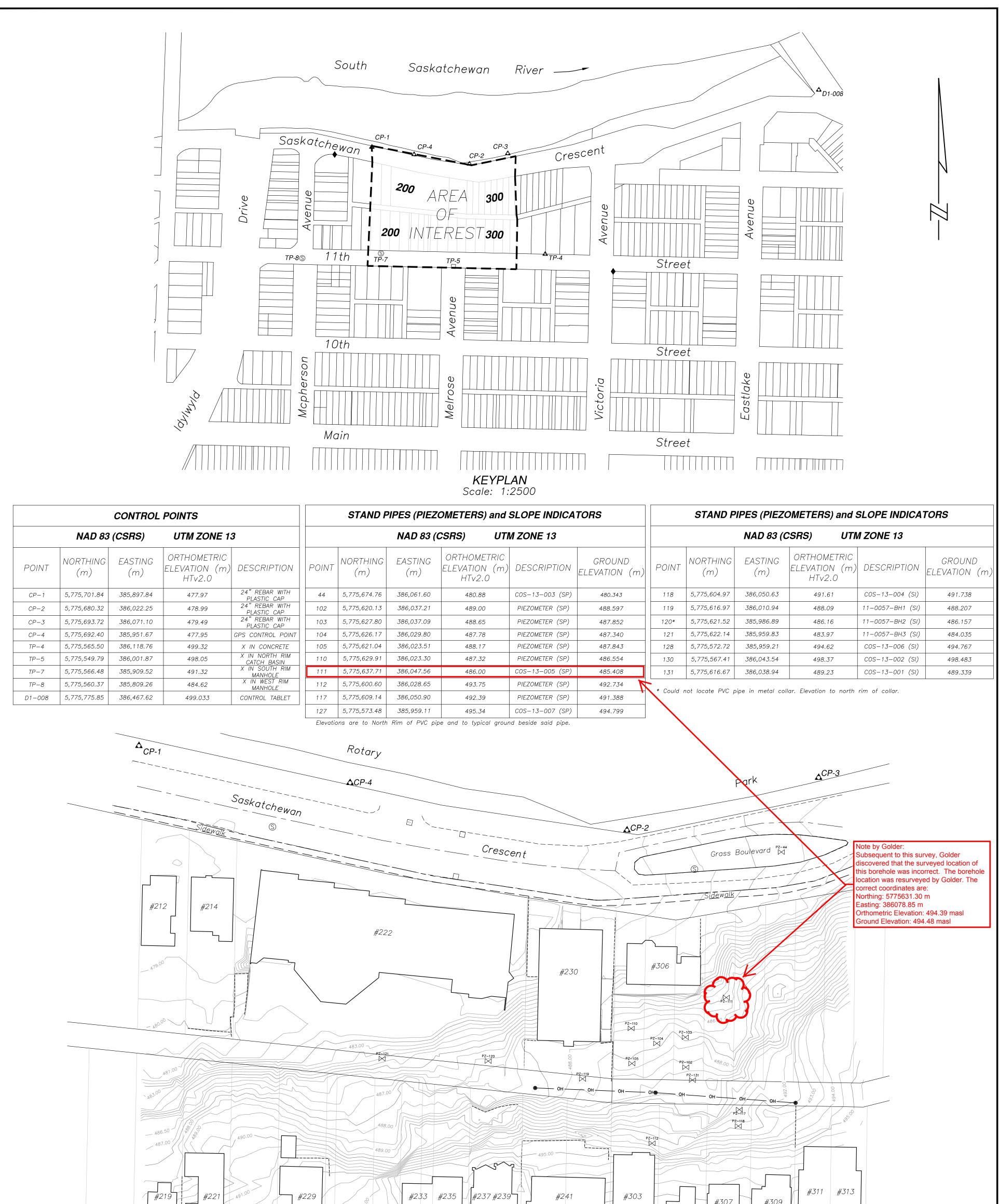


Photo C.28. Looking North at Partially Filled Trench (July 17, 2013)





Photo C.29. Looking East at Above Ground Drianage System Installed on Cherry Lane (September 18, 2013)






# **APPENDIX D**

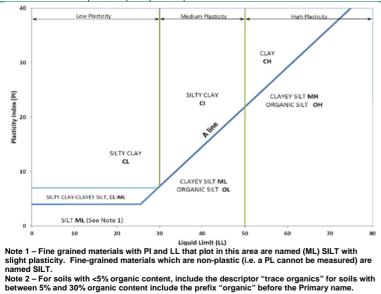
**Topographic Survey Plan** 





| TP-7<br>11th                                                                                                                                                                           | PZ-127<br>PZ-127<br>Walk                 | <i>#307 #309</i><br><i>#305 #307 #309</i><br><i>499.00</i><br><i>Sidewalk</i>                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                        | LEGEND                                   |                                                                                                                                                                                              |
| NOTES  TOPOGRAPHIC SURVEY CONDUCTED TO PROVIDE THE OVERALL GEOMETRY OF THE SLOPE IN AREA                                                                                               | — CONTROL POINTS ARE SHOWN THUS          | <b>TOPOGRAPHIC SURVEY</b><br>SHOWING Surface Features of the<br>200 & 300 Blocks of Saskatchewan Crescent & 11th Street<br>in                                                                |
| OF INTEREST. SURVEY DOES NOT PURPORT TO ILLUSTRATE ALL SITE DETAIL. CERTAIN AREAS CONTAIN<br>LESS TOPOGRAPHIC DETAIL DUE TO SCOPE LIMITATIONS OR SAFETY ISSUES OF WORKING IN PROXIMITY | — CATCHBASINS ARE SHOWN THUS             | S.W. Sec. 28 Twp. 36 - Rge. 5 - W3rd Mer.                                                                                                                                                    |
| TO COMPROMISED STRUCTURES.<br>• SPOT ELEVATIONS AND BREAKLINE INFORMATION RESIDE ON LAYERS "TOPO-ELEV" AND                                                                             | BUILDINGS ARE SHOWN THUS                 | Saskatoon, Saskatchewan                                                                                                                                                                      |
| <ul><li>"TOPO-BREAKLINES" OF ASSOCIATED PROJECT CAD FILE.</li><li>MEASUREMENTS AND ELEVATIONS ARE IN METERS AND DECIMALS THEREOF.</li></ul>                                            | — $\emptyset$ of road is shown thus      | Drawn By:     Date:     Drawing Name:     Scale:     Prepared by:       July 31, 2013     File No.:     S13152Topo-UTMall.dwg     1:500       Checked By:     Date:     File No.:     S13152 |
| • ELEVATIONS ARE BASED ON COS BENCHMARK D1-008 (ORTHOMETRIC ELEV. 499.033).                                                                                                            |                                          | REVISIONS                                                                                                                                                                                    |
| HORIZONTAL COORDINATES ARE DERIVED FROM PRECISE POINT POSITIONING.                                                                                                                     | — EDGE OF SIDEWALK IS SHOWN THUS         | NO DATE PEVISION REV. CHD. DES.                                                                                                                                                              |
| • CONTOUR INTERVALS ARE 0.50 METERS.                                                                                                                                                   | POWERLINES AND POWERPOLES ARE SHOWN THUS | Inclusion     BY     BY     ENG.       1     Sept. 4, 2013     Added Piezometers and slope indicators.     kgb     mp                                                                        |
| • BACKGROUND PARCEL INFORMATION IS DERIVED FROM THE GeoSask BASE.                                                                                                                      |                                          |                                                                                                                                                                                              |
| • DATA PICKUP BETWEEN HOUSES IS SPARCE AND CONTOURS ARE INTERPOLATED BASED ON DATA ACQUIRED.                                                                                           |                                          |                                                                                                                                                                                              |










### METHOD OF SOIL CLASSIFICATION

| Organic<br>or<br>Inorganic                                                                                                 | Soil<br>Group                                                  | Туре                                                                      | of Soil                                                                                                                                               | Gradation<br>or Plasticity                     | Cu                       | $u = \frac{D_{60}}{D_{10}}$ |                                                                                                  | $Cc = \frac{(D)}{D_{10}}$ | $(xD_{60})^2$                      | Organic<br>Content | USCS Group<br>Symbol | Group Name             |            |              |                      |                  |        |                |                  |     |    |           |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|-----------------------------|--------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|--------------------|----------------------|------------------------|------------|--------------|----------------------|------------------|--------|----------------|------------------|-----|----|-----------|
|                                                                                                                            | of<br>is<br>mm)                                                | Gravels<br>with                                                           | Poorly<br>Graded                                                                                                                                      |                                                | <4                       |                             | ≤1 or 3                                                                                          | ≥3                        |                                    | GP                 | GRAVEL               |                        |            |              |                      |                  |        |                |                  |     |    |           |
| (ss                                                                                                                        | 5 mm)                                                          | GRAVELS<br>(>50% by mass of<br>coarse fraction is<br>larger than 4.75 mm) | ≤12%<br>fines<br>(by mass)                                                                                                                            | Well Graded                                    |                          | ≥4                          |                                                                                                  | 1 to 3                    | 3                                  |                    | GW                   | GRAVEL                 |            |              |                      |                  |        |                |                  |     |    |           |
| by mas                                                                                                                     | SOILS                                                          | GRAVELS<br>0% by mas<br>arse fractior<br>r than 4.75                      | Gravels<br>with                                                                                                                                       | Below A<br>Line                                |                          |                             | n/a                                                                                              |                           |                                    |                    | GM                   | SILTY<br>GRAVEL        |            |              |                      |                  |        |                |                  |     |    |           |
| INORGANIC<br>(Organic Content ≤30% by mass)                                                                                | NNED (<br>ger tha                                              | (>5<br>co<br>large                                                        | 5 >12%<br>fines<br>(by mass)                                                                                                                          | Above A<br>Line                                |                          |                             | n/a                                                                                              |                           |                                    |                    | GC                   | CLAYEY<br>GRAVEL       |            |              |                      |                  |        |                |                  |     |    |           |
| NORG                                                                                                                       | E-GRA<br>is is lar                                             | سار<br>س                                                                  | Sands                                                                                                                                                 | Poorly<br>Graded                               |                          | <6                          |                                                                                                  | ≤1 or :                   | ≥3                                 | ≤30%               | SP                   | SAND                   |            |              |                      |                  |        |                |                  |     |    |           |
| Janic C                                                                                                                    | COARS<br>by mas                                                | DS<br>mass c<br>action i:<br>14.75 n                                      |                                                                                                                                                       | Well Graded                                    |                          | ≥6                          |                                                                                                  | 1 to 3                    | 3                                  |                    | SW                   | SAND                   |            |              |                      |                  |        |                |                  |     |    |           |
| (Orç                                                                                                                       | COARSE-GRAINED SOILS<br>(>50% by mass is larger than 0.075 mm) | SANDS<br>≥50% by mass of<br>coarse fraction is<br>aller than 4.75 mr      | Sands<br>with                                                                                                                                         | Below A<br>Line                                |                          |                             | n/a                                                                                              |                           |                                    |                    | SM                   | SILTY SAN              |            |              |                      |                  |        |                |                  |     |    |           |
|                                                                                                                            | Ŭ                                                              | (≥5<br>coa<br>smalle                                                      | >12%<br>fines<br>(by mass)                                                                                                                            | Above A<br>Line                                |                          |                             | n/a                                                                                              |                           |                                    |                    | SC                   | CLAYEY<br>SAND         |            |              |                      |                  |        |                |                  |     |    |           |
| Organic                                                                                                                    |                                                                |                                                                           |                                                                                                                                                       |                                                |                          | I                           | Field Indica                                                                                     | Indicators                |                                    |                    |                      |                        |            |              |                      |                  |        |                |                  |     |    |           |
| norganic                                                                                                                   | Soil<br>Group                                                  | Soil Type of Soil Sroup                                                   |                                                                                                                                                       | Laboratory<br>Tests                            | Dilatancy                | Dry<br>Strength             | Shine<br>Test                                                                                    | Thread<br>Diameter        | Toughness<br>(of 3 mm<br>thread)   |                    |                      | Primary<br>Name        |            |              |                      |                  |        |                |                  |     |    |           |
| s)<br>5 mm)                                                                                                                |                                                                | plot                                                                      | SILTS<br>SILTS<br>SILTS<br>SILTS<br>SILTS<br>SILTS<br>Pastic or PI and LL plot<br>on Plasticity<br>on Plasticity<br>Chart below)<br>Fiding Ti<br>Plot |                                                | Rapid                    | None                        | None                                                                                             | >6 mm                     | N/A (can't<br>roll 3 mm<br>thread) | <5%                | ML                   | SILT                   |            |              |                      |                  |        |                |                  |     |    |           |
|                                                                                                                            | and LL                                                         | and LL<br>ine<br>sity<br>ow)                                              |                                                                                                                                                       |                                                | Slow                     | None to<br>Low              | Dull                                                                                             | 3mm to<br>6 mm            | None to low                        | <5%                | ML                   | CLAYEY SI              |            |              |                      |                  |        |                |                  |     |    |           |
| INORGANIC<br>(Organic Content ≤30% by mass)                                                                                | olLS<br>an 0.07                                                | SILTS                                                                     |                                                                                                                                                       |                                                | Slow to<br>very slow     | Low to<br>medium            | Dull to slight                                                                                   | 3mm to<br>6 mm            | Low                                | 5% to<br>30%       | OL                   | ORGANIC<br>SILT        |            |              |                      |                  |        |                |                  |     |    |           |
| ANIC<br>≤30%                                                                                                               | -INEGRAINED SOILS<br>mass is smaller than 0                    | s                                                                         | -Plastic                                                                                                                                              | -Plastic                                       | -Plastic                 |                             | C<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | - Plasti                  | -Plasti                            | -Plastic           | -Plastic             | Plasti                 | Del<br>Cha | Liguid Limit | Slow to<br>very slow | Low to<br>medium | Slight | 3mm to<br>6 mm | Low to<br>medium | <5% | MH | CLAYEY SI |
| NORGANIC<br>ontent ≤30%                                                                                                    | GRAIN                                                          |                                                                           | uoN)                                                                                                                                                  | ≥50                                            | None                     | Medium<br>to high           | Dull to slight                                                                                   | 1 mm to<br>3 mm           | Medium to<br>high                  | 5% to<br>30%       | ОН                   | ORGANIC<br>SILT        |            |              |                      |                  |        |                |                  |     |    |           |
| Janic C                                                                                                                    | FINE-<br>y mass                                                |                                                                           | CLAYS<br>(P1 and LL plot<br>above A-Line on<br>Plasticity Chart<br>below)                                                                             | Liquid Limit<br><30                            | None                     | Low to<br>medium            | Slight<br>to shiny                                                                               | ~ 3 mm                    | Low to<br>medium                   | 0%                 | CL                   | SILTY CLA              |            |              |                      |                  |        |                |                  |     |    |           |
| (Org<br>(0rg)                                                                                                              | 50% by                                                         |                                                                           |                                                                                                                                                       | _AYS<br>dd LL p<br>A-Line<br>sity Chi<br>slow) | Liquid Limit<br>30 to 50 | None                        | Medium<br>to high                                                                                | Slight<br>to shiny        | 1 mm to<br>3 mm                    | Medium             | to<br>30%            | CI                     | SILTY CLA  |              |                      |                  |        |                |                  |     |    |           |
|                                                                                                                            | ₹)                                                             |                                                                           |                                                                                                                                                       | Liquid Limit<br>≥50                            | None                     | High                        | Shiny                                                                                            | <1 mm                     | High                               | (see<br>Note 2)    | СН                   | CLAY                   |            |              |                      |                  |        |                |                  |     |    |           |
| Peat and mineral soil<br>mixtures<br>Predominantly peat,<br>may contain some<br>mineral soil, fibrous or<br>amorphous peat |                                                                |                                                                           |                                                                                                                                                       |                                                | <u> </u>                 | 1                           | 1                                                                                                | <u> </u>                  | 1                                  | 30%<br>to<br>75%   |                      | SILTY PEA<br>SANDY PEA |            |              |                      |                  |        |                |                  |     |    |           |
|                                                                                                                            |                                                                |                                                                           |                                                                                                                                                       |                                                |                          |                             |                                                                                                  | 75%<br>to<br>100%         | PT                                 | PEAT               |                      |                        |            |              |                      |                  |        |                |                  |     |    |           |



**Dual Symbol** — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

**Borderline Symbol** — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to er indicates a range of similar soil types within a stratum.





### ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

SPC

OC

SO<sub>4</sub>

UC

UU

γ

1.

V (FV)

#### PARTICLE SIZES OF CONSTITUENTS

| · · · · · · · · ·   |                              |                                                 |                                              |  |  |  |
|---------------------|------------------------------|-------------------------------------------------|----------------------------------------------|--|--|--|
| Soil<br>Constituent | Particle Size<br>Description | Millimetres                                     | Inches<br>(US Std. Sieve Size)               |  |  |  |
| BOULDERS            | Not<br>Applicable            | >300                                            | >12                                          |  |  |  |
| COBBLES             | Not<br>Applicable            | 75 to 300                                       | 3 to 12                                      |  |  |  |
| GRAVEL              | Coarse<br>Fine               | 19 to 75<br>4.75 to 19                          | 0.75 to 3<br>(4) to 0.75                     |  |  |  |
| SAND                | Coarse<br>Medium<br>Fine     | 2.00 to 4.75<br>0.425 to 2.00<br>0.075 to 0.425 | (10) to (4)<br>(40) to (10)<br>(200) to (40) |  |  |  |
| SILT/CLAY           | Classified by<br>plasticity  | <0.075                                          | < (200)                                      |  |  |  |

#### MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

| Percentage<br>by Mass | Modifier                                                                                   |  |
|-----------------------|--------------------------------------------------------------------------------------------|--|
| >35                   | Use 'and' to combine major constituents<br>( <i>i.e.</i> , SAND and GRAVEL, SAND and CLAY) |  |
| > 12 to 35            | Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable             |  |
| > 5 to 12             | some                                                                                       |  |
| ≤ 5                   | trace                                                                                      |  |

#### PENETRATION RESISTANCE

#### Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

#### **Cone Penetration Test (CPT)**

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm<sup>2</sup> pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance ( $q_t$ ), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

#### Dynamic Cone Penetration Resistance (DCPT); Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

| NON-COHESIVE (COHESIONLESS) SOILS |
|-----------------------------------|
|-----------------------------------|

| Compactness <sup>2</sup>                                                                                                                                                                 |                                   |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Term                                                                                                                                                                                     | SPT 'N' (blows/0.3m) <sup>1</sup> |  |  |  |  |
| Very Loose                                                                                                                                                                               | 0 - 4                             |  |  |  |  |
| Loose                                                                                                                                                                                    | 4 to 10                           |  |  |  |  |
| Compact                                                                                                                                                                                  | 10 to 30                          |  |  |  |  |
| Dense                                                                                                                                                                                    | 30 to 50                          |  |  |  |  |
| Very Dense                                                                                                                                                                               | >50                               |  |  |  |  |
| <ol> <li>SPT 'N' in accordance with ASTM D1586, uncorrected for overburden<br/>pressure effects.</li> <li>Definition of compactness descriptions based on SPT 'N' ranges from</li> </ol> |                                   |  |  |  |  |
| Terzaghi and Peck (1967) and correspond to typical average N <sub>60</sub> values.                                                                                                       |                                   |  |  |  |  |

| Field Moisture Condition |                                                               |  |  |  |
|--------------------------|---------------------------------------------------------------|--|--|--|
| Term                     | Description                                                   |  |  |  |
| Dry                      | Soil flows freely through fingers.                            |  |  |  |
| Moist                    | Soils are darker than in the dry condition and may feel cool. |  |  |  |
| Wet                      | As moist, but with free water forming on hands when handled.  |  |  |  |

| SAMPLES            |                                                                                                     |
|--------------------|-----------------------------------------------------------------------------------------------------|
| AS                 | Auger sample                                                                                        |
| BS                 | Block sample                                                                                        |
| CS                 | Chunk sample                                                                                        |
| DO or DP           | Seamless open ended, driven or pushed tube<br>sampler – note size                                   |
| DS                 | Denison type sample                                                                                 |
| FS                 | Foil sample                                                                                         |
| RC                 | Rock core                                                                                           |
| SC                 | Soil core                                                                                           |
| SS                 | Split spoon sampler – note size                                                                     |
| ST                 | Slotted tube                                                                                        |
| ТО                 | Thin-walled, open – note size                                                                       |
| TP                 | Thin-walled, piston – note size                                                                     |
| WS                 | Wash sample                                                                                         |
| SOIL TESTS         |                                                                                                     |
| w                  | water content                                                                                       |
| PL, w <sub>p</sub> | plastic limit                                                                                       |
| $LL$ , $w_L$       | liquid limit                                                                                        |
| С                  | consolidation (oedometer) test                                                                      |
| CHEM               | chemical analysis (refer to text)                                                                   |
| CID                | consolidated isotropically drained triaxial test <sup>1</sup>                                       |
| CIU                | consolidated isotropically undrained triaxial test with porewater pressure measurement <sup>1</sup> |
| D <sub>R</sub>     | relative density (specific gravity, Gs)                                                             |
| DS                 | direct shear test                                                                                   |
| GS                 | specific gravity                                                                                    |
| М                  | sieve analysis for particle size                                                                    |
| MH                 | combined sieve and hydrometer (H) analysis                                                          |
|                    |                                                                                                     |
| MPC                | Modified Proctor compaction test                                                                    |

#### COHESIVE SOILS

Standard Proctor compaction test

unconfined compression test

concentration of water-soluble sulphates

Tests which are anisotropically consolidated prior to shear are

unconsolidated undrained triaxial test

field vane (LV-laboratory vane test)

organic content test

unit weight

shown as CAD, CAU.

| Consistency                       |                                                                                             |  |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| Undrained Shear<br>Strength (kPa) | SPT 'N' <sup>1</sup><br>(blows/0.3m)                                                        |  |  |  |  |
| <12                               | 0 to 2                                                                                      |  |  |  |  |
| 12 to 25                          | 2 to 4                                                                                      |  |  |  |  |
| 25 to 50                          | 4 to 8                                                                                      |  |  |  |  |
| 50 to 100                         | 8 to 15                                                                                     |  |  |  |  |
| 100 to 200                        | 15 to 30                                                                                    |  |  |  |  |
| >200                              | >30                                                                                         |  |  |  |  |
|                                   | Undrained Shear<br>Strength (kPa)<br><12<br>12 to 25<br>25 to 50<br>50 to 100<br>100 to 200 |  |  |  |  |

 SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

| Water Content |                                                            |  |  |  |
|---------------|------------------------------------------------------------|--|--|--|
| Term          | Description                                                |  |  |  |
| w < PL        | Material is estimated to be drier than the Plastic Limit.  |  |  |  |
| w ~ PL        | Material is estimated to be close to the Plastic Limit.    |  |  |  |
| w > PL        | Material is estimated to be wetter than the Plastic Limit. |  |  |  |





Unless otherwise stated, the symbols employed in the report are as follows:

| I.                                                                                                                                                | GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(a)</b><br>w                                                                                                                                                          | Index Properties (continued)<br>water content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| π<br>In x<br>log <sub>10</sub><br>g<br>t                                                                                                          | 3.1416<br>natural logarithm of x<br>x or log x, logarithm of x to base 10<br>acceleration due to gravity<br>time                                                                                                                                                                                                                                                                                                               | w <sub>I</sub> or LL<br>w <sub>p</sub> or PL<br>I <sub>p</sub> or PI<br>Ws<br>I <sub>L</sub><br>I <sub>C</sub><br>e <sub>max</sub><br>e <sub>min</sub><br>I <sub>D</sub> | water content<br>liquid limit<br>plastic limit<br>plasticity index = $(w_l - w_p)$<br>shrinkage limit<br>liquidity index = $(w - w_p) / I_p$<br>consistency index = $(w_l - w) / I_p$<br>void ratio in loosest state<br>void ratio in densest state<br>density index = $(e_{max} - e) / (e_{max} - e_{min})$                                                                                                                                                                                                                                          |
| II.                                                                                                                                               | STRESS AND STRAIN                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                        | (formerly relative density)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γ<br>Δ<br>ε<br>ε <sub>ν</sub><br>η<br>υ<br>σ<br>σ<br>σ'σ                                                                                          | shear strain<br>change in, e.g. in stress: $\Delta \sigma$<br>linear strain<br>volumetric strain<br>coefficient of viscosity<br>Poisson's ratio<br>total stress<br>effective stress ( $\sigma' = \sigma - u$ )<br>initial effective overburden stress                                                                                                                                                                          | (b)<br>h<br>q<br>v<br>i<br>k                                                                                                                                             | Hydraulic Properties<br>hydraulic head or potential<br>rate of flow<br>velocity of flow<br>hydraulic gradient<br>hydraulic conductivity<br>(coefficient of permeability)<br>seepage force per unit volume                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                   | principal stress (major, intermediate, minor)                                                                                                                                                                                                                                                                                                                                                                                  | (c)                                                                                                                                                                      | Consolidation (one-dimensional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| σ <sub>oct</sub><br>τ<br>u                                                                                                                        | mean stress or octahedral stress<br>= $(\sigma_1 + \sigma_2 + \sigma_3)/3$<br>shear stress<br>porewater pressure                                                                                                                                                                                                                                                                                                               | C <sub>c</sub><br>Cr<br>Cs                                                                                                                                               | compression index<br>(normally consolidated range)<br>recompression index<br>(over-consolidated range)<br>swelling index                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E<br>G<br>K                                                                                                                                       | modulus of deformation<br>shear modulus of deformation<br>bulk modulus of compressibility                                                                                                                                                                                                                                                                                                                                      | $C_{\alpha}$<br>$m_{v}$<br>$C_{v}$                                                                                                                                       | secondary compression index<br>coefficient of volume change<br>coefficient of consolidation (vertical<br>direction)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| III.                                                                                                                                              | SOIL PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                | Ch<br>Τ <sub>ν</sub><br>U<br>σ΄ρ                                                                                                                                         | coefficient of consolidation (horizontal<br>direction)<br>time factor (vertical direction)<br>degree of consolidation<br>pre-consolidation stress                                                                                                                                                                                                                                                                                                                                                                                                     |
| (a)<br>$\rho(\gamma)$<br>$\rho_{d}(\gamma_{d})$<br>$\rho_{w}(\gamma_{w})$<br>$\rho_{s}(\gamma_{s})$<br>$\gamma'$<br>D <sub>R</sub><br>e<br>n<br>S | <b>Index Properties</b><br>bulk density (bulk unit weight)*<br>dry density (dry unit weight)<br>density (unit weight) of water<br>density (unit weight) of solid particles<br>unit weight of submerged soil<br>$(\gamma' = \gamma - \gamma_w)$<br>relative density (specific gravity) of solid<br>particles (D <sub>R</sub> = $\rho_s / \rho_w$ ) (formerly G <sub>s</sub> )<br>void ratio<br>porosity<br>degree of saturation | OCR<br>(d)<br>τ <sub>p</sub> , τ <sub>r</sub><br>φ'<br>δ<br>μ<br>c'<br>c <sub>u</sub> , s <sub>u</sub><br>p<br>p'<br>q<br>q <sub>u</sub><br>S <sub>t</sub>               | over-consolidation ratio = $\sigma'_p / \sigma'_{vo}$<br><b>Shear Strength</b><br>peak and residual shear strength<br>effective angle of internal friction<br>angle of interface friction<br>coefficient of friction = tan $\delta$<br>effective cohesion<br>undrained shear strength ( $\phi = 0$ analysis)<br>mean total stress ( $\sigma_1 + \sigma_3$ )/2<br>mean effective stress ( $\sigma'_1 + \sigma'_3$ )/2<br>( $\sigma_1 - \sigma_3$ )/2 or ( $\sigma'_1 - \sigma'_3$ )/2<br>compressive strength ( $\sigma_1 - \sigma_3$ )<br>sensitivity |
| where                                                                                                                                             | ty symbol is $\rho$ . Unit weight symbol is $\gamma$<br>$\varphi = \rho g$ (i.e. mass density multiplied by<br>eration due to gravity)                                                                                                                                                                                                                                                                                         | <b>Notes:</b> 1<br>2                                                                                                                                                     | $\label{eq:tau} \begin{split} \tau &= c' + \sigma' \mbox{ tan } \phi' \\ \mbox{shear strength} &= (\mbox{compressive strength})/2 \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                        |





#### WEATHERINGS STATE

Fresh: no visible sign of weathering

Faintly weathered: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material.

Moderately weathered: weathering extends throughout the rock mass but the rock material is not friable.

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable.

Completely weathered: rock is wholly decomposed and in a friable condition but the rock and structure are preserved.

#### **BEDDING THICKNESS**

| Bedding Plane Spacing |
|-----------------------|
| Greater than 2 m      |
| 0.6 m to 2 m          |
| 0.2 m to 0.6 m        |
| 60 mm to 0.2 m        |
| 20 mm to 60 mm        |
| 6 mm to 20 mm         |
| Less than 6 mm        |
|                       |

#### JOINT OR FOLIATION SPACING

| Spacing          |
|------------------|
| Greater than 3 m |
| 1 m to 3 m       |
| 0.3 m to 1 m     |
| 50 mm to 300 mm  |
| Less than 50 mm  |
|                  |

#### **GRAIN SIZE**

| Term                | <u>Size*</u>            |
|---------------------|-------------------------|
| Very Coarse Grained | Greater than 60 mm      |
| Coarse Grained      | 2 mm to 60 mm           |
| Medium Grained      | 60 microns to 2 mm      |
| Fine Grained        | 2 microns to 60 microns |
| Very Fine Grained   | Less than 2 microns     |

Note: \* Grains greater than 60 microns diameter are visible to the naked eye.

#### CORE CONDITION

#### **Total Core Recovery (TCR)**

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

#### Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

#### **Rock Quality Designation (RQD)**

The percentage of solid drill core, greater than 100 mm length, recovered at full diameter, measured relative to the length of the total core run. RQD varied from 0% for completely broken core to 100% for core in solid sticks.

#### **DISCONTINUITY DATA**

#### Fracture Index

A count of the number of discontinuities (physical separations) in the rock core, including both naturally occurring fractures and mechanically induced breaks caused by drilling.

#### **Dip with Respect to Core Axis**

The angle of the discontinuity relative to the axis (length) of the core. In a vertical borehole a discontinuity with a 90° angle is horizontal.

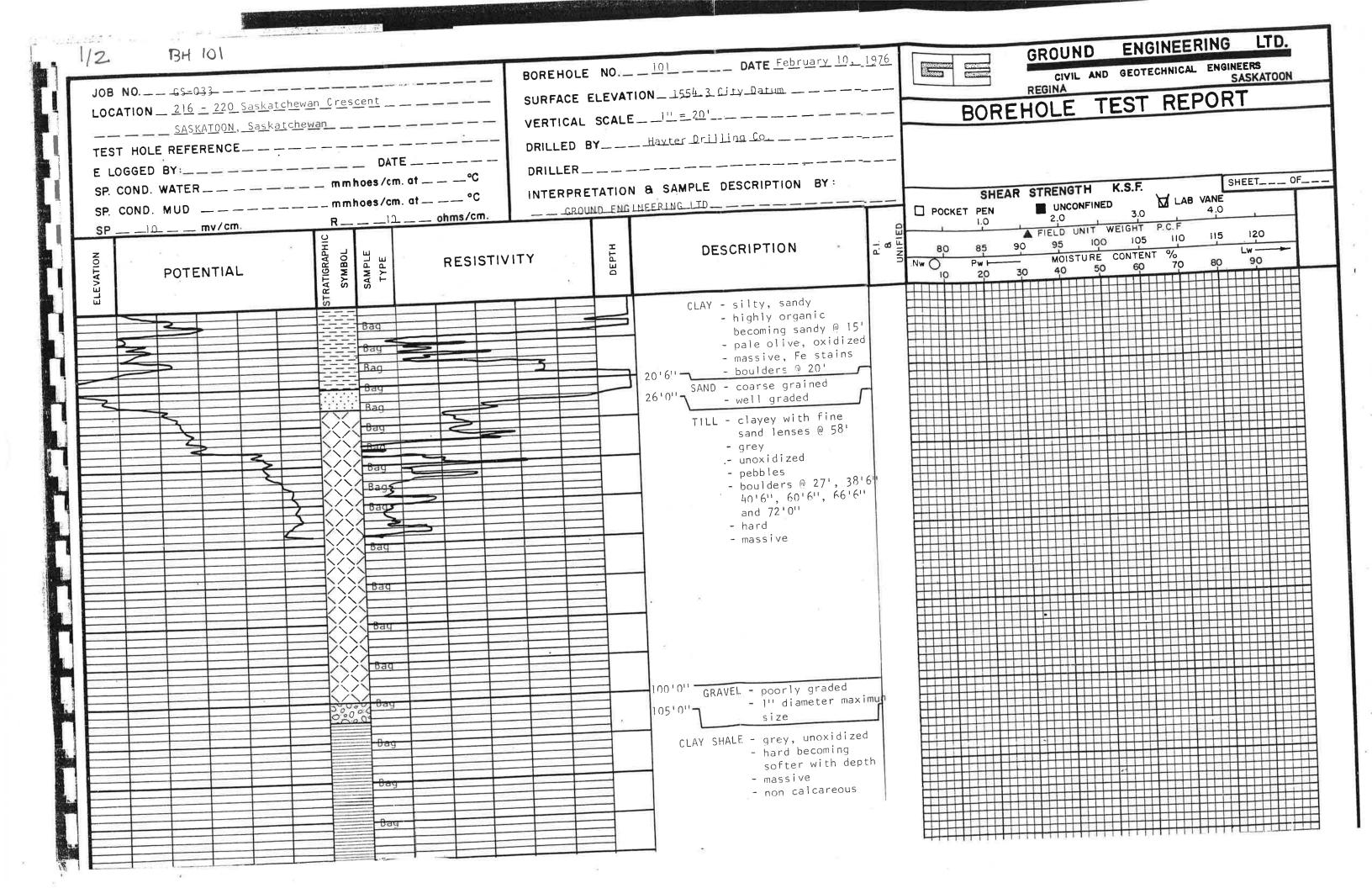
#### **Description and Notes**

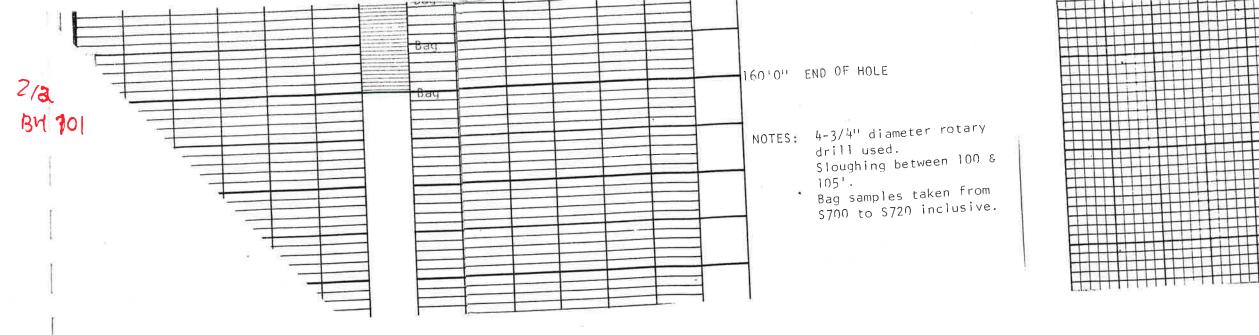
An abbreviation description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation planes or mechanically induced features caused by drilling such as ground or shattered core and mechanically separated bedding or foliation surfaces. Additional information concerning the nature of fracture surfaces and infillings are also noted.

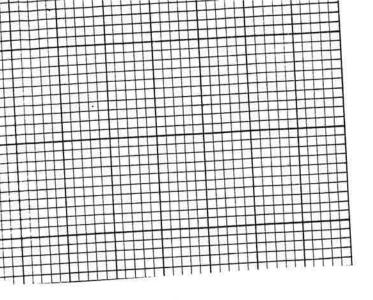
#### Abbreviations

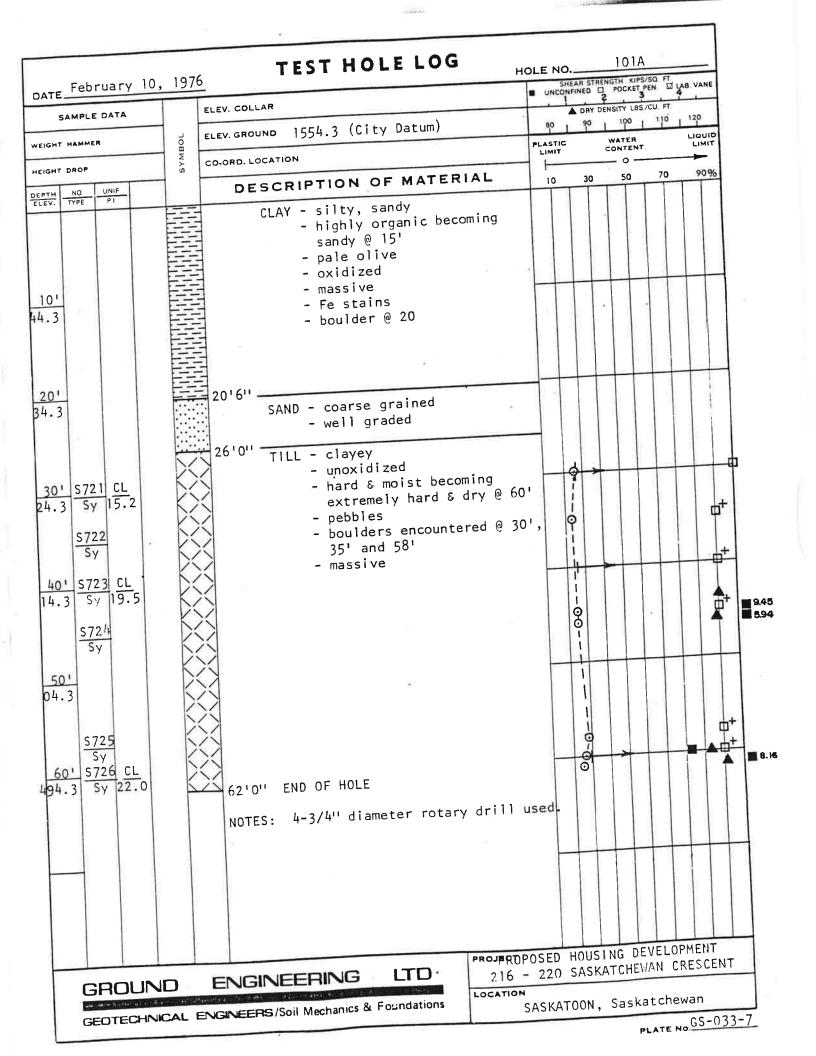
MB Mechanical Break

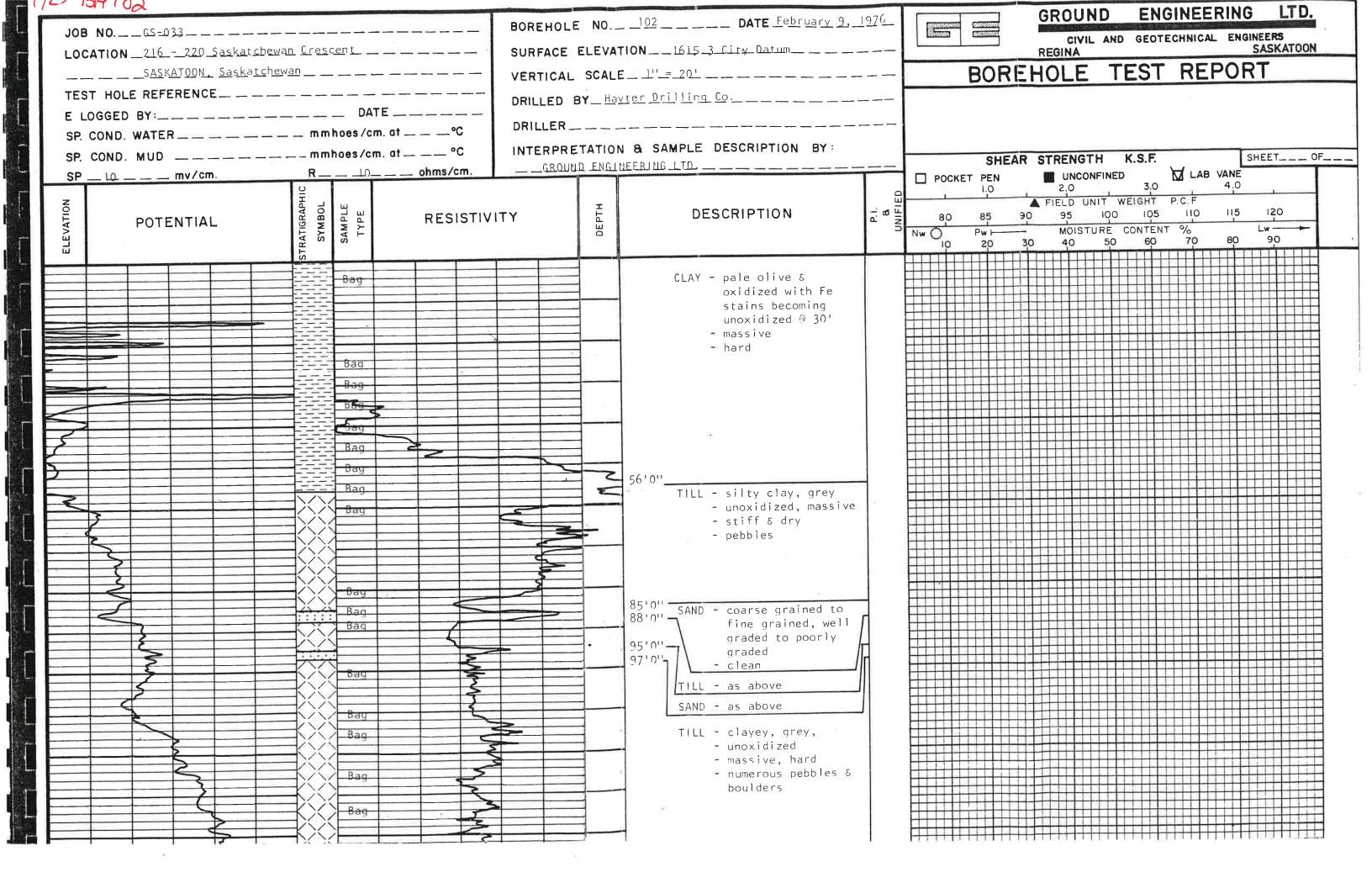
| JN  | Joint        | PL | Planar         |
|-----|--------------|----|----------------|
| FLT | Fault        | CU | Curved         |
| SH  | Shear        | UN | Undulating     |
| VN  | Vein         | IR | Irregular      |
| FR  | Fracture     | Κ  | Slickensided   |
| SY  | Stylolite    | PO | Polished       |
| BD  | Bedding      | SM | Smooth         |
| FO  | Foliation    | SR | Slightly Rough |
| СО  | Contact      | RO | Rough          |
| AXJ | Axial Joint  | VR | Very Rough     |
| KV  | Karstic Void |    |                |

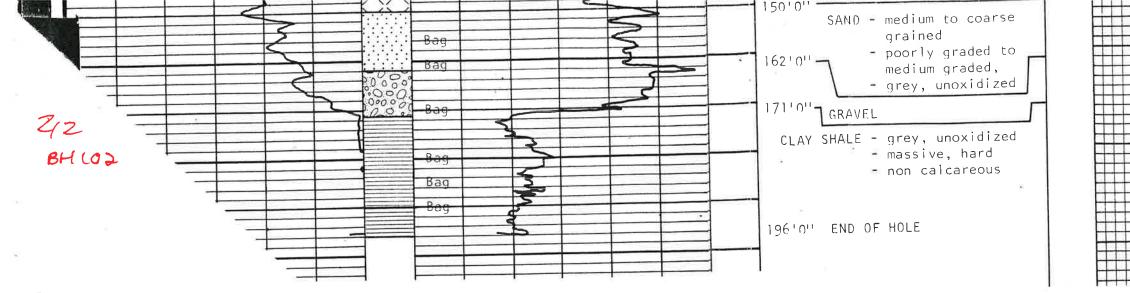

Golder





### HISTORICAL BOREHOLE LOGS TH 101, TH 101A, TH 102, TH103, TH 104, TH 105 (GE76)


Ground Engineering Ltd. Apr. 9, 1976. Geotechnical Investigation 216, 218 and 220 Saskatchewan Crescent

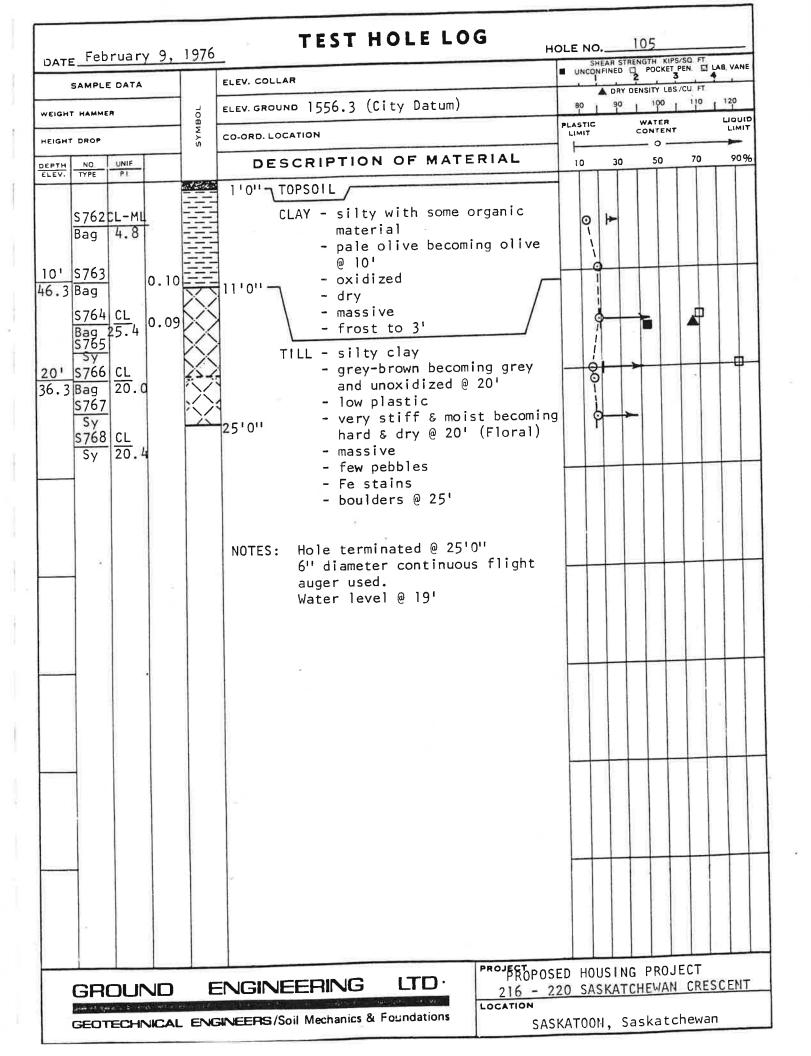








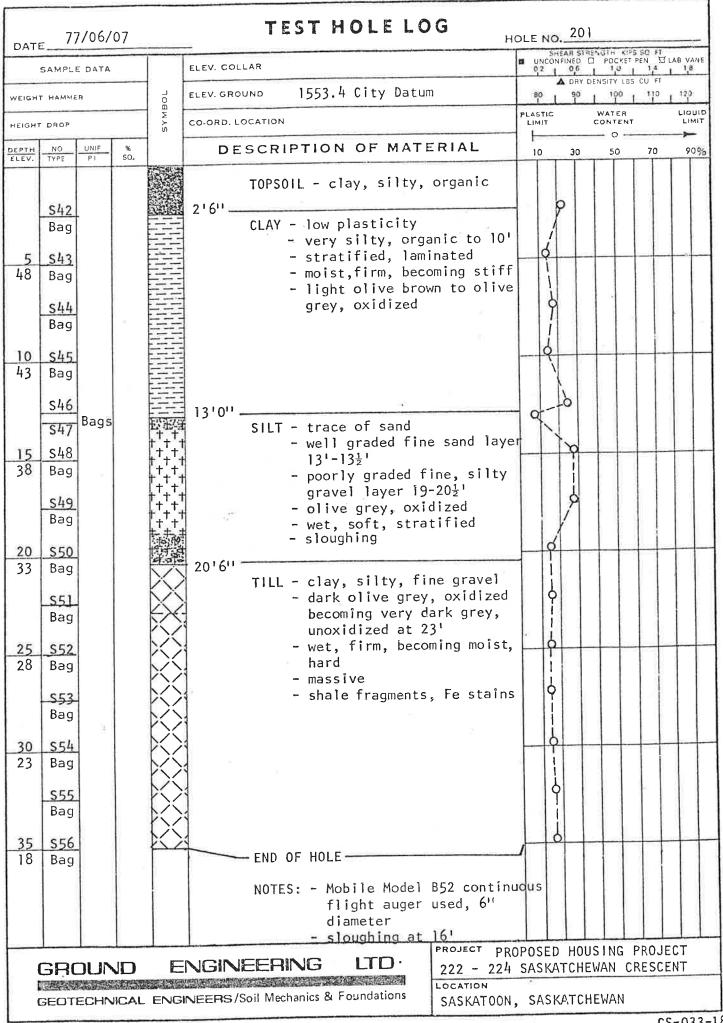



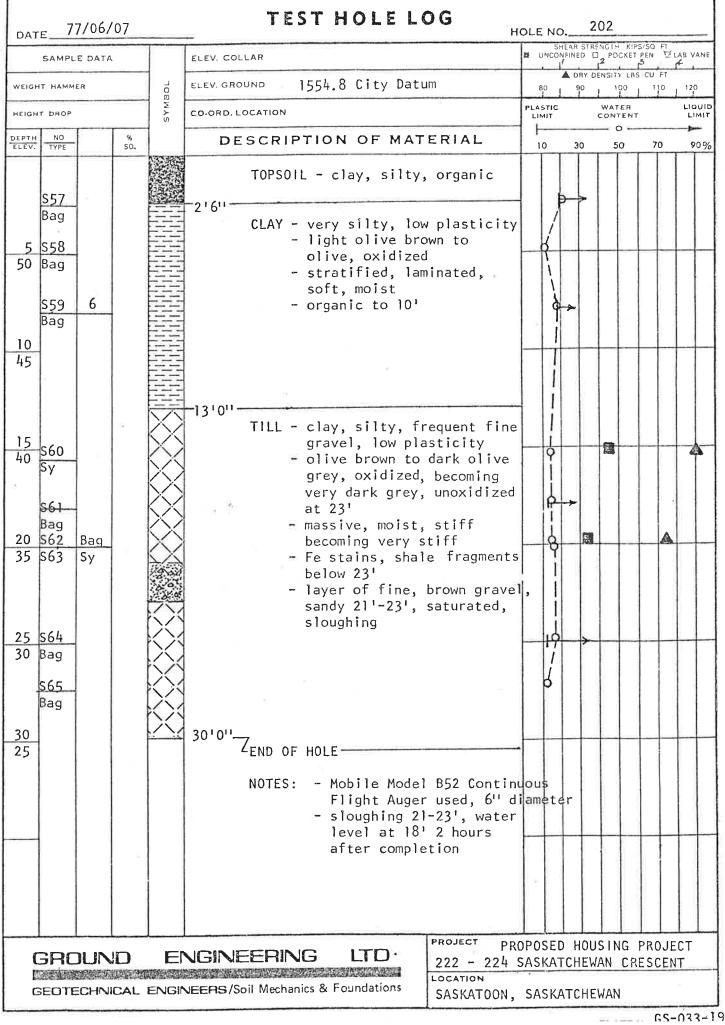


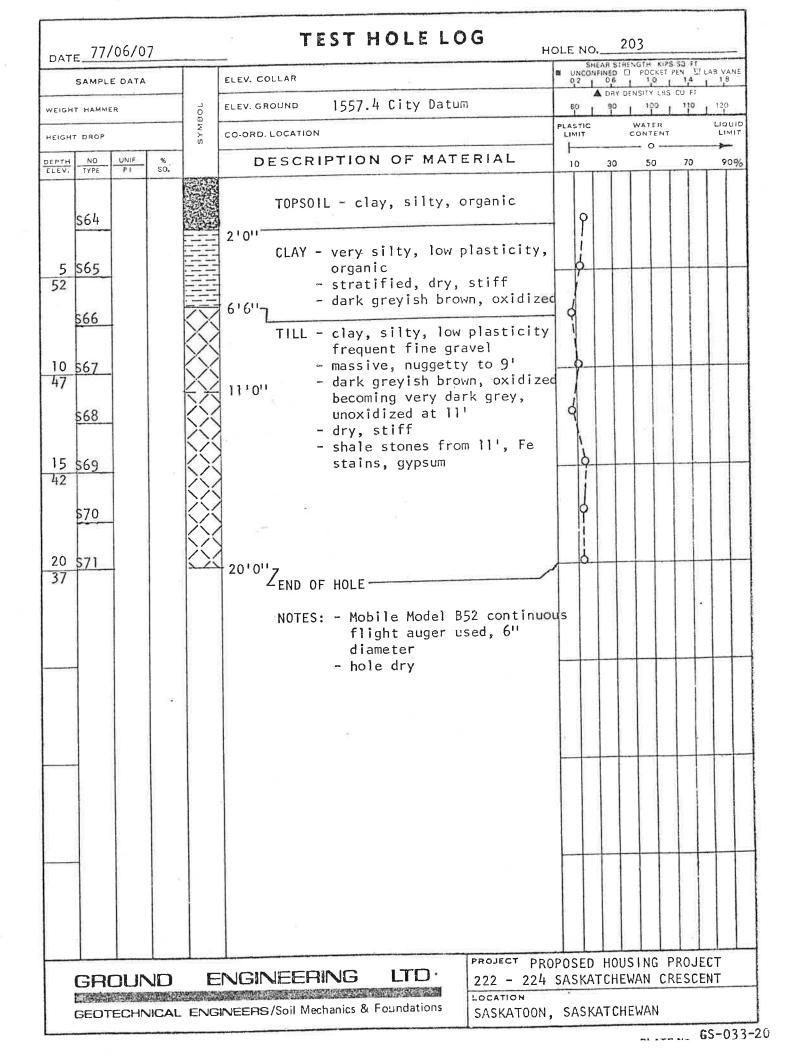

|        | 11 |           |   |   |   |   |   |   |    | _  | 1        | 1 | + | + | +            | +      | +  | +- | +- | ╀ | + | +      | + | +  | ⊢      | H | -  | - | +        | +        | +  | + | +  |    |
|--------|----|-----------|---|---|---|---|---|---|----|----|----------|---|---|---|--------------|--------|----|----|----|---|---|--------|---|----|--------|---|----|---|----------|----------|----|---|----|----|
| T      | 11 |           |   |   |   |   |   | - | -  | 4  | +        | + | + | + | +            | +      | +  | +  | +  | ╋ | + | +      | + | +  | +      | - | -  | - | -        | +        | +  | + | +  | 1  |
|        |    |           |   |   |   |   |   | - | +  | +  | +        | + | + | + | +            | +      | +- | ┝  | ┝  | ╋ | ÷ | +      | + | +- | ⊢      |   | -  | - | -        | +        | +  | + | +  |    |
|        |    | _         | - | - | 1 |   |   | + | +  | +  | +        | + | + | + | +            | ÷      | +  | ┝  | ┝  | ╋ | + | +      | t | +  | t      |   |    |   | 1        | 1        | -  |   |    |    |
|        |    | -         | + | + | + |   |   | + | +  | -+ | +        | + | + | + | +            | ÷      | +- | +  | +  | t | + | $^{+}$ | t | +  | t      |   |    |   |          | 1        |    |   |    |    |
|        |    | -         | - | + | - | - | - | - | +  | -  | +        | + | + | + | +            | ÷      | +- | ÷  | +  | t | t | +      | + | +  | t      |   | -  |   |          |          |    |   |    |    |
|        |    | -         | + | + | + | - |   | - | -  | +  | +        | + | + | ÷ | +            | +      | +  | t  | +  | t | t | t      | t | +  | t      |   |    |   | 5        |          |    |   |    |    |
| -      | -  | +         | + | + | ÷ | ⊢ |   | - | -+ | -  | +        | + | + | t | +            | t      | +  | t  | t  | t | + | t      | T | 1  | Г      |   |    |   |          |          |    |   |    |    |
| +      | -  | -         | + | + | + | ⊢ |   | - | +  | +  | +        | + | ÷ | + | $^{+}$       | t      | t  | t  | t  | t | + | t      | T |    | Т      |   |    |   |          |          |    |   | 11 |    |
| +      | -  | -         | + | + | + | ⊢ | - | - | -  | -  | -        | + | + | + | +            | $^{+}$ | +  | t  | t  | t | + | 1      | T |    | T      |   |    |   |          |          |    |   | _  |    |
| +      | -  | -         | + | + | + | ⊢ | - |   | -  |    |          | 1 | T | + | +            | +      |    |    |    | T | T | T      |   |    | L      |   |    |   |          |          |    |   | -  | _  |
| +      | -  | -+        | + | + | + | ╈ |   | - |    |    |          |   |   |   |              |        |    | T  | T  | Т | Т |        |   |    |        |   |    |   |          |          | _  |   | -  | _  |
| ╈      | +- | H         | + | + | + | t |   |   |    | -  |          |   |   |   |              |        |    |    |    | T |   | 1      |   |    |        | 1 |    |   |          |          | _  | - | -  | _  |
| t      | -  | H         | + | + | + | t |   |   |    | 1  |          |   |   |   | T            |        |    | T  |    | I |   | 4      |   | +  | +      | - | 1  | - |          |          | -  | - | +  | -  |
| $^{+}$ | 1- |           | T | T | 1 |   |   |   |    |    |          |   |   | _ | _            | -      | -  | +  | +  | 4 | 4 | -      | + | +  | +      | + | +  | ⊢ | -        | H        | -  | - | +  | -  |
| t      | 1  |           |   | T |   | L |   |   |    |    |          | _ | 1 | - | $\downarrow$ | +      | -  | +  | +  | 4 | 4 | +      | + | +  | +      | + | ⊢  | + | $\vdash$ |          | -  | - | +  | -  |
| T      | 1  | Π         |   |   |   |   |   |   |    |    |          | _ | _ | - | -            | +      | _  | +  | +  | 4 | + | +      | + | +  | +      | + | +  | + | F        | $\vdash$ | -  | - | +  | -  |
| T      |    |           |   |   |   |   |   | - |    |    |          | _ | - | + | -            | -      | +  | +  | +  | 4 | + | +      | + | +  | +      | + | +  | + | -        | +        |    | - | +  |    |
|        |    |           |   |   | - | 1 | 4 | - |    | _  |          | - | - | - | +            | +      | +  | +  | -1 | + | + | +      | + | +  | $^+$   | + | +  | + | H        | F        |    |   | 1  |    |
|        | 1  |           |   | _ | - | + | 1 | 1 |    | -  |          | - | - | - | -+           | +      | +  | +  | +  | + | + | +      | + | +  | +      | + | +  | + | H        | +        |    |   | -  | -  |
|        |    |           | _ | _ | - | + | + | - | -  | -  |          | - | - | - | +            | +      | +  | +  | +  | + | + | -      | + | +  | $^{+}$ | + | +- | + | t        | +        |    |   |    |    |
| -      | -  | $\square$ | + | - | + | + | ┢ | ⊢ | -  | -  | H        | - | - | - | -            | +      | +  | +  | +  | + |   | -      | + | +  | t      | + | 1  | 1 | Г        | Г        |    |   |    |    |
| -      | _  | Ц         | + | + | + | + | + | + | -  | -  | H        | - | - | - | -            | +      | +  | +  | +  | + | - | +      | + | +  | +      |   | T  |   |          |          |    |   |    |    |
| +      | +  | +         | + | + | + | + | + | + | -  | -  |          | - | - |   | -            | -      | -  | t  | +  | 1 | 1 | 1      |   | 1  | T      |   |    |   |          | L        |    |   |    |    |
| -      | +  | H         | + | + | + | + | + | + | -  | 1  | $\vdash$ | H |   | - |              | -      | -  | 1  | 1  | 1 |   |        |   |    |        |   | T  |   |          |          |    |   |    | 41 |
| +      |    | +         | + | + | + | + | + | + | t  | 1  | t        | - |   | - |              |        | 1  | 1  | 1  |   |   |        |   |    |        |   | ſ  |   |          |          |    |   |    | _  |
| +      |    | +         | + | + | + | + | + | + | +  | -  | +        | - | - | - | -            | -      | -  | -  |    |   |   |        |   | 1  | T      | E | T. | 1 | L,       | L        | ι. | 1 |    | -  |

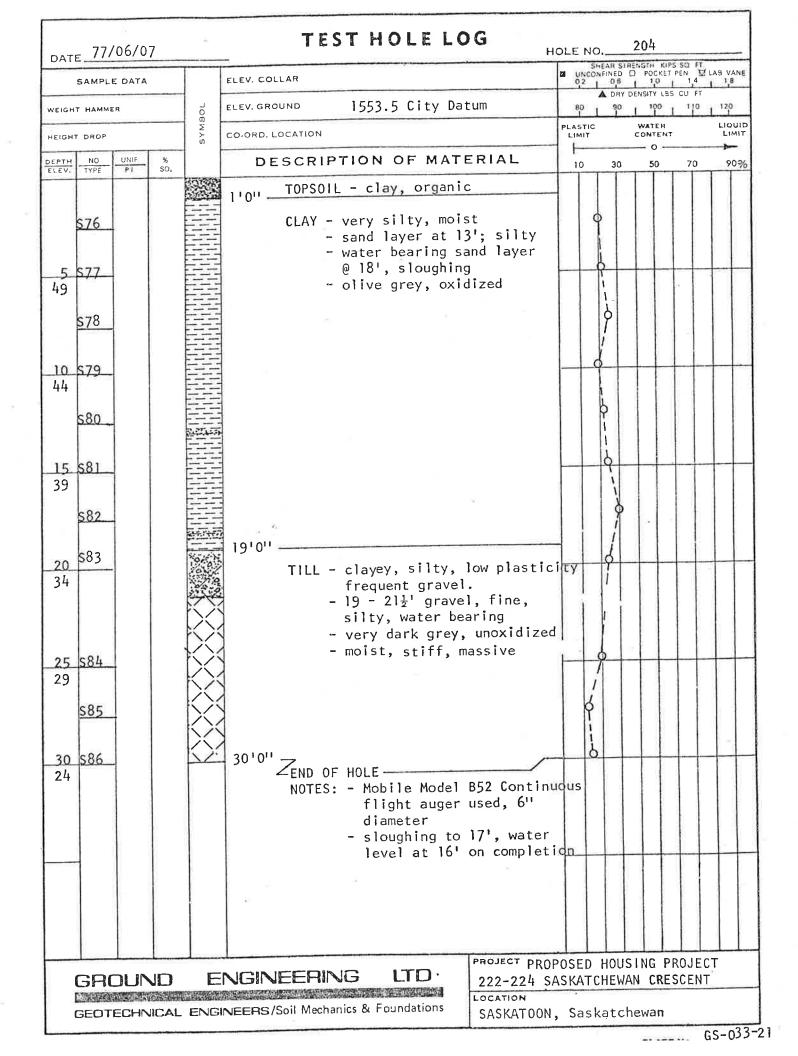
| DATEFEDRATA<br>WEIGHT HAMMER<br>HELEV. COLLAR<br>ELEV. COLLAR<br>E | IOLE N |         | 103                           |                    |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-------------------------------|--------------------|-----------|
| WEIGHT HAMMER       TOP         MEIGHT DROP       Image: Coverner of the coverner o                                                                                                                                                                                                                                                                                                                                                                                |        | SHEAR S | STRENGTH KIP                  | S/SO. FT<br>PEN. D | LAB. VANE |
| Height DROP       NO       UNIF       REF         DEFYM       PI       COVERN       DESCRIPTION OF MATERIAL         DESCRIPTION OF MATERIAL       O'6'' TOPSOIL<br>CLAY - silty with some organic<br>4'0'' material         10' \$750CL-ML       SAND - silty         44.7Bag       6.9         \$751       0.10         Bag       0.10         20' \$752       CL         34.7Bag       10.8         \$753       CL         Bag       0.04         \$22' 0''       - low plastic         \$30' \$754       CL         24.7Bag       17.3         10.8       0.04         \$753       CL         30' \$754       CL         24.7Bag       17.3         17.3       0.04         \$753       CL         30' \$754       CL         24.7Bag       17.3         17.3       0.04         30' \$754       CL         24.7Bag       17.3         0.04       TILL         \$754       CL         17.3       0.04         17.3       0.04         17.3       0.04         17.3 <td< td=""><td>80</td><td></td><td>O 100</td><td>5./CU. FT.</td><td>1 120</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80     |         | O 100                         | 5./CU. FT.         | 1 120     |
| NO.       UNIC       WILL       REE       PI       COVERY         DESCRIPTION OF MATERIAL       CLAY - silty with some organic         CLAY - silty with some organic         MO.       CLAY - silty with some organic         CLAY - silty       material         7'0''       SAND - silty         MO.       - medium brown         - oxidized       - non-plastic         - moist       - moist         CLAY - silty and sandy       - olive brown becoming olive         grey @ 20'       - oxidized         34.7Bag       10.8         Bag       25.1         Bag       25.1         30' S754       CL         24.7Bag       17.3         0.04       - Fe stains         TILL - silty clay         - grey       - oxidized becoming unoxidiz         @ 24'       - very soft becoming stiff & moist @ 25' & very stiff         @ 30'       - pebbles         NOTES:       Hole terminated @ 30'0''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PLASTI | TIC     | WATER                         |                    |           |
| CLEV.       PPI       COVERY       0'6'' TOPSOIL<br>CLAY - silty with some organic<br>material         10'       \$750CL-ML       - medium brown         4'0''       - medium brown         - oxidized       - non-plastic         - moist       - moist         20'       \$752         34.7Bag       0.04         \$5753       CL<br>34.7Bag         10'       \$754         20'       \$754         24.7Bag       17.3         0.04       30'0''         -       Fe stains         TILL       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 -    |         | 0                             | 70                 | 909       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |         |                               |                    | 909       |
| LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 SA  | ASKAT   | NG DEVE<br>TCHEWAN<br>Saskatc | CRES               | CENT      |

| DATE_February 9,                                                                                                     | 1976   | TEST HOLE LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HOLE NO |        | 104<br>ENGTH KIPS/ | SQ. FT.          |
|----------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------------------|------------------|
| SAMPLE DATA                                                                                                          |        | ELEV. COLLAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | NFINED | DENSITY LBS        | EN. M LAB. VAN   |
| VEIGHT HAMMER                                                                                                        | JOL    | ELEV. GROUND 1553.2 (City Datum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80      | 90     | 1 100              | 110 120<br>LIQUI |
| EIGHT DROP                                                                                                           | SYMBOL | CO-ORD. LOCATION 6'W & 6'S of NE lot corner                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PLASTIC |        | CONTENT            |                  |
| EPTH NO. UNIF RE-                                                                                                    |        | DESCRIPTION OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10      | 30     | 50                 | 70 909           |
| S755<br>Bag<br>S756<br>3.2 Bag<br>S757<br>Bag<br>S759<br>Fag<br>S760<br>CL<br>Bag 17.0<br>S761<br>CL<br>3.2 Bag 18.4 |        | <pre>1'0" TOPSOIL<br/>CLAY - silty and sandy with sand<br/>seams<br/>- olive brown<br/>- oxidized<br/>- dry becoming moist then<br/>soft &amp; saturated @ 15'<br/>- massive<br/>- Fe stains<br/>21'0" SAND - medium to coarse grained<br/>23'0" - Fe stains<br/>21'0" SAND - medium to coarse grained<br/>- poorly to medium graded<br/>- pale olive<br/>- wet<br/>30'0" TILL - clayey<br/>- grey<br/>- unoxidized<br/>- soft &amp; wet becoming firm<br/>&amp; moist @ 30'<br/>- pebbles</pre> |         |        |                    |                  |
|                                                                                                                      |        | NOTES: Hole terminated @ 30'0"<br>6" diameter continuous flight<br>auger used.<br>Water seepage @ 14'<br>Water level @ 17'                                                                                                                                                                                                                                                                                                                                                                       |         |        |                    |                  |
|                                                                                                                      |        | NIGINEERING LTD: 216 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ED HOU  | SING   | PROJEC             | T<br>RESCENT     |
| GROUND                                                                                                               | E      | NGINEERING LTD · 216 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ZU SAS  |        | IE WAN U           |                  |





## HISTORICAL BOREHOLE LOGS TH 201, TH 202, TH203, TH 204 (GE77)

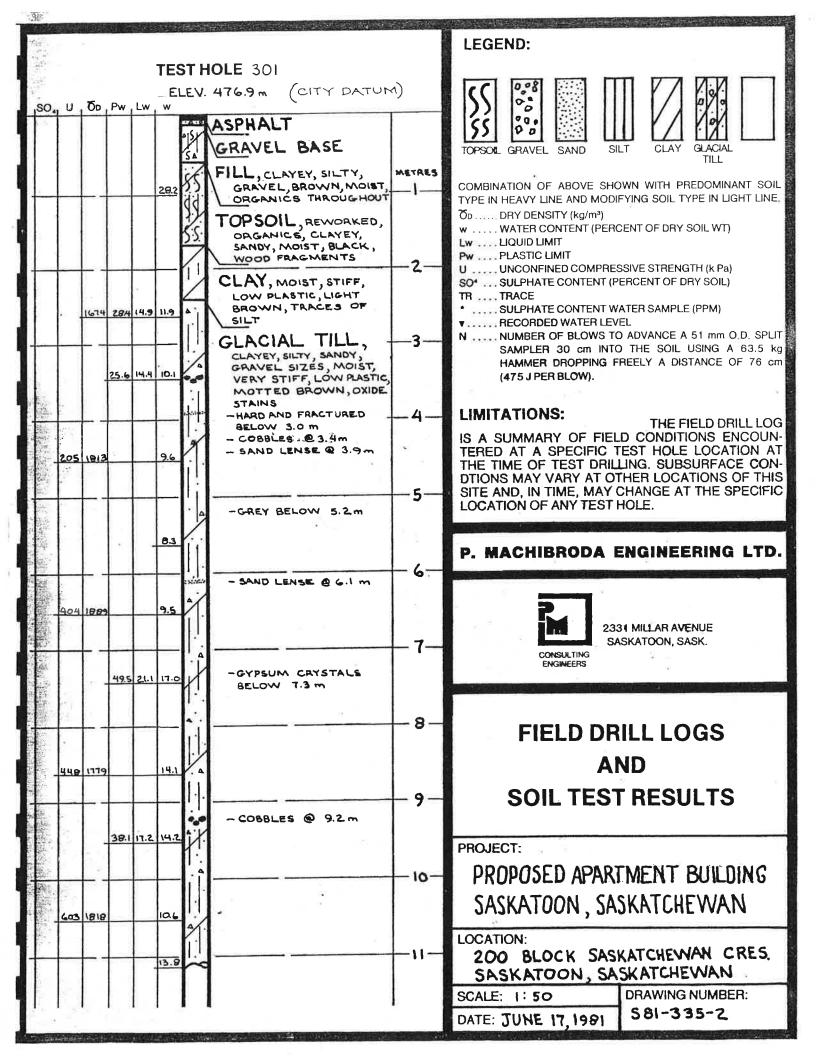

Ground Engineering Ltd. July 4, 1977. Geotechnical Site Investigation Proposed Housing Complex, Saskatchewan Crescent














### HISTORICAL BOREHOLE LOGS TH 301 (PMEL81)

P. Machibroda Engineering Ltd. June 17, 1981. Geotechnical Investigation Proposed Apartment Building Saskatchewan Crescent, Saskatoon, Saskatchewan







# HISTORICAL BOREHOLE LOGS TH 101, TH102, TH 103, TH 104, TH 105, TH 106, TH 107, P201, P202 (CLIF83)

Clifton Associates Ltd. Aug. 17, 1983. Geotechnical Studies Proposed Park Terrace Condominiums 222 Saskatchewan Crescent East Saskatoon, SK.



|                  |              |                       | T                                                          |                                                                                                                  | IOLE LO          |          |     | ſ    |                     |            |               | -  |     |     |
|------------------|--------------|-----------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|----------|-----|------|---------------------|------------|---------------|----|-----|-----|
|                  | 83/07/2      |                       | GROUND ELEV.                                               | 486.36 m (                                                                                                       | uevaetic)        |          |     | TEST | HOI                 | E N        | О.            | ]  |     |     |
|                  | Brat 22      |                       |                                                            |                                                                                                                  |                  |          | 14  |      | SHE<br>ONF.         | AR STR     | ENGTH         | ٠k | J   | Pa  |
| LOGO             | SED BY Da    | <u>ive Williamson</u> |                                                            | and the second | T                | - 1      |     | 11   | 0 1                 | 100        | 15            |    |     | 1   |
| DEPTH            | SYMBOL       | DESCRIPTIO            | ON OF MATERIA                                              | ALS                                                                                                              |                  | SAMPLE   | USC |      |                     |            | NTER<br>NTENT |    | -   | _   |
|                  | 7-1-1-1      |                       | 7.                                                         |                                                                                                                  |                  | бл       |     | 10   | 30                  |            | 50            |    |     | 70  |
|                  |              | CLAY - si<br>- so     | me sand                                                    | dinad                                                                                                            |                  |          |     |      |                     |            |               |    |     |     |
|                  |              | - ve                  | ive (5y5/3), oxic<br>ry moist, soft                        | uzea                                                                                                             |                  |          |     |      | -0                  |            |               |    |     |     |
| -                | 国            |                       | sturbed (Fill)<br>ganic                                    |                                                                                                                  |                  | $\Sigma$ |     | 0=-  |                     | D<br>0     |               |    | _   |     |
| 1-               |              |                       |                                                            |                                                                                                                  |                  |          |     |      | 1                   |            |               |    |     |     |
|                  | 建建           | 1.5 m                 |                                                            |                                                                                                                  |                  |          |     | 1    | 8                   |            |               |    |     |     |
|                  |              | CLAY – me<br>– ol     | dium to highly pi<br>ive (5,1/3), oci                      | lastic, silty<br>discu                                                                                           |                  | 22       | 4   | 1    | P                   | 8          |               |    |     |     |
| 2 -              |              | - ve<br>- sa          | rų moist, firm<br>It stains                                |                                                                                                                  |                  | 77       | × × |      |                     |            |               |    | _   | -   |
|                  |              |                       | dium plastic sil<br>ive (5y5/3), oxi                       | ty elay matri                                                                                                    | $z_{men}(5u3/1)$ | Z        | 101 | 0    | 雷                   | 0          |               |    |     |     |
|                  | $\times$     | 1/2                   | oxidized below 3<br>pry moist, firm to                     | .5 m                                                                                                             |                  |          |     |      |                     |            |               |    |     |     |
|                  |              | _ Fe                  | ery moist, jirm to<br>stains<br>Ighly plastic dis          |                                                                                                                  | amination        |          |     | g    |                     |            | Ø             |    | _   |     |
| 3 -              | $\otimes$    | fr                    | om 2,25 to 2.3 m<br>nom 2,25 to 2.3 m<br>nturated coarse g |                                                                                                                  |                  |          | 4   | 6    |                     |            |               |    | 1   | C   |
|                  |              | - 50                  | ингинен сонгое у                                           | and agos a                                                                                                       |                  | R        |     | Ø    |                     |            | 1 1           | 2  | - 1 |     |
|                  |              |                       |                                                            |                                                                                                                  | 4                |          |     | 0-0  |                     |            |               |    | Г   | ·   |
| 4                | KXX          |                       |                                                            |                                                                                                                  |                  | $\Delta$ |     | 6-   |                     |            |               |    | -   |     |
|                  | $\mathbb{X}$ |                       | F:                                                         |                                                                                                                  |                  | 22       |     | g    |                     |            |               |    |     |     |
|                  |              |                       |                                                            |                                                                                                                  |                  |          | 1   | 1    |                     |            |               |    |     |     |
|                  |              |                       |                                                            |                                                                                                                  |                  |          |     |      |                     | _          |               | ļ  |     | _   |
| 5                | XX           |                       |                                                            |                                                                                                                  |                  |          | 1   | Ó    |                     |            |               |    |     |     |
|                  | KXX          |                       | 1                                                          |                                                                                                                  |                  |          |     |      |                     |            |               |    |     |     |
|                  | 00000        | 5.7 m                 |                                                            |                                                                                                                  |                  |          | 1   | 1    |                     |            |               |    |     |     |
| 6                | 20:000       | 6.0 m E.O.H.          |                                                            |                                                                                                                  |                  |          | 1   |      | $\uparrow \uparrow$ | -          |               | t  |     | 1   |
|                  |              |                       |                                                            |                                                                                                                  |                  |          |     |      |                     |            |               |    |     |     |
|                  |              | NOTES:                | lled using 125 mm                                          | n diameter sol                                                                                                   | lid stem         |          |     |      |                     |            |               |    |     |     |
|                  |              | augi                  | ers.                                                       |                                                                                                                  |                  |          |     |      | +                   | -          | -             |    | -   |     |
|                  |              | 2). Pie:              | zometer installed                                          | <i>i</i> .                                                                                                       |                  |          |     |      |                     |            |               |    |     |     |
|                  |              |                       |                                                            |                                                                                                                  |                  |          |     |      |                     |            |               |    |     |     |
|                  |              |                       |                                                            |                                                                                                                  |                  |          |     |      |                     |            |               |    |     |     |
|                  | 1            |                       |                                                            |                                                                                                                  |                  |          |     |      |                     |            |               | I  |     |     |
|                  |              |                       |                                                            |                                                                                                                  |                  |          | -   |      |                     |            |               |    |     |     |
|                  |              |                       |                                                            |                                                                                                                  |                  |          |     |      |                     |            |               |    |     |     |
|                  |              |                       |                                                            |                                                                                                                  |                  |          |     | 1300 |                     | CT.2 191 9 |               |    |     | 19  |
|                  |              |                       |                                                            |                                                                                                                  |                  |          |     |      | <b>A</b> I          | DRY DEM    | ISITY - I     | k  | 9/  | g/m |
|                  |              |                       |                                                            |                                                                                                                  |                  |          |     |      |                     |            |               |    |     |     |
| $\left( \right)$ | (            | Clifton               | Associo                                                    | ites Ltc                                                                                                         | PROJECT          | PARK TEL |     |      |                     |            |               |    | _   | _   |
| (                |              |                       | GEOTECHNICA                                                |                                                                                                                  |                  |          |     |      |                     |            |               |    | -   | -   |
|                  |              | REGINA                | GEOTECHNICA                                                | SASKATOC                                                                                                         |                  | NO       |     |      | PAGE                | NO. ,      |               |    | _   |     |

|       |              |                 |                                                              | HOLE LOG                        |                | _       |                               |       |             |           |           |
|-------|--------------|-----------------|--------------------------------------------------------------|---------------------------------|----------------|---------|-------------------------------|-------|-------------|-----------|-----------|
| DATE  |              | /2.8            | GROUND ELEV. 485.57 m                                        | (Geodetic)                      |                |         | TEST H                        |       |             | 10        | 2         |
| DRILL | Brat         | 22              |                                                              |                                 |                |         |                               | SHEAF | STRENGTH    | i - kPa   |           |
| LOGO  | GED BY       | Dave Williamson |                                                              |                                 |                |         | 50                            |       | POCKET PI   |           | LAB VAR   |
| DEPTH | SYMBOL       | DESCRIPT        | ON OF MATERIALS                                              |                                 | SAMPLE         | USC     |                               |       |             |           | LIQUI     |
| m     | 771-17       |                 |                                                              |                                 | 8              |         | 10                            | 30    | 50          | 70        | 90        |
|       | 藉動           |                 | black (10YR2/1)                                              |                                 |                |         |                               |       |             |           |           |
|       | 封建           |                 | very moist, very soft<br>organics                            |                                 |                |         |                               |       |             |           |           |
| -     | FFFFF        | 0.9 m TOPSOIL   | disturbed (Fill)                                             |                                 |                |         |                               |       |             |           |           |
| 1     | $\mathbb{K}$ | 1.0 m TILL -    | silty, sandy elay matrix<br>olive grey (5y4/2), oxidized     |                                 | 11             |         |                               | P     |             |           |           |
|       | XX           |                 | very moist, Fe stains<br>highly plastic                      |                                 | <u>77</u>      |         | 00                            |       |             |           |           |
|       |              | -               | olive (5y5/3), oxidized<br>very moist, firm                  |                                 | $\overline{Z}$ |         |                               |       |             |           |           |
| 2-    |              | -               | laminated, slickensided<br>trace organics                    |                                 | 22             |         | -p+                           | +-    |             | 0         | +         |
|       |              |                 |                                                              |                                 | 77             |         | R I                           | O     | P           |           |           |
|       | $\otimes$    | -               | medium plastic, silty clay m<br>dark greyish brown (2.5y4/2) | , oxidized                      | 722            |         | 0.0                           |       | 9           |           |           |
| 3-    | $\bigotimes$ | <b>—</b>        | becoming dark grey (5y1/1),<br>below 3.1 m                   |                                 |                |         | ò                             | _     |             |           |           |
| J     | XX           |                 | stiff becoming very stiff an<br>below 3.1 m                  |                                 |                | ÷       |                               |       |             |           |           |
|       | $\otimes$    |                 | saturated sandy silt layer f<br>4.2 m                        | 1º07 5.9 10                     |                |         |                               |       |             |           |           |
|       | $\bigotimes$ |                 |                                                              |                                 |                |         | 9                             |       |             |           |           |
| 4-    | +++++        |                 |                                                              |                                 |                |         |                               | -     |             |           |           |
|       | XX           |                 |                                                              |                                 |                |         | d                             |       |             |           |           |
|       | KXX          |                 |                                                              |                                 |                |         |                               |       |             |           |           |
| 5 -   | RXX          |                 |                                                              |                                 |                |         |                               |       |             | $\square$ | $\square$ |
| 3     | $\otimes$    | _               |                                                              |                                 |                |         | 0                             |       |             |           |           |
|       | $\bigotimes$ |                 |                                                              |                                 |                |         |                               |       |             |           |           |
| _     | $\otimes$    |                 |                                                              |                                 |                |         |                               |       |             |           |           |
| 6-    |              | 6.0 m E.O.H.    |                                                              |                                 |                |         |                               |       |             |           |           |
|       |              | NOTES:          | lled using 125 mm diameter s                                 | solid stem                      |                |         |                               |       |             |           |           |
|       |              | con<br>21 Bor   | tinuous flight augers.                                       | l water level                   |                |         |                               |       |             |           |           |
| -     |              | теа             | sured 3.6 m, 3.5 hours after<br>cometer installed.           | <ul> <li>completion.</li> </ul> |                |         |                               | -     |             |           | +         |
|       |              | 0,10            |                                                              |                                 |                |         |                               |       |             |           |           |
|       |              |                 |                                                              | . 1                             |                |         |                               |       |             |           |           |
|       |              |                 |                                                              | c.                              | 1              |         |                               |       |             |           |           |
|       |              |                 |                                                              |                                 |                |         |                               |       |             |           |           |
|       |              |                 |                                                              |                                 |                |         |                               |       |             |           |           |
| 8     |              |                 |                                                              |                                 |                |         |                               |       |             |           |           |
| -     |              |                 |                                                              |                                 |                |         | 1300                          |       |             | 1900      | 210       |
|       |              |                 |                                                              |                                 |                | -0.51   |                               | A DRY | DENSITY - I | :g/m³     | _         |
|       |              |                 |                                                              |                                 | 100.00         | 1212222 |                               |       |             |           |           |
|       |              | Clifton         | Associates Lte                                               |                                 |                |         | <u>ONDOMINIU</u><br>katchewan |       | -           |           |           |
| 0     | 5            | 50 mm           | GEOTECHNICAL ENGINE                                          | ERS LOCATION                    |                |         |                               |       |             |           |           |
|       |              | REGINA          | SASKATO                                                      |                                 | S145           |         | PA                            | GE NC | )           |           |           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |        |                                                                                                                                                     | TEST HOLE L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OG |       |     |    |     |      |              |            |      |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-----|----|-----|------|--------------|------------|------|-----|
| DRIL       Brat 82       LOCATION       Income of the second se                                                                                                                                                                                                                                                                                                                                                                   | DATE                     | 83/0   | 07/28                                                                                                                                               | GROUND ELEV. 484.84 m (Geodetic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |       |     | TF | STF | 101  | E NC         | <b>D</b> . | 10   | 3   |
| LOGGED BY       Description of MATERIALS       Water of the control of the co                                                                                                                                                                                                                                                                                                                                                          | DRILL                    |        |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |       |     |    |     | SHE/ | R STREN      | IGTH -     | (Pa  |     |
| CLAY - eilty<br>- 01200 gray (8y5/8), oxidised<br>- organics<br>- distarbed (Pill)<br>1.5 m<br>CLAY - medium plastic<br>- eilty<br>- olive (8y6/3), oxidised<br>- moist, film<br>- laminated, film<br>- laminated, for stains<br>- laminated, for stains<br>- laminated, for stains<br>- light clus brown (1.5y6/4), oxidised<br>- dawg, eiff<br>- asoup estains<br>- a stain<br>- a stain<br>- a stain<br>- a stain<br>- b estains<br>- a stains<br>- a stains<br>- a stains<br>- b estains<br>- a stains<br>- a stains<br>- a stains<br>- b estains<br>- a stains<br>- b estains<br>- a stainsteen for stains<br>- b estains<br>- a stains<br>- b estains<br>- a stains<br>- b estains<br>- b estai | LOGO                     | GED BY | Dave Williamson                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | Ιщ    |     |    | 50  |      | 100  <br>WAT | 150<br>ER  | 1 2  |     |
| CLAY - eilty<br>- 0ilve gray (tyj5/2), oxidised<br>- organice<br>- disturbed (Fill)<br>1.5 m<br>CLAY - medium plastic<br>- eilty<br>- dive (tyj5/3), oxidised<br>- moist, firm<br>- 2<br>- 3<br>- 3<br>- 3<br>- 3<br>- 4<br>- 4<br>- 4<br>- 4<br>- 6<br>- 6<br>- 6<br>- 6<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | SYMBOL | DESCRIPTIO                                                                                                                                          | ON OF MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | AMPLI | usc |    | MIT |      | CON          | ient       | 20   |     |
| Clifton Associates Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1<br>- 2<br>- 3<br>- 4 |        | 1.5 m<br>CLAY -<br>-<br>2.3 m<br>TILL -<br>-<br>3.1 m SAND<br>-<br>3.6 m<br>TILL -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | olive gray (55/2), oxidized<br>very moist, soft<br>organies<br>disturbed (Fill)<br>medium plastic<br>silty<br>olive (55/3), oxidized<br>moist, firm<br>laminated, Fe stains<br>low plastic, sandy silty clay matrix<br>light olive brown (2.545/4), oxidized<br>damp, stiff<br>heavy Fe stains<br>fine grained, silty, occasional pebblen<br>yellowish brown (10YR5/6), oxidized<br>Fe stains<br>medium plastic, sandy clay matrix<br>olive grey (54/2), oxidized below<br>4.0 m<br>heavy Fe stains<br>saturated sand seams below 5.25 m<br>Cled using 125 mm diameter solid stem<br>metinuous flight augers. |    |       |     |    |     |      |              | 700        | 1000 | 240 |

| -            |                 |                                       | TEST HC                                                                  | LE LOG              |              |         |          |                   |                 |         |                |      |
|--------------|-----------------|---------------------------------------|--------------------------------------------------------------------------|---------------------|--------------|---------|----------|-------------------|-----------------|---------|----------------|------|
| DATE         | 83/             | 07/28                                 | GROUND ELEV. 483,62 (Geo                                                 | detic)              |              |         | TEST     | HOLE              |                 | 1       | 104            | 1    |
| DRILL        |                 | t 22                                  |                                                                          |                     |              |         | 1        | SHEAF             | STRENG          | H - KPC | Mas            |      |
| LOGO         | SED BY          | Dave Williamson                       | V                                                                        |                     |              |         |          |                   | POCKET<br>WATER |         | 200            |      |
| DEPTH        | SYMBOL          |                                       | ON OF MATERIALS                                                          |                     | SAMPLE       | USC     |          |                   | CONTEN          | T       |                | ⇒    |
| m            | STMBOL          |                                       |                                                                          |                     | 8            |         | 10       | 30                | 50              | 1       |                | 90%  |
| •            | 群群              | 0:05 m\ASPHALT,<br>FILL               | TOPSOIL, AND GRAVEL                                                      |                     |              |         |          |                   |                 |         |                |      |
|              | 由我              | 0.0                                   |                                                                          |                     |              |         |          | a                 |                 |         |                |      |
|              |                 | CLAY - m                              | edium plastic, silty, laminated<br>live (5y5/3), oxidized                |                     |              |         |          | $\langle \rangle$ |                 |         |                |      |
| - 1 -        | XX              | 1.0 m - v                             | ery moist, soft to firm, re and sa                                       | lt stains           |              |         | 1        | 1                 |                 |         |                |      |
|              | $\mathbb{X}$    | - 0                                   | live (5y5/3), oxidized<br>wist, firm                                     |                     |              |         | l é      |                   |                 |         |                |      |
|              | $\otimes$       | - h                                   | neavy Fe stains<br>salts                                                 |                     |              |         | 1 i      |                   |                 |         |                |      |
| - 2 -        | $\mathbb{N}$    | 1.9 m                                 | fine argined, silty                                                      |                     |              |         |          |                   | ++              | +       |                | +    |
| -            |                 | - 4                                   | noist                                                                    |                     |              | 1       | φ<br>i   |                   |                 |         |                |      |
|              | XX              |                                       | Fe stains<br>medium plastic, silty clay matrix                           |                     |              |         |          |                   |                 |         |                |      |
|              | $\mathbb{X}$    |                                       | olive brown (2.5y4/4), oxidized, b<br>dark grey (5y4/1), unoxidized belo | ecoming<br>w 3.75 m |              |         | 6        |                   |                 |         |                |      |
| - 3 -        | $\mathbb{X}$    |                                       | moist, stiff<br>becomes stiffer with depth                               |                     |              | 1       |          |                   |                 |         |                |      |
|              | $\mathbb{K}$    | 4 - '                                 | Jecomes sougger work wept                                                |                     |              |         |          |                   |                 |         |                |      |
|              | XX              |                                       |                                                                          |                     |              | 1       | p        |                   |                 |         |                |      |
| -4           | XX              |                                       |                                                                          |                     |              |         |          | +                 | ++              | +       | +              | +    |
| -            | $\otimes$       |                                       |                                                                          |                     |              | -       |          |                   |                 |         |                |      |
| 1            | $\otimes$       |                                       |                                                                          |                     | -            | 1       | ΙŤ       |                   |                 |         |                | 22   |
|              | XX              |                                       |                                                                          |                     |              |         |          |                   |                 |         |                |      |
| <b>∣ 5</b> ′ | KXX             | 4                                     |                                                                          |                     |              | 1       | b        |                   |                 |         |                |      |
|              | 88              | }                                     |                                                                          |                     |              |         |          |                   |                 |         |                |      |
| 1.1.1        | <b>K</b> X      | 3                                     |                                                                          |                     |              |         |          |                   |                 |         |                |      |
| -6           | <u>kxx</u>      | 6.0 m E.O.H.                          |                                                                          |                     |              |         |          | ++-               | ++              | +       | +              | +    |
|              |                 |                                       |                                                                          |                     |              |         |          |                   |                 |         |                |      |
|              |                 | NOTES:                                |                                                                          |                     |              |         |          |                   |                 |         |                |      |
|              |                 | 1). Dri                               | lled using 125 mm diameter contin                                        | uous flight         |              |         |          |                   |                 | _       |                | _    |
| F *          | 1               | aug                                   | ers.                                                                     |                     |              |         |          |                   |                 |         |                |      |
| 1            |                 |                                       |                                                                          |                     |              |         |          |                   |                 |         |                |      |
|              |                 |                                       |                                                                          |                     |              |         |          |                   |                 |         |                |      |
| 45 97        | -               |                                       | 2                                                                        |                     |              |         |          | ++                | ++              | -       | ++             |      |
|              |                 |                                       | 8                                                                        |                     |              |         |          |                   |                 |         |                |      |
|              |                 |                                       |                                                                          |                     |              |         |          |                   |                 |         |                |      |
|              |                 |                                       |                                                                          |                     |              |         |          |                   |                 | _       |                |      |
| -            | 1               |                                       |                                                                          |                     |              |         | 1300     |                   | I 170           |         | m <sup>3</sup> | 2100 |
|              |                 |                                       |                                                                          |                     |              |         |          |                   |                 |         |                |      |
|              | $ \rightarrow $ |                                       |                                                                          | PROJECT             | PARK I       | TERRACE | CONDOMI  | NIUMS             |                 |         |                |      |
|              |                 | · · · · · · · · · · · · · · · · · · · | Associates Ltd.                                                          |                     | Saskat       | coon, S | askatche | ewan              |                 |         |                |      |
|              | S'              |                                       | GEOTECHNICAL ENGINEERS                                                   | PROJECT NO.         | <i>S</i> 145 | 5       |          | PAGEN             | 10              |         |                |      |
|              |                 | REGINA                                | SASKATOON                                                                | FROJECT NO.         |              | _       |          |                   |                 |         |                |      |

|         |                    |                                              |                                                                                                                     | TEST HC                                                     | DLE LO               | G      |      |                  |                      |          |           |      |     |
|---------|--------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|--------|------|------------------|----------------------|----------|-----------|------|-----|
| DATE _  | 83/07/2<br>Brat 22 |                                              |                                                                                                                     | 480.82 m (Geod                                              | etic)                |        |      |                  | SHE                  |          | GTH · k   | Pa   |     |
| LOGG    | ED BY _Da          | <u>ve Williamso</u> n                        |                                                                                                                     |                                                             |                      | Τw     |      | PLASTIC          | 50                   | 100 L    | 150<br>ER | 20   | Lic |
| DEPTH S | YMBOL              | DESCRIPTIC                                   | ON OF MATER                                                                                                         | IALS                                                        |                      | SAMPLE | USC  | <u>имп</u><br>10 | 30                   | CONT<br> | 'ENÎ      | 70   |     |
| -1-     |                    | - b1<br>- mc<br>- wc                         | th organics<br>ack (10YR2/1),<br>rist, firm<br>od chips<br>sturbed (Fill)                                           | oxidized                                                    |                      |        |      |                  | <i>Q</i><br><i>i</i> |          |           |      |     |
| 2-3-    |                    | - da<br>- ve<br>- La<br>- Fe<br>- ti         | edium plastic, s<br>ink greyish brow<br>eny moist, firm<br>minated<br>s stains<br>race organics<br>lth silt and sar | m (2.5y4/2), 0x1C                                           | lized                |        |      |                  |                      |          |           |      |     |
| - 4     |                    | = 1-<br>= ma                                 | ight of ine brown                                                                                                   | ilty clay matrix<br>1 (2.5y5/4), oxid:<br>ming stiffer with | ized<br>depth        |        |      |                  | 2                    |          |           |      |     |
| - 5 -   |                    | SAND - m<br>- d<br>- m<br>- h<br>- o<br>.4 m | oist<br>eavy Fe stains<br>ccasional till<br>edium plastic 8                                                         | rown (10YR4/4), o:<br>lumps<br>iltu clau matrix             |                      |        |      | 0                | ,<br>,<br>,          |          |           |      |     |
| - 6-    |                    | - 0<br>d<br>6<br>- d<br>- b                  | live brown (2.5                                                                                                     | y1/1), oxidized,<br>(5y3/2), unoxidiz                       | becoming<br>ed below |        | 1111 | -0               |                      |          |           |      |     |
| - 8 -   | ××,                | .5 m E.O.H.<br><u>NOTES:</u><br>1). Drill    | ed using 125 nm                                                                                                     | diameter solid s                                            | tem                  |        |      | 0                |                      |          |           |      |     |
|         |                    |                                              | nuous flight au                                                                                                     |                                                             |                      |        |      | 130              | ) 150                | 20 17    |           | 1900 |     |

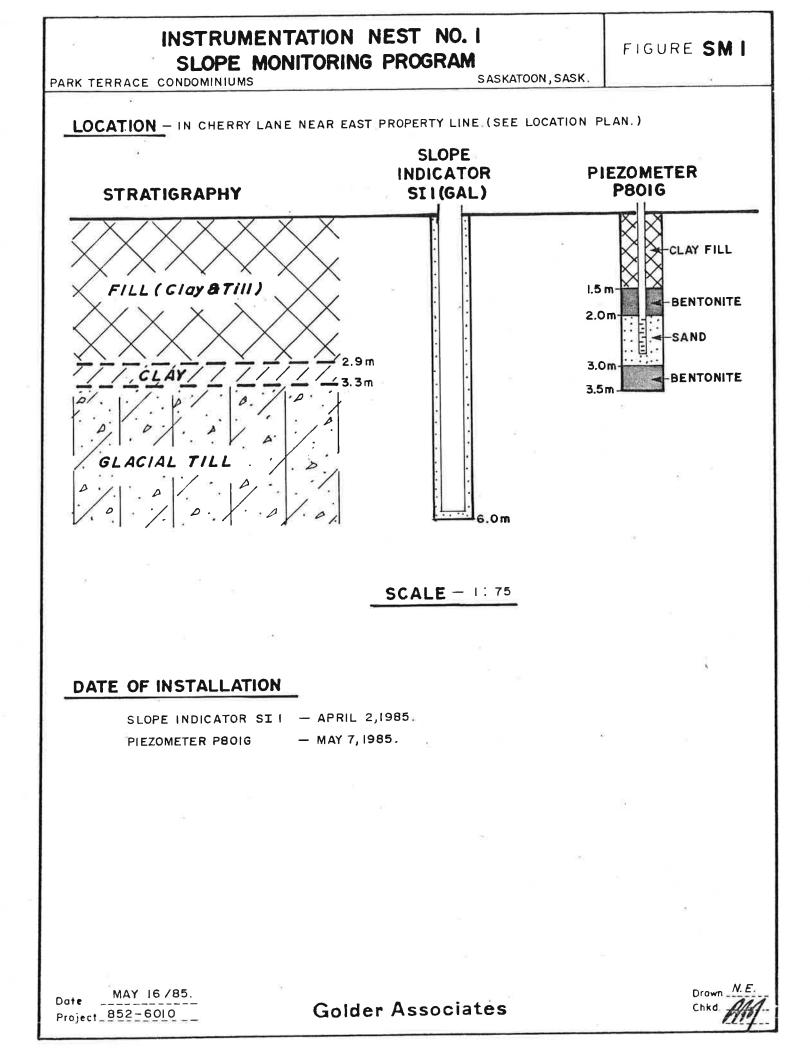
|           |                    | TEST HOLE LOG                            |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|-----------|--------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 83/07/    | 28                 | GROUND ELEV.                             | 481.95 m                                                                                                                                                                                                                                                                                                                                                                      | (Geodetic)                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ЧC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|           |                    |                                          | LOCATION                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SHEAR STRENGTH - KPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| SED BY Da | ve Williamson      | -                                        |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UNCONF. DOCKET PEN. DAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| SYMBOL    | DESCRIPTI          | ON OF MATERIA                            |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | USC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | لانم<br>الله<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 7777      |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 封封        | - 1                | black (10YR2/1), c                       | oxidized                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 封理        |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 国理        |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           | .4 m               | medium plastic sil                       | tu sandu alau                                                                                                                                                                                                                                                                                                                                                                 | matrix                                                                                                                                                                                                                                                                                                                                                                                                                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           | -                  | light olive brown                        | (2.545/4), oxi                                                                                                                                                                                                                                                                                                                                                                | dized                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           | - )                | moist                                    |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| $\otimes$ | - 1                | brittle                                  |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           | -                  |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| XX.       |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| $\otimes$ |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| $XX_4$    | .5 m E.O.H.        |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           | NOTES:             |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           | 1). Drill<br>fligh | ed using 125 nm di<br>t, solid stem auge | ameter continu<br>ers.                                                                                                                                                                                                                                                                                                                                                        | ous                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|           |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRY DENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           | Brat 2<br>SYMBOL   | CLAY                                     | Brat 22<br>SED BY Dave Williamson<br>SYMBOL<br>DESCRIPTION OF MATERIA<br>CLAY - silty, with organi<br>- black (10YR2/1), c<br>- moist<br>- disturbed (Fill)<br>1.4 m<br>TILL - medium plastic sil<br>- light olive brown<br>- becoming olive br<br>- moist<br>- stiff to very stif<br>- brittle<br>- heavy Fe stains<br>4.5 m E.O.H.<br>NOTES:<br>1). Drilled using 125 nm dd | Brat 22       LOCATION         SYMBOI       DESCRIPTION OF MATERIALS         CLAY - silty, with organics<br>- black (10YR2/1), oxidized<br>- moist<br>- disturbed (Fill)         1.4 m         TILL - medium plastic silty sandy clay<br>- light olive brown (2.5y5/4), oxi<br>- becoming olive brown (2.5y4/4),<br>- moist<br>- stiff to very stiff<br>- brittle<br>- heavy Fe stains         4.5 m E.O.H.         NOTES: | <u>Brat 22</u><br>STOR BY Dave Williamson<br>SYMBOL DESCRIPTION OF MATERIALS<br>CLAY = silty, with organics = black (10YR2/1), oxidized = moist = disturbed (Fill)<br>1.4 m<br>TILL = medium plastic silty sandy clay matrix = light olive brown (2.5y5/4), oxidized = becoming olive brown (2.5y4/4), with depth = moist = stiff to very stiff = brittle = heavy Fe stains<br>4.5 m E.O.H.<br><u>NOTES:</u> 1), Drilled using 125 mm diameter continuous | Brat 22       LOCATION         SYMBOL       DESCRIPTION OF MATERIALS         CLAY - silty, with organics<br>- black (10YR2/1), oxidized<br>- moist         - disturbed (Fill)         1.4 m         TILL - medium plastic silty sandy clay matrix<br>- light olive brown (2.5y5/4), oxidized<br>- becoming olive brown (2.5y4/4), with depth<br>- moist<br>- stiff to very stiff<br>- brittle<br>- heavy Fe stains         4.5 m E.O.H.         NOTES:         1). Drilled using 125 mm diameter continuous | Brat 22       LOCATION         STMBOL       DESCRIPTION OF MATERIALS       The second | Brat 22       LOCATION         SYMBOL       DESCRIPTION OF MATERIALS       USC         SYMBOL       DESCRIPTION OF MATERIALS       USC         CLAY - eilty, with organics<br>- black (101R2/1), oxidized<br>- motat       - motat         - disturbed (Fill)       - disturbed (Fill)         1.4 m       TILL - medium plastic silty sandy clay matrix<br>- light oline brown (2.5y5/4), oxidized<br>- becoming oline brown (2.5y4/4), with depth<br>- motat         - eitiff to very stiff       - brittle         - heavy Fe stains       - motat         - 1.5 m E.O.H.       NOTES:         1). Drilled using 125 mm diameter continuous       - motat | Brat 22       LOCATION       TEST         SYMBOL       DESCRIPTION OF MATERIALS       98       USC       1000         SYMBOL       DESCRIPTION OF MATERIALS       90       90       1000         SYMBOL       DESCRIPTION OF MATERIALS       90       90       1000         SYMBOL       DESCRIPTION OF MATERIALS       90       90       10000         SYMBOL       DESCRIPTION OF MATERIALS       90       90       10000         SYMBOL | Brat 22       LOCATION       TEST FROM         STMMON       DESCRIPTION OF MATERIALS       wsc       Main         Stat 101101/1, outlised       - disturbed (FELL)       - disturbed (FELL)         Stat 2       - disturbed (FELL)       - disturbed (FELL)       - disturbed (FELL)         Stat 2       - disturbed (FELL)       - disturbed (FELL)       - disturbed (FELL)         Stat 2       - disturbed (FELL)       - disturbed (FELL)       - disturbed (FELL)         Stat 2       - disturbed (FELL)       - disturbed (FELL)       - disturbed (FELL)         Stat 2       - disturbed (FELL)       - disturbed (FELL)       - disturbed (FELL)         Stat 2       - disturbed (FELL)       - disturbed (FELL)       - disturbed (FELL)         Stat 2       - disturbed (FELL)       - disturbed (FELL)       - disturbe | Det 20       IOCANION       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES         Seed by Parke Williamson       IEST ACLES       IEST ACLES       IEST ACLES | EVACE 22       LOCATION       Just 2010       Just 2010         SeeD BY Dave Williamson       Just 2010       Just 2010       Just 2010         SMMOD       DESCRIPTION OF MATERIALS       Just 2010       Just 2010       Just 2010         SMMOD       DESCRIPTION OF MATERIALS       Just 2010       Just 2010 <td< td=""></td<> |  |  |  |  |  |  |

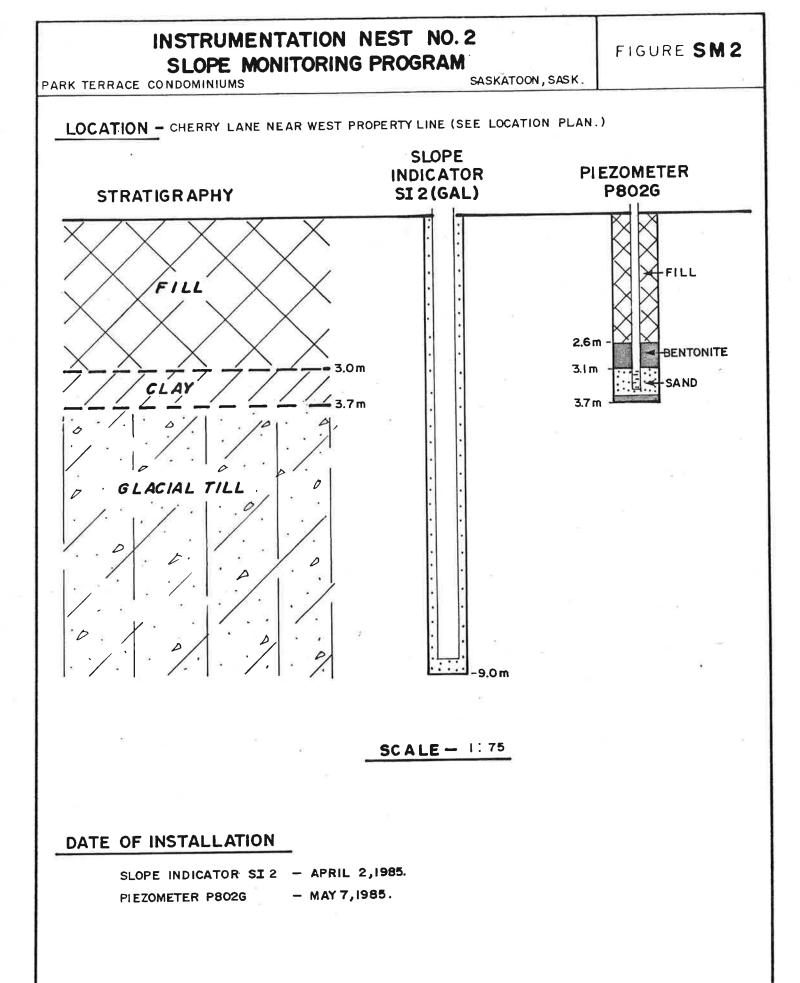
| <ul> <li>1.1 m <u>1048011</u></li> <li>SITT - With vity cing lamps and five sand</li> <li>Bandy arguited as brown (1048/3), oxidiaed, becoming light gray (13.89/21) below 0.8 m</li> <li>a.a. a.a. a.a. a.a. a.a. a.a. a.a. a.a</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |                                                                                                | TE                                                                                                                                                                                                                                                                                                             | ST HOI                   | E LO     | G |          |     |     |     |      |         |         |       |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|---|----------|-----|-----|-----|------|---------|---------|-------|------|
| DRIL       Invest 22         LOGGED BY Marge Attilianten       Invest 22         DBMT       State State interfere         State State interfere       State interfere         State State interfe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE  | 83/07  | 2/28                                                                                           | GROUND ELEV.                                                                                                                                                                                                                                                                                                   | 197.254 m (Ge            | eodetic) |   |          |     | TES | тнс |      | NO      | 1       | 07    | ,    |
| DEFINE TY SWARD       DESCRIPTION OF MATERIALS       Image: Comparison of the comparison                                                                                                                                                                                                                                                                                           |       |        |                                                                                                | LOCATION                                                                                                                                                                                                                                                                                                       |                          |          |   |          |     |     | 5   | HEAR | STRENGT | H - kPa | d IVE |      |
| <ul> <li>1 m <u>100001</u></li> <li>SIT - olth site olay lampe and file and<br/>site brown (DDM/3), orditad, becoming<br/>light group (2.5970) below 0.6 m<br/>- domp</li> <li>a orgenica to 0.5 m</li> <li>a domp</li> <li>b orgenica to 0.5 m</li> <li>c orgenica to 0.5 m</li> <li>d orgenica to 0.5 m</li> <lid 0.5<="" orgenica="" th="" to=""><th>LOGO</th><th>SED BY</th><th>Dave Williamson</th><th></th><th></th><th></th><th>T</th><th>۳<br/>۲</th><th></th><th></th><th>ic</th><th></th><th>WATER</th><th></th><th>(15</th><th></th></lid></ul> | LOGO  | SED BY | Dave Williamson                                                                                |                                                                                                                                                                                                                                                                                                                |                          |          | T | ۳<br>۲   |     |     | ic  |      | WATER   |         | (15   |      |
| SILT - vith sitty clay lump and fine and<br>light gray (2.5972) setton 0.8 m<br>- havy organics to 0.8 m<br>- dam 3.9 m SAUD - fine grained, eilty<br>- ighty planting<br>- dam 4 5 6 6 6 6 6.0 m E.O.H. NOTES:<br>10. priled using 125 mm diametor, continuous<br>flight, molid atem augers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | SYMBOL | DESCRIPTIO                                                                                     | ON OF MATERIALS                                                                                                                                                                                                                                                                                                |                          |          |   | SAM<br>R | USC |     |     |      | -0-     |         |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 3 - |        | SILT - wi<br>- da<br>In<br>- ha<br>- da<br>- da<br>- da<br>- da<br>- da<br>- da<br>- da<br>- d | ith silty clay lumps and<br>ink brown (101R3/3), ox<br>ight grey (2.5y7/2) bel-<br>eavy organics to 0.8 m<br>imp<br>imp<br>ine grained, silty<br>ight yellowish brown (2<br>amp<br>ighly plastic<br>live (5y4/3), oxidized<br>wist, stiff<br>aminated<br>irganic odour<br>'e stains<br>ied using 125 mm diamet | ldızed, Deco<br>ow 0.8 m | dized    |   |          |     |     |     | 100  |         |         |       | 2100 |

|                   | PIEZ                 | OME    | TER CONSTR                            | RUCTI            | ON DETAILS                                                                                     | 6                               |
|-------------------|----------------------|--------|---------------------------------------|------------------|------------------------------------------------------------------------------------------------|---------------------------------|
| DEPTH<br><b>M</b> | PIEZOMETER<br>DETAIL | SYMBOL | SOIL<br>DESCRIPTION                   | ELEV.<br>m       | PIEZOMETER<br>TEST HOLE                                                                        |                                 |
| - 0 -             | (4)<br>(3)           |        | CLAY – fill<br>– silty                | 486.44<br>486.36 | LOCATION<br>TOP PIPE ELEV. 4<br>GROUND ELEV. 4<br>BASE SCREEN ELEV.<br>PIPE TYPE 38 mm P<br>80 | 86.44<br>86.36<br>483.05        |
| - 1 -<br>- 2 -    | 2                    |        | CLAY - medium to<br>highly<br>plastic |                  | INST. DATE July 2<br>TECHNICIAN D.W. W                                                         | 25 mm<br>18, 1983<br>Villiamson |
| - 3 -             |                      |        | TILL – oxidized                       | 483.90           | DRILL BPAC 22 CON<br>WATER L<br>DATE TIME<br>UPON COMPLETION<br>83/07/28 1545                  | icentacao reegito               |
| - 4 -             | 1                    |        | – unoxidizec                          | Z                | ADDITIONAL READINGS 83/08/02 0915 83/08/09 1355                                                | 2.04 484.40<br>2.13 484.31      |
| - 5 -             | -                    |        |                                       |                  | REMARKS Construct<br>1. Auger Cuttin<br>2. 12-20 Silic<br>3. Bentonite P                       | ngs<br>a Sand<br>ellets         |
| - 6 -             |                      | 0.0 0  | GRAVEL                                | 480.36           | <u>4. Auger Cutti</u><br><u>All elevations</u><br><u>Geodetic Datum.</u>                       |                                 |
|                   | -                    |        |                                       |                  | DRAWN BY<br>GJB                                                                                | APPROVED BY                     |
|                   |                      |        | CHNICAL ENGINEERS                     | OCATION          | Starport Investmen<br>Park Terrace Condo<br>Saskatoon, Saskato                                 | ominiums                        |
|                   | REGINA               |        | SASKATOON                             | DATE 83/         | UOTUS PROJE                                                                                    |                                 |

|            | PIEZ                 | OME          | TER CONSTI                          | RUCTI                | ION DETAILS                                                                                                                                                       |    |  |  |  |
|------------|----------------------|--------------|-------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| DEPTH<br>M | PIEZOMETER<br>DETAIL | SYMBOL       | SOIL<br>DESCRIPTION                 | ELEV.<br>m           | PIEZOMETER NO. <u>P102</u><br>TEST HOLE NO. <u>102</u>                                                                                                            |    |  |  |  |
|            |                      |              |                                     | 486.28               | LOCATION                                                                                                                                                          |    |  |  |  |
| - 0 -      | (3)                  |              | CLAY - fill<br>- silty<br>TOPSOIL   |                      | TOP PIPE ELEV. 400.20 m<br>GROUND ELEV. 485.57 m<br>BASE SCREEN ELEV. 480.35 m<br>PIPE TYPE 38 mm PVC Schedule                                                    |    |  |  |  |
| - 1 -      |                      |              | TILL<br>CLAY - highly               |                      | SCREEN 51 mm PVC Johnson<br>10 slot<br>125 mm                                                                                                                     |    |  |  |  |
| - 2 -      |                      |              | TILL - oxidized                     |                      | INST. DATE                                                                                                                                                        | ŧ  |  |  |  |
| - 3 -      |                      |              | – unoxidizeo                        | đ                    | WATER LEVELS<br>DATE TIME DEPTH-m ELEV<br>UPON COMPLETION<br>83/07/28 1800 3.37 482.9.<br>ADDITIONAL READINGS                                                     | 1  |  |  |  |
| - 4 -      |                      |              | - sandy sil<br>from 3.9<br>to 4.2 m | t<br>481.2           | 83/08/02         0920         3.60         482.60           83/08/09         1350         3.63         482.60           0         0         0         0         0 |    |  |  |  |
| - 5 -      |                      |              |                                     | 480.3                | REMARKS <u>Construction Material</u><br>55 <u>1. Auger Cuttings</u><br><u>2. 12-20 Silica Sand</u><br><u>3. Bentonite Pellets</u>                                 | .8 |  |  |  |
| - 6 -      |                      | _ <u>Č</u> , |                                     | 480.2                | 1 Augon Cuttings                                                                                                                                                  |    |  |  |  |
|            | -                    |              |                                     |                      |                                                                                                                                                                   |    |  |  |  |
|            |                      | -            |                                     |                      | DRAWN BY<br>GJB APPROVED BY                                                                                                                                       |    |  |  |  |
|            |                      | Ass          | ociates Ltd.                        | PROJECT              | tarport Investments Ltd.<br><u>Park Terrace Condominiums</u><br>Saskatoon, Saskatchewan                                                                           |    |  |  |  |
|            |                      | GEOT         | -CHNICAL LINGINLLING                | LOCATION<br>DATE 83/ | 0115                                                                                                                                                              | _  |  |  |  |

| <b></b>    | PIEZ                 | OME    | TER CONST                       | RUCTI             | ON DETAILS                                                                                                            |  |  |  |  |  |
|------------|----------------------|--------|---------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| DEPTH<br>M | PIEZOMETER<br>DETAIL | SYMBOL | SOIL<br>DESCRIPTION             | ELEV.<br>m        | PIEZOMETER NO. P202<br>TEST HOLE NO.                                                                                  |  |  |  |  |  |
|            |                      |        |                                 | 100.07            | LOCATION                                                                                                              |  |  |  |  |  |
| - 0 -      | 5                    |        |                                 | - 496.03          | TOP PIPE ELEV. 496.03 mGROUND ELEV. 496.10 mBASE SCREEN ELEV. 482.20 mPIPE TYPE 51 mm PVC Schedule 80                 |  |  |  |  |  |
| - 2 -      |                      |        |                                 |                   | SCREEN 51 mm PVC slotted with<br>circular saw<br>TEST HOLE DIA. 410 mm<br>INST. DATE July 22, 1983<br>Germu J. Berube |  |  |  |  |  |
| - 4 -      |                      |        | π                               |                   | INST. DATE Gerry J. Berube<br>CONTRACTOR<br>DRILL<br>WATER LEVELS<br>DATE TIME DEPTH-m ELEVm                          |  |  |  |  |  |
| - 6 -      |                      |        |                                 |                   | UPON COMPLETION<br>ADDITIONAL READINGS<br>83/07/25 1025 11.61 484.42                                                  |  |  |  |  |  |
| - 8 -      |                      |        |                                 |                   | 83/08/09 1605 11.83 484.20                                                                                            |  |  |  |  |  |
| -10 -      |                      |        |                                 |                   | REMARKS<br>Construction Materials<br>1. Natural slough<br>2. Concrete sand                                            |  |  |  |  |  |
| - 12 -     | 2                    |        |                                 | 483.26            | 3. Bentonite pellets<br>4. Sand bentonite (10%<br>Bentonite) mixture<br>5. Cuttings                                   |  |  |  |  |  |
| -14 -      | 1                    | -      |                                 | 482.2<br>481.2    | Water depths referenced to top<br>of pipe.<br>Screen wrapped with filter                                              |  |  |  |  |  |
| -16-       |                      |        |                                 |                   | _cloth.                                                                                                               |  |  |  |  |  |
|            |                      |        |                                 |                   | DRAWN BY                                                                                                              |  |  |  |  |  |
|            |                      |        | ociates Ltd.                    | CLIENT<br>PROJECT | Starport Investments Ltd.<br>PARK TERRACE CONDOMINIUMS<br>Saskatoon, Saskatchewan                                     |  |  |  |  |  |
|            | CONSULTING<br>REGINA | GEOII  | ECHNICAL ENGINEERS<br>SASKATOON |                   |                                                                                                                       |  |  |  |  |  |

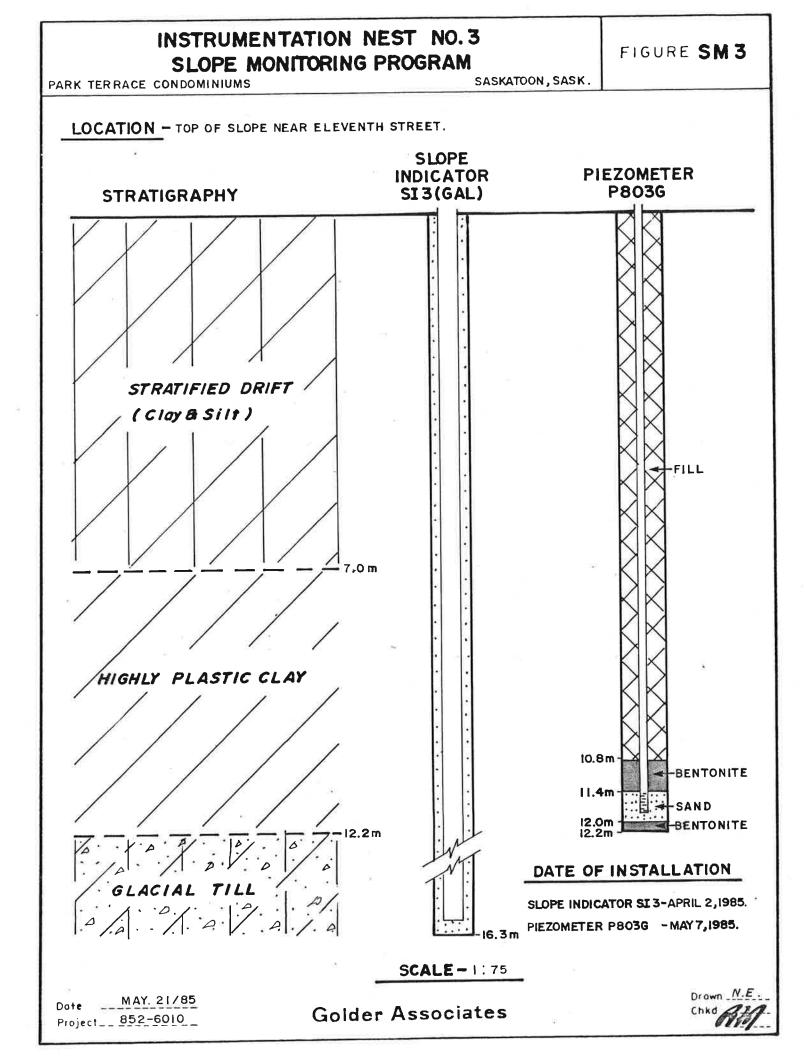

|            | PIEZ                 | OME    | TER CONST                         | RUCTI          | ION DETAILS                                                                                                                                                                                                              |  |  |  |  |
|------------|----------------------|--------|-----------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| DEPTH<br>M | PIEZOMETER<br>DETAIL | SYMBOL | SOIL<br>DESCRIPTION               | ELEV.<br>m     | PIEZOMETER NO. <u>P201</u><br>TEST HOLE NO                                                                                                                                                                               |  |  |  |  |
| - 0 -      | П                    |        |                                   | 497.21         | TOP DIDE FLEV 497.21 M                                                                                                                                                                                                   |  |  |  |  |
| - 2 -      | 5                    |        |                                   |                | GROUND ELEV. <u>407.57 m</u><br>BASE SCREEN ELEV. <u>483.79 m</u><br>PIPE TYPE <u>51 mm PVC Schedule 80</u><br>SCREEN <u>51 mm PVC slotted with</u><br>circular saw                                                      |  |  |  |  |
| - 4 -      |                      |        |                                   |                | TEST HOLE DIA.       410 mm         INST. DATE       July 22, 1983         TECHNICIAN       Gerry Berube         CONTRACTOR       DRILL         WATER       LEVELS         DATE       TIME         UPON       COMPLETION |  |  |  |  |
| - 8 -      |                      |        |                                   |                | ADDITIONAL READINGS<br>83/07/25 1020 11.63 485.58<br>83/08/09 1610 11.65 485.56                                                                                                                                          |  |  |  |  |
| -10-       | 3                    |        |                                   |                | REMARKS         Construction Materials         1. Natural slough         2. Concrete Sand                                                                                                                                |  |  |  |  |
| - 12 -     | . 2                  |        |                                   | 484.8<br>483.7 | <u>Bentonite) mixture</u><br>5. Cuttings                                                                                                                                                                                 |  |  |  |  |
| -14-       | 1                    | -      |                                   | 482.3          | Water depths referenced to top<br>of pipe.<br>37<br>Screen wrapped with filter<br>cloth.                                                                                                                                 |  |  |  |  |
| - 16 -     |                      |        |                                   |                | DRAWN BY<br>GJB                                                                                                                                                                                                          |  |  |  |  |
|            |                      |        | OCIATES Ltd.<br>CHNICAL ENGINEERS | PROJECT        | Starport Investments Ltd.         PARK TERRACE CONDOMINIUMS         Saskatoon, Saskatchewan         Saskatoon, PROJECT NO. 5145                                                                                          |  |  |  |  |
| 1          | REGINA               |        | SASKATOON                         | DATE 83        | 0/0//40                                                                                                                                                                                                                  |  |  |  |  |




## HISTORICAL BOREHOLE LOGS SI1, SI2, SI3, P801G, P802G, P803G (GAL85)

Golder Associates Ltd. May 1985. Progress Report No. 1 Slope Monitoring Program, Park Terrace Condominiums, 222 Saskatchewan Crescent East, Saskatcon, Saskatchewan



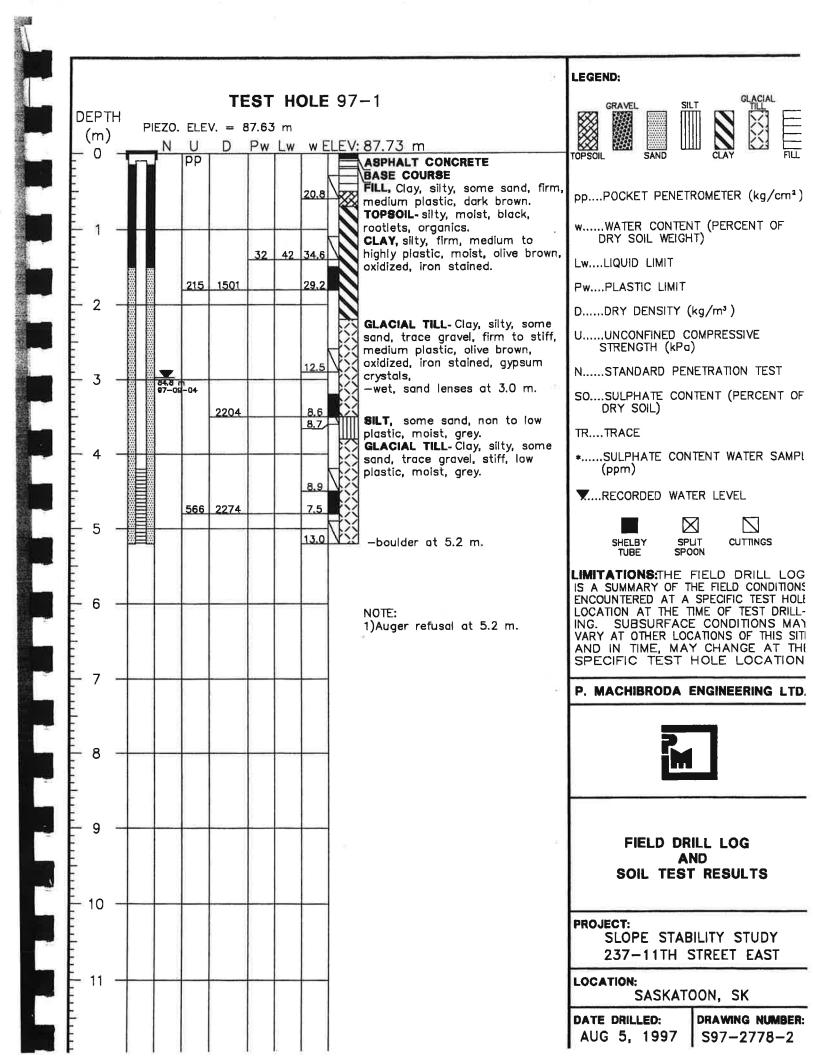




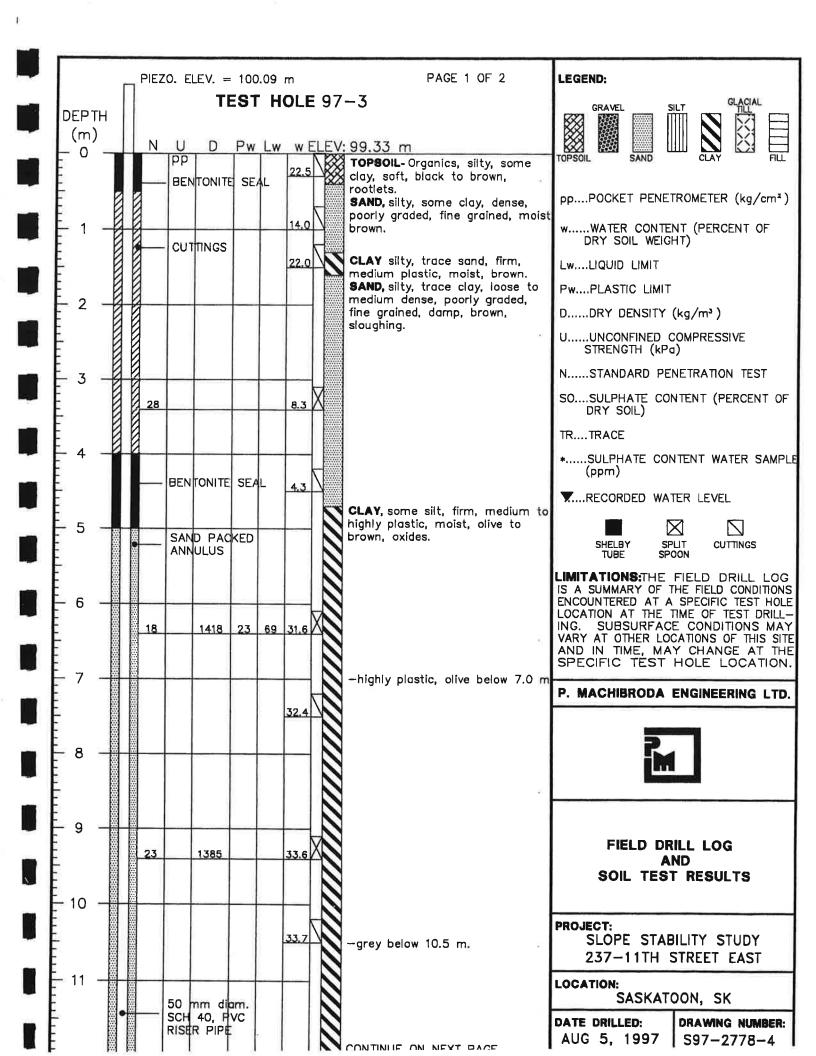

Date <u>MAY 21/85.</u> Project 852-6010

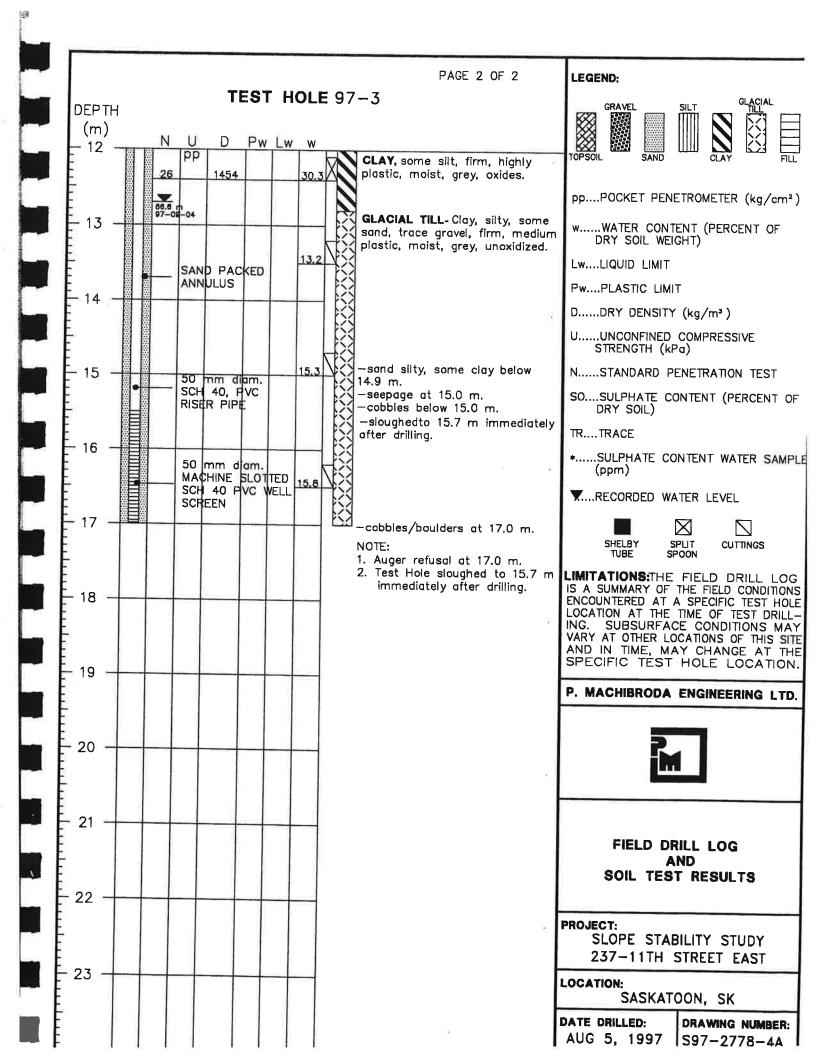
Golder Associates

Drown N.E. Chkd

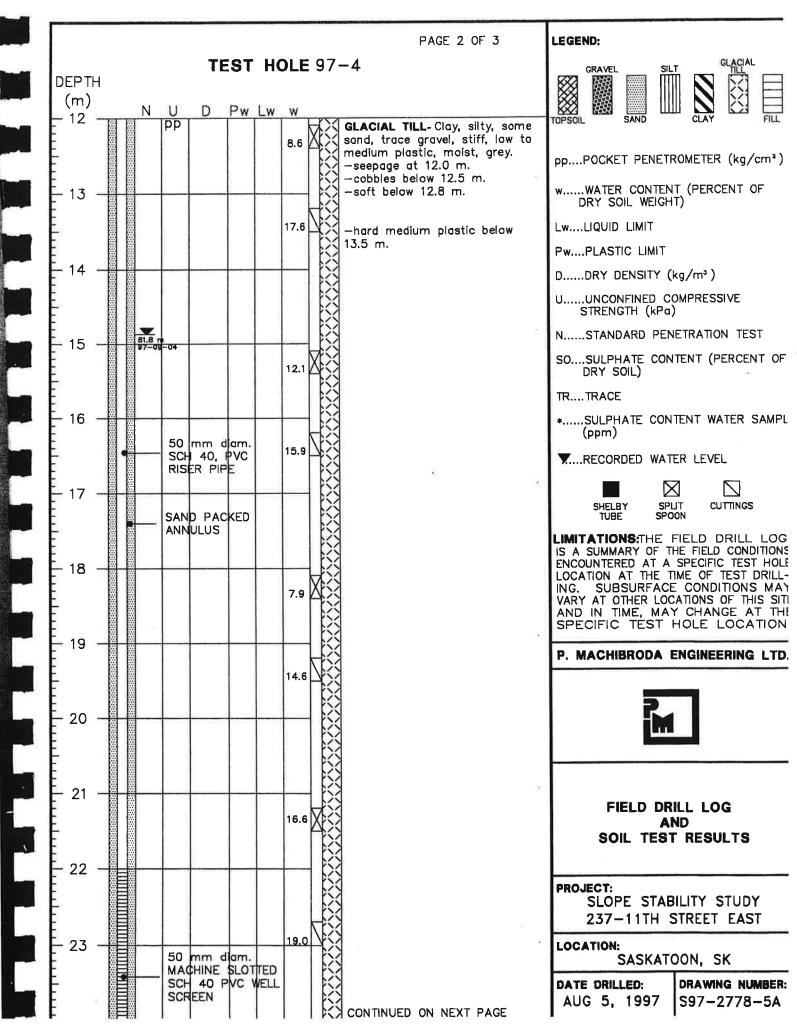






## HISTORICAL BOREHOLE LOGS TH 97-01, TH 97-02, TH 97-03, TH 97-04 (PMEL97)


P. Machibroda Engineering Ltd. Sept. 15, 1997. Geotechnical Investigation and Slope Stability Study Proposed Residential Development, 237-11th Street East, Saskatoon, Saskatchewan






|                                                                                                | LEGEND:                                                                                                                    |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| DEPTH PIEZO = 99.85 m                                                                          |                                                                                                                            |
| (m)N U D Pw Lw w ELEV: 99.14 m                                                                 |                                                                                                                            |
| PP <b>TOPBOIL-</b> Silty, dark, br<br>organics, rootlets.                                      |                                                                                                                            |
| BENTONITE SEAL 10.9 SAND, silty, fine grained<br>graded, medium dense,<br>oxidized, sloughing. |                                                                                                                            |
| 1 CLAY, silty, firm, highly<br>moist, olive brown, oxic                                        | v plastic,<br>dized.<br>wWATER CONTENT (PERCENT OF                                                                         |
| 20.1 X                                                                                         | LwLIQUID LIMIT                                                                                                             |
| SAND, some silt, mediu<br>poorly graded, fine grai                                             | ined, damp PwPLASTIC LIMIT                                                                                                 |
| 2 50 mm diam.                                                                                  | hing. DDRY DENSITY (kg/m³)                                                                                                 |
| SCH 40, FVC<br>RISER PIPE                                                                      | UUNCONFINED COMPRESSIVE<br>STRENGTH (kPa)                                                                                  |
| 3 3.7                                                                                          | NSTANDARD PENETRATION TEST                                                                                                 |
|                                                                                                | SOSULPHATE CONTENT (PERCENT OF DRY SOIL)                                                                                   |
|                                                                                                | TRTRACE                                                                                                                    |
|                                                                                                | *SULPHATE CONTENT WATER SAMPLE (ppm)                                                                                       |
| 27 70 28,3 CLAY, silty, stiff, highly<br>moist, dark olive brown<br>jointed, iron stained, gy  | , oxidized,RECORDED WATER LEVEL                                                                                            |
| 5 Crystals.<br>SAND, silty, medium der                                                         |                                                                                                                            |
| SAND PACKED poorly graded, fine grai<br>ANNULUS olive brown, oxidized, si                      | ned, moist TUBE SPOON                                                                                                      |
|                                                                                                | LIMITATIONS: THE FIELD DRILL LOG                                                                                           |
| 6                                                                                              | is a summary of the field conditions<br>at 6.0 mENCOUNTERED AT A SPECIFIC TEST HOLE<br>LOCATION AT THE TIME OF TEST DRILL- |
|                                                                                                | ING. SUBSURFACE CONDITIONS MAY<br>VARY AT OTHER LOCATIONS OF THIS SITE                                                     |
| -7 CLAY, very silty, soft to<br>low to medium plastic,<br>brown, oxidized.                     | O TIME AND IN TIME MAY CHANGE AT THE                                                                                       |
|                                                                                                | P. MACHIBRODA ENGINEERING LTD.                                                                                             |
| 33.8                                                                                           |                                                                                                                            |
| 8 - firm to stiff, highly pl<br>moist below 7.8 m.                                             | astic,                                                                                                                     |
|                                                                                                | IM I                                                                                                                       |
|                                                                                                |                                                                                                                            |
| 9 34.6                                                                                         |                                                                                                                            |
|                                                                                                | FIELD DRILL LOG                                                                                                            |
| -firm, grey below 9.5 r                                                                        | T. SOIL TEST RESULTS                                                                                                       |
| o 🔂                                                                                            |                                                                                                                            |
|                                                                                                | PROJECT:                                                                                                                   |
| 33.0                                                                                           | SLOPE STABILITY STUDY<br>237-11TH STREET EAST                                                                              |
| 11 50 mm diam.<br>MACHINE SLOTED                                                               | LOCATION:<br>SASKATOON, SK                                                                                                 |
| SCH 40 PVC WELL                                                                                | DATE DRILLED: DRAWING NUMBER:                                                                                              |
|                                                                                                | AUG 5, 1997   S97-2778-3                                                                                                   |





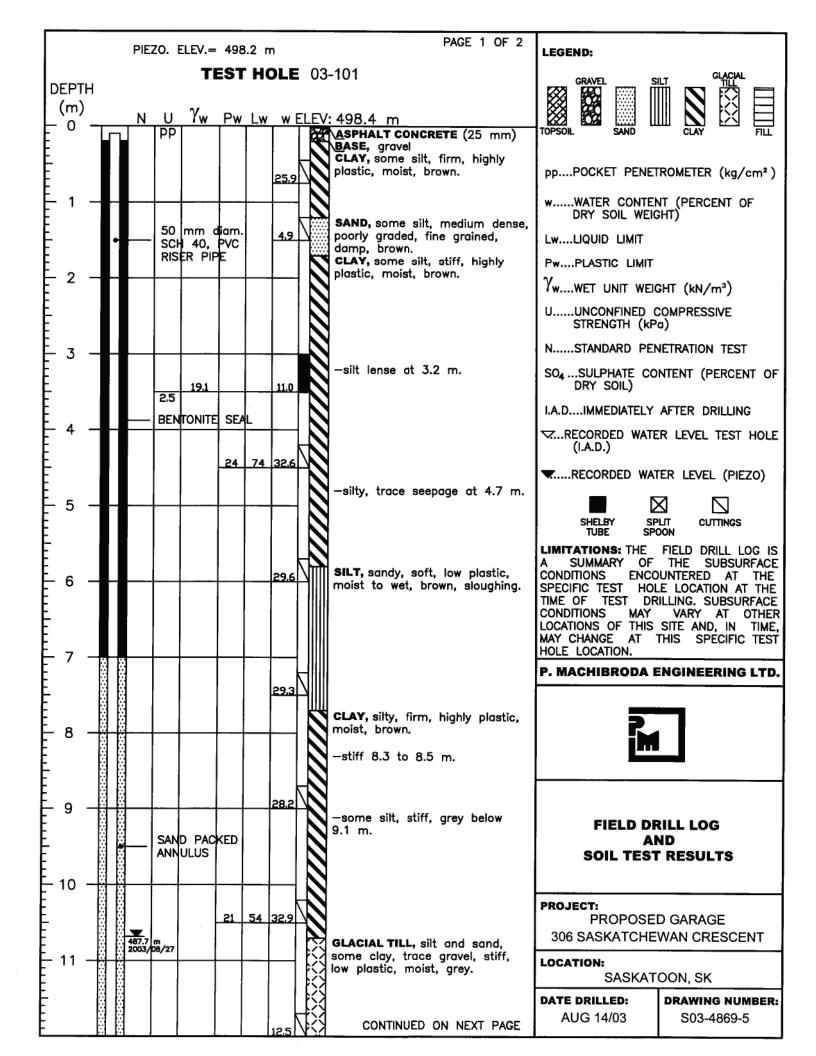
| PAGE 1 OF 3                                                                                                                          | LEGEND:                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| TEST HOLE 97-4<br>DEPTH PIEZO. ELEV. = 97.22 m                                                                                       |                                                                                                                                        |
| (m)<br>O<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                            | TODOOU SAND CLAY FILL                                                                                                                  |
| 50 mm diam.<br>SCH 40, PVC                                                                                                           | ppPOCKET PENETROMETER (kg/cm <sup>2</sup> )                                                                                            |
| TOPSOIL- Organics, black, rooth<br>CUTTINGS SAND, silty, medium dense, poo                                                           |                                                                                                                                        |
| 16.9 graded, fine grained, damp, bro                                                                                                 | DWN LWLIQUID LIMIT                                                                                                                     |
| 2<br>SILT, clayey, trace sand, soft,<br>low to medium plastic, moist,<br>brown, oxide stained.                                       | PwPLASTIC LIMIT<br>DDRY DENSITY (kg/m³)                                                                                                |
| 33.0                                                                                                                                 | UUNCONFINED COMPRESSIVE<br>STRENGTH (kPa)                                                                                              |
| SAND, silty, medium dense, poo                                                                                                       | orly NSTANDARD PENETRATION TEST                                                                                                        |
| graded, fine grained, wet, brow<br>24.4 oxide stained, seepage, slough                                                               | ng. SOSULPHATE CONTENT (PERCENT OF DRY SOIL)                                                                                           |
| <b>SILT,</b> some clay, soft, low plas<br>moist, brown, oxide stained.                                                               | TR IRACE                                                                                                                               |
|                                                                                                                                      | *SULPHATE CONTENT WATER SAMPL<br>(ppm)                                                                                                 |
| 31.5                                                                                                                                 |                                                                                                                                        |
| - 5                                                                                                                                  | SHELBY SPLIT CUTTINGS<br>TUBE SPOON                                                                                                    |
| - 6<br><b>CLAY,</b> silty, firm to soft, medi<br>plastic, moist, brown to olive,<br>oxide stained,<br>-medium to highly plastic, oli | IS A SUMMARY OF THE FIELD CONDITIONS<br>ENCOUNTERED AT A SPECIFIC TEST HOLE                                                            |
| 16 1396 33.0 below 6.0 m.                                                                                                            | ING. SUBSURFACE CONDITIONS MAY<br>VARY AT OTHER LOCATIONS OF THIS SIT<br>AND IN TIME, MAY CHANGE AT THI<br>SPECIFIC TEST HOLE LOCATION |
|                                                                                                                                      | P. MACHIBRODA ENGINEERING LTD                                                                                                          |
|                                                                                                                                      | 2                                                                                                                                      |
| BENTONITE SEAL                                                                                                                       |                                                                                                                                        |
| -trace sand, medium plastic,<br>grey below 8.7 m.                                                                                    |                                                                                                                                        |
| 9 17 1496 18 49 29.5                                                                                                                 | FIELD DRILL LOG<br>AND                                                                                                                 |
| GLACIAL TILL-Clay, silty, sor                                                                                                        | SOIL TEST RESULTS                                                                                                                      |
| 10<br>13.2<br>sand, trace gravel, firm, med<br>plastic, moist, grey, unoxidize                                                       | ium                                                                                                                                    |
|                                                                                                                                      | LOCATION:<br>SASKATOON, SK                                                                                                             |
| SAND PACKED                                                                                                                          | DATE DRILLED:<br>AUG 5, 1997 S97-2778-5                                                                                                |



| [             | Re  |         |                                |                                         | ×                                                                                                                                                                                                                                                                                                  |
|---------------|-----|---------|--------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH         |     | TEST H  | LEGEND:<br>GRAVEL SILT GLACIAL |                                         |                                                                                                                                                                                                                                                                                                    |
| (m)<br>- 24 - | N U | D Pw Lw | GLACIA                         | L TILL-Clay, silty, some                |                                                                                                                                                                                                                                                                                                    |
|               |     |         | 21.1 plastic,                  | ace gravel, hard, mediu<br>moist, grey. | ppPOCKET PENETROMETER (kg/cm²)                                                                                                                                                                                                                                                                     |
| - 25          |     |         |                                |                                         | wWATER CONTENT (PERCENT OF<br>DRY SOIL WEIGHT)                                                                                                                                                                                                                                                     |
| Ē             |     |         |                                |                                         | LwLIQUID LIMIT                                                                                                                                                                                                                                                                                     |
| E 26 -        |     |         |                                |                                         | PwPLASTIC LIMIT                                                                                                                                                                                                                                                                                    |
|               |     |         |                                |                                         | DDRY DENSITY (kg/m³)                                                                                                                                                                                                                                                                               |
|               |     |         |                                |                                         | UUNCONFINED COMPRESSIVE<br>STRENGTH (kPa)                                                                                                                                                                                                                                                          |
| E 27 +        |     |         |                                |                                         | N STANDARD PENETRATION TEST                                                                                                                                                                                                                                                                        |
|               |     |         |                                |                                         | SOSULPHATE CONTENT (PERCENT OF DRY SOIL)                                                                                                                                                                                                                                                           |
|               |     |         |                                |                                         | TR TRACE                                                                                                                                                                                                                                                                                           |
| - 28          |     |         |                                |                                         | <pre>*SULPHATE CONTENT WATER SAMPI</pre>                                                                                                                                                                                                                                                           |
| E             |     |         |                                |                                         | TRECORDED WATER LEVEL                                                                                                                                                                                                                                                                              |
| 29            |     |         |                                |                                         |                                                                                                                                                                                                                                                                                                    |
| - 30          |     |         |                                | ,                                       | LIMITATIONS: THE FIELD DRILL LOG<br>IS A SUMMARY OF THE FIELD CONDITIONS<br>ENCOUNTERED AT A SPECIFIC TEST HOLE<br>LOCATION AT THE TIME OF TEST DRILL-<br>ING. SUBSURFACE CONDITIONS MAY<br>VARY AT OTHER LOCATIONS OF THIS SITU<br>AND IN TIME, MAY CHANGE AT THE<br>SPECIFIC TEST HOLE LOCATION. |
|               |     |         |                                |                                         | P. MACHIBRODA ENGINEERING LTD.                                                                                                                                                                                                                                                                     |
| 32            |     |         |                                |                                         | Pm -                                                                                                                                                                                                                                                                                               |
| - 33          |     |         |                                |                                         |                                                                                                                                                                                                                                                                                                    |
| 34            |     |         |                                |                                         | FIELD DRILL LOG<br>AND<br>SOIL TEST RESULTS                                                                                                                                                                                                                                                        |
| - 35          |     |         |                                |                                         | PROJECT:<br>SLOPE STABILITY STUDY<br>237-11TH STREET EAST<br>LOCATION:                                                                                                                                                                                                                             |
|               |     |         |                                |                                         | SASKATOON, SK                                                                                                                                                                                                                                                                                      |
|               |     |         |                                |                                         | DATE DRILLED: DRAWING NUMBER:                                                                                                                                                                                                                                                                      |



## HISTORICAL BOREHOLE LOGS TH03-1, TH 03-2, TH 03-3, TH 03-101, TH 03-101A, TH 03-102, TH 03-103 (PMEL03A)

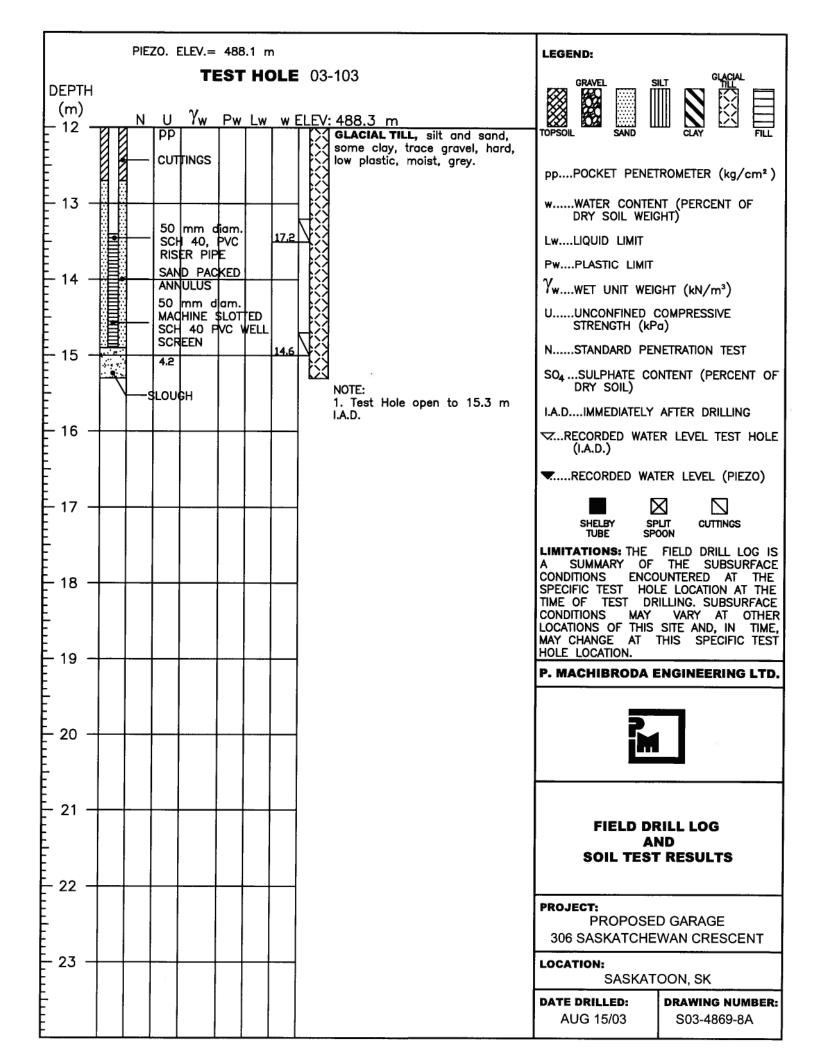

P. Machibroda Engineering Ltd. September 11, 2003. Geotechnical Investigation and Slope Stability Study Proposed Garage, 306 Saskatchewan Crescent East, Saskatoon, Saskatchewan, PMEL File No. S03-4869



|              | PIE | Z0.       | ELEV.=                        | LEGEND: |    |              |          |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |  |  |  |  |
|--------------|-----|-----------|-------------------------------|---------|----|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| DEPTH<br>(m) |     |           |                               |         |    |              |          | N U Yw Pw Lw wELEV: 482.0 m                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |  |  |  |  |
| 0.5 -        |     | 50<br>SCI | mm a                          | SEA     | L. |              |          | CONCRETE, (75 mm)<br>VOID, (125 mm)<br>FILL, gravel, some sand, some<br>silt, medium dense, well graded,<br>fine to medium grained, moist,<br>brown.<br>FILL, clay, some sand, some silt,<br>firm, low plastic, moist, olive<br>brown, organics. | TOPSOIL SAND CLAY FILL<br>ppPOCKET PENETROMETER (kg/cm²)<br>wWATER CONTENT (PERCENT OF<br>DRY SOIL WEIGHT)<br>LwLIQUID LIMIT                                                                                                           |  |  |  |  |
| - 1.0 -      |     |           | ER PIF                        |         |    | 31.3<br>24.1 | Por Alla | FILL, clay, silty, some sand, firm,<br>low plastic, moist, olive brown.<br>FILL, silt, clayey, some sand,<br>firm, low plastic, moist, olive<br>brown.                                                                                           | PwPLASTIC LIMIT<br>γwWET UNIT WEIGHT (kN/m³)<br>UUNCONFINED COMPRESSIVE<br>STRENGTH (kPa)<br>NSTANDARD PENETRATION TEST                                                                                                                |  |  |  |  |
| 2.0 -        |     | AN        | D PAC                         | KED     |    | 16.5         |          |                                                                                                                                                                                                                                                  | SO4SULPHATE CONTENT (PERCENT OF<br>DRY SOIL)<br>I.A.DIMMEDIATELY AFTER DRILLING<br>VRECORDED WATER LEVEL TEST HOLE<br>(I.A.D.)                                                                                                         |  |  |  |  |
| 2.5 -        |     | SCH       | mm d<br>HINE 1<br>40 F<br>EEN | \$LOT   |    | 14.3<br>18.1 |          | —wet below 2.3 m.<br>CLAY, silt, some sand, low<br>plastic, firm, wet, olive brown.                                                                                                                                                              | RECORDED WATER LEVEL (PIEZO)     SHELBY SPLIT CUTTINGS     TUBE SPOON     LIMITATIONS: THE FIELD DRILL LOG IS     A SUMMARY OF THE SUBSURFACE                                                                                          |  |  |  |  |
| - 3.0 -      |     |           |                               |         |    |              |          |                                                                                                                                                                                                                                                  | CONDITIONS ENCOUNTERED AT THE<br>SPECIFIC TEST HOLE LOCATION AT THE<br>TIME OF TEST DRILLING. SUBSURFACE<br>CONDITIONS MAY VARY AT OTHER<br>LOCATIONS OF THIS SITE AND, IN TIME,<br>MAY CHANGE AT THIS SPECIFIC TEST<br>HOLE LOCATION. |  |  |  |  |
| 4.0 -        |     |           |                               |         |    |              |          |                                                                                                                                                                                                                                                  | P. MACHIBRODA ENGINEERING LTD.                                                                                                                                                                                                         |  |  |  |  |
| 4.5 -        |     |           |                               |         |    |              |          |                                                                                                                                                                                                                                                  | FIELD DRILL LOG<br>AND<br>SOIL TEST RESULTS                                                                                                                                                                                            |  |  |  |  |
| - 5.0 -      |     |           |                               |         |    |              |          |                                                                                                                                                                                                                                                  | PROJECT:<br>306 SASK CRESCENT EAST                                                                                                                                                                                                     |  |  |  |  |
| - 5.5 -      |     |           |                               |         |    |              |          |                                                                                                                                                                                                                                                  | LOCATION:<br>SASKATOON, SK<br>DATE DRILLED:<br>JULY 3/03 BO3-4869-2                                                                                                                                                                    |  |  |  |  |

|                       | PIEZO.          | ELEV.=                                  | 487          | .8 m        |                                                                                                                                                                            | LEGEND:                                                                                                        |                                                                                                                                                                   |  |  |  |
|-----------------------|-----------------|-----------------------------------------|--------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| DEPTH<br>(m)<br>- 0 - |                 |                                         |              | HOLI        | -2<br>: 487.4 m<br>FILL, topsoil, organic.                                                                                                                                 |                                                                                                                |                                                                                                                                                                   |  |  |  |
| 0.5 -                 | - B             | UTTINGS<br>0 mm o<br>CH 40,<br>ISER PIF | fiam.<br>PVC | L _12.1     | - i - , topson, organic.                                                                                                                                                   | DPSOIL SAND<br>PPPOCKET PENET<br>WWATER CONTE<br>DRY SOIL WEIG<br>LWLIQUID LIMIT                               | ROMETER (kg/cm²)<br>NT (PERCENT OF<br>SHT)                                                                                                                        |  |  |  |
|                       |                 |                                         |              | 62.5        | —some clay, moist at 1.0 m.<br>FILL, organics, wood pieces.                                                                                                                | PwPLASTIC LIMIT<br>ΥwWET UNIT WER<br>UUNCONFINED C<br>STRENGTH (kP<br>NSTANDARD PEN                            | COMPRESSIVE<br>a)                                                                                                                                                 |  |  |  |
| - 1.5 -               |                 |                                         |              | 33.6        | SAND, silty, some clay, poorly<br>graded, fine grained, moist,<br>brown, trace organics.                                                                                   | SO4SULPHATE CO<br>DRY SOIL)<br>I.A.DIMMEDIATELY                                                                | NTENT (PERCENT OF                                                                                                                                                 |  |  |  |
| 2.5 -                 | S.              | AND PAG                                 | KED          | 35.7        | <b>CLAY,</b> some silt, firm, medium<br>plastic, moist, olive brown, oxide<br>stained.                                                                                     | TUBE                                                                                                           |                                                                                                                                                                   |  |  |  |
| 3.0 -                 |                 | NNULUS                                  |              | 34,3        | <b>SILT,</b> clayey, firm to stiff, low plastic, moist, olive brown.                                                                                                       | A SUMMARY OF<br>CONDITIONS ENCO<br>SPECIFIC TEST HOL<br>TIME OF TEST DR<br>CONDITIONS MAY<br>LOCATIONS OF THIS | FIELD DRILL LOG IS<br>THE SUBSURFACE<br>DUNTERED AT THE<br>LE LOCATION AT THE<br>RILLING. SUBSURFACE<br>VARY AT OTHER<br>SITE AND, IN TIME,<br>THIS SPECIFIC TEST |  |  |  |
| - 3.5 -               | <b>∃</b> 1   M/ | omm a                                   | \$LOTT       | <u>40.5</u> | <b>CLAY,</b> some silt, stiff, highly plastic, moist, olive brown.                                                                                                         |                                                                                                                | ENGINEERING LTD.                                                                                                                                                  |  |  |  |
| 4.5                   |                 | CH 40 F<br>CREEN                        | vc w         | ELL 22.8    | GLACIAL TILL - Silt and sand,<br>some clay, trace gravel, stiff,<br>moist, dark grey.<br>—auger refusal at 4.4 m.<br>NOTE:<br>1. Test Hole open to 4.4 m and<br>dry I.A.D. |                                                                                                                | RILL LOG<br>ND<br>T RESULTS                                                                                                                                       |  |  |  |
| 5.0                   |                 |                                         |              |             | 5                                                                                                                                                                          | PROJECT:<br>306 SASK CRI                                                                                       | ESCENT EAST                                                                                                                                                       |  |  |  |
| - 5.5                 |                 |                                         |              |             |                                                                                                                                                                            | LOCATION:<br>SASKAT<br>DATE DRILLED:<br>JULY 3/03                                                              | OON, SK<br>DRAWING NUMBER:<br>S03-4869-3                                                                                                                          |  |  |  |

|                       | PIEZO. ELEV.= 481.9 m |              |           |                |              |          |          |                     |         | LEGEND:                                                                                                                              | - R 1 42                                                                                                        |                                                                                                                                                                   |
|-----------------------|-----------------------|--------------|-----------|----------------|--------------|----------|----------|---------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH                 | TEST HOLE 03-3        |              |           |                |              |          | GRAVEL S |                     |         |                                                                                                                                      |                                                                                                                 |                                                                                                                                                                   |
| (m)                   | T                     | N            | U<br>IPP  | γ <sub>w</sub> | Pw           | Lw       | w        | ELE                 | V:      | : 482.0 m<br><b>CONCRETE,</b> (100 mm)                                                                                               |                                                                                                                 |                                                                                                                                                                   |
|                       | 8 8                   |              |           | ITONITE        | SE/          | L        |          | KIN A               | 学校など    | <b>Void</b> , (50 mm)<br><b>FILL</b> , gravel, some sand, some<br>silt, medium dense, well graded,<br>fine to coarse grained, moist, |                                                                                                                 | IROMETER (kg/cm²)                                                                                                                                                 |
| E 0.5 -               |                       |              |           |                |              |          | 21.5     |                     |         | brown.                                                                                                                               | WWATER CONTEN                                                                                                   | NT (PERCENT OF<br>GHT)                                                                                                                                            |
|                       | •                     |              | 50<br>SCH | mm c<br>40,    | liam.<br>PVC |          |          | TTX-                | 学の学     |                                                                                                                                      | LwLIQUID LIMIT                                                                                                  |                                                                                                                                                                   |
| E<br>- 1.0            |                       |              | RIS       | er pip         | Æ            |          |          |                     |         |                                                                                                                                      | PwPLASTIC LIMIT                                                                                                 |                                                                                                                                                                   |
| E 1.0 -               |                       |              |           |                |              |          |          |                     | 限の      |                                                                                                                                      | $\gamma_{wwet}$ unit wer                                                                                        | GHT (kN/m³)                                                                                                                                                       |
|                       |                       |              | SAN       | D PAC          | KED          |          |          |                     | 台       | SILT, some sand, some clay,                                                                                                          | UUNCONFINED (<br>STRENGTH (kP                                                                                   | COMPRESSIVE<br>a)                                                                                                                                                 |
| - 1.5                 |                       |              |           |                | <u> </u>     | <u> </u> | -        |                     |         | trace gravel, firm, low plastic,<br>moist, olive brown, oxide stained,                                                               | NSTANDARD PE                                                                                                    | NETRATION TEST                                                                                                                                                    |
|                       |                       |              | Mac       | mm d<br>HINE S | \$LOT        | ED       |          |                     |         | organics.                                                                                                                            | SO4SULPHATE CO<br>DRY SOIL)                                                                                     | NTENT (PERCENT OF                                                                                                                                                 |
|                       |                       |              |           | 40 P<br>EEN    | VC V         | FELL     |          |                     |         |                                                                                                                                      | I.A.DIMMEDIATELY                                                                                                | AFTER DRILLING                                                                                                                                                    |
| - 2.0 –<br>E          |                       |              |           |                |              |          |          | M                   |         | —sandy, some gravel, very moist<br>below 2 m.                                                                                        | CRECORDED WATE<br>(I.A.D.)                                                                                      | ER LEVEL TEST HOLE                                                                                                                                                |
|                       |                       |              |           |                |              |          |          |                     |         | <b>GRAVEL,</b> some sand, some silt,<br>some clay, well graded, fine to<br>coarse grained, wet, brown.                               | RECORDED WAT                                                                                                    | TER LEVEL (PIEZO)                                                                                                                                                 |
| - 2.5                 |                       | Dry<br>2003/ | 08/27     |                |              |          |          |                     |         |                                                                                                                                      | SHELBY SP                                                                                                       |                                                                                                                                                                   |
|                       |                       |              |           |                | 2            |          |          |                     |         |                                                                                                                                      | CONDITIONS ENCO<br>SPECIFIC TEST HOI<br>TIME OF TEST DR<br>CONDITIONS MAY<br>LOCATIONS OF THIS<br>MAY CHANGE AT | FIELD DRILL LOG IS<br>THE SUBSURFACE<br>DUNTERED AT THE<br>LE LOCATION AT THE<br>RILLING. SUBSURFACE<br>VARY AT OTHER<br>SITE AND, IN TIME,<br>THIS SPECIFIC TEST |
| - 3.5 -               |                       |              |           |                |              |          |          |                     |         |                                                                                                                                      | HOLE LOCATION.                                                                                                  | ENGINEERING LTD.                                                                                                                                                  |
| -<br>-<br>-<br>-<br>- |                       |              |           |                |              |          |          |                     |         |                                                                                                                                      | R                                                                                                               |                                                                                                                                                                   |
|                       |                       |              |           |                |              |          |          |                     |         |                                                                                                                                      |                                                                                                                 |                                                                                                                                                                   |
| - 4.5 -<br>E          |                       | l            |           |                |              |          |          |                     |         |                                                                                                                                      | FIELD DF                                                                                                        | RILL LOG                                                                                                                                                          |
| Ē                     |                       |              |           |                |              |          |          |                     |         |                                                                                                                                      |                                                                                                                 | ND<br>T RESULTS                                                                                                                                                   |
| E<br>- 5.0            |                       |              |           |                |              |          |          |                     |         |                                                                                                                                      |                                                                                                                 |                                                                                                                                                                   |
|                       |                       |              |           |                |              |          |          |                     |         |                                                                                                                                      | PROJECT:                                                                                                        |                                                                                                                                                                   |
| Ē                     |                       |              |           |                |              |          |          |                     |         | 306 SASK CR                                                                                                                          | ESCENT EAST                                                                                                     |                                                                                                                                                                   |
| - 5.5 -               | .5                    |              |           |                |              |          |          | LOCATION:<br>SASKAT | OON, SK |                                                                                                                                      |                                                                                                                 |                                                                                                                                                                   |
|                       |                       |              |           |                |              |          |          |                     |         |                                                                                                                                      | DATE DRILLED:<br>JULY 3/03                                                                                      | DRAWING NUMBER:<br>S03-4869-4                                                                                                                                     |



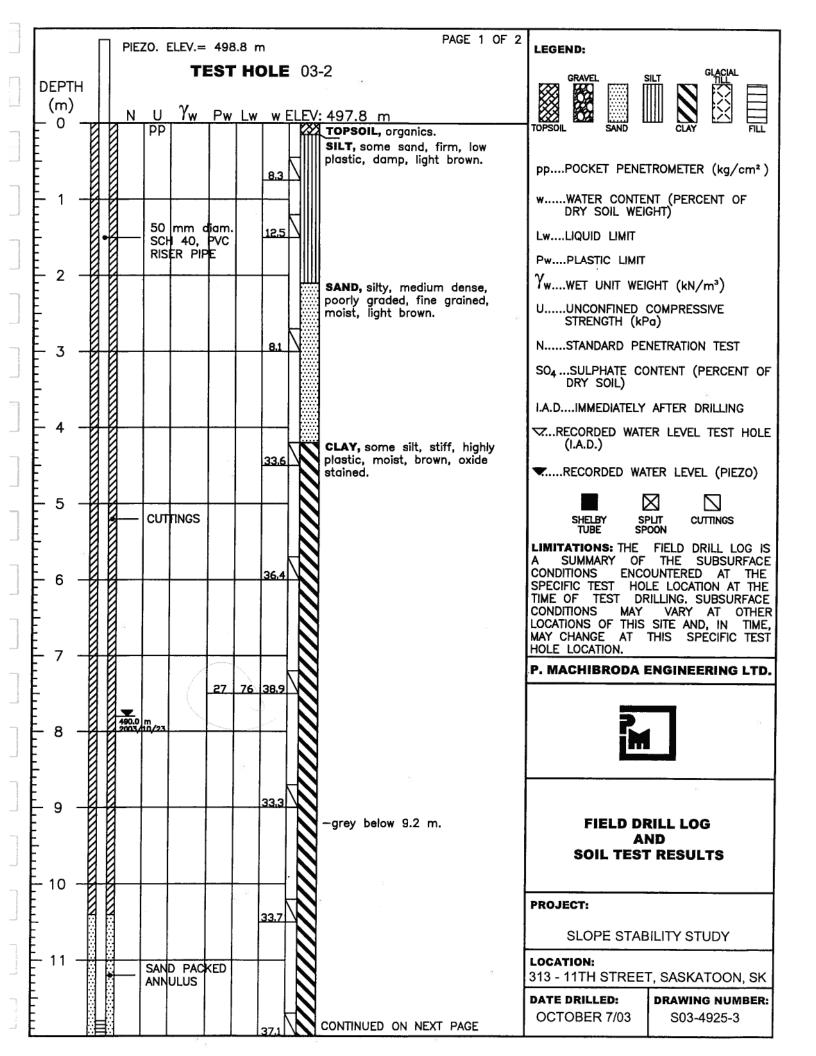

|              |           |          |           |                |              |             |          |            | _         |                 |                   |                       |                          |            |                      |            |               |                  |      |               |
|--------------|-----------|----------|-----------|----------------|--------------|-------------|----------|------------|-----------|-----------------|-------------------|-----------------------|--------------------------|------------|----------------------|------------|---------------|------------------|------|---------------|
|              |           |          |           |                |              |             |          |            |           |                 |                   | P/                    | GE 2 OF 2                | LEGEP      | ND:                  |            |               |                  |      |               |
|              |           |          |           | Т              | EST          | . но        | DLE      | . (        | )3        | -101            |                   |                       |                          |            | GRAVEL               | SIL        | т             | GLAC             |      |               |
| DEPTH<br>(m) |           |          |           | ••             |              |             |          |            |           |                 |                   |                       |                          |            |                      | ≣ ∭        |               |                  | 3    |               |
| - 12 -       | ET E      | N        | U<br>IPP  | γw             | Pw           | Lw          | w        | <u>EL</u>  |           | : 498.4         |                   |                       |                          | TOPSOIL    | SAN                  | Щ Ш        |               | ) D              |      |               |
| Ę            |           |          |           |                |              |             |          |            | $\hat{X}$ | GLACI/<br>some  | AL TIL<br>clav. t | L, silt a<br>trace ar | nd sand,<br>avel, stiff, |            | 34                   |            |               |                  |      |               |
| F            |           |          |           |                |              |             |          |            | X         | low plo         | istic,            | moist, g              | rey.                     | ppF        | POCKET F             | PENET      | ROMET         | ER (k            | a/cr | m²)           |
| Ē            |           |          |           |                |              |             |          | l          | 公         | -very           | stiff b           | elow 12               | .8 m.                    |            |                      |            |               |                  |      |               |
| - 13 -<br>F  |           |          |           |                |              |             |          | ₽          | 겘         |                 |                   |                       |                          | w          | WATER CO<br>DRY SOIL | WEIG       | т (ры<br>HT)  | RCENT            | O⊦   |               |
| E            |           | <u> </u> | 50        | mm c<br>1 40,  | liam.<br>DVC |             | 12.5     | Цł         | 었         |                 |                   |                       |                          | LwL        | LIQUID LI            | МІТ        |               |                  |      |               |
| Ē            |           |          | RIS       | ER PIP         | ŧ            |             |          | [          | 싱         | -hard           | below             | 13.8 m                | <b>1</b> .               | Pw         | PLASTIC              | LIMIT      |               |                  |      |               |
| F 14 -       |           | <u> </u> |           |                |              |             |          | ┤╞         | X         |                 | Deven             |                       |                          |            | WET UNIT             |            | нт (и         | N/m <sup>3</sup> | •    |               |
| Ē            |           |          |           |                |              |             |          |            | 싱         |                 |                   |                       |                          |            | UNCONFI              |            |               |                  |      |               |
| Ē            |           |          |           |                |              |             |          | Ľ          | X         |                 |                   |                       |                          | 0          | STRENGT              | H (kPa     | )<br>)        | -33IVE           |      |               |
| E 15 -       |           |          |           |                | 11           | 20          | 13.4     | N          | 겘         |                 |                   |                       |                          | N          | STANDARI             | D PEN      | ETRATI        | ON TE            | EST  |               |
| Ē            |           |          |           |                |              |             |          |            | X         |                 |                   |                       |                          | S0₄        | SULPHAT              | E CON      | TENT          | (PERG            | CENT | OF            |
| F            |           |          | SAN       | D PAC          | KED          |             |          |            | X         |                 |                   |                       |                          |            | DRY SOIL             | .)         |               | -                |      |               |
| Ē            |           |          | ANN       | ULUS           |              |             |          |            | 3         |                 |                   |                       |                          | I.A.D      | IMMEDIA              | TELY A     | AFTER         | DRILL            | ING  |               |
| E 16 =       |           |          |           |                |              |             | ŀ        | Ľ          | ÿ         |                 |                   |                       |                          | \RE        | CORDED               | WATE       | R LEV         | EL TES           | ST Н | IOLE          |
| E            |           | }        |           |                |              |             | 11.5     | М          | 3         |                 |                   |                       |                          |            |                      |            |               |                  |      |               |
| E            |           |          |           |                |              |             |          |            | X         |                 |                   |                       |                          | <b>▼</b> R | RECORDE              | D WATI     | ER LEV        | VEL (I           | PIEZ | 0)            |
| È 17 -       |           |          |           |                |              |             |          |            | 3         |                 |                   |                       |                          |            |                      | $\bowtie$  | 3             | $\Box$           |      |               |
| E            |           |          | 50<br>MAC | mm d<br>HINE S | am.<br>SLOT  | ED          |          |            | X         |                 |                   |                       |                          |            | Shelby<br>Tube       | SPL<br>SPO | JT<br>NO      | CUTTIN           | GS   |               |
| Ē            |           |          | SCH       | 40 P<br>EEN    | VC           | <b>VELL</b> |          | Ľ          | X         |                 |                   |                       |                          |            | ATIONS:              |            |               |                  |      |               |
| -<br>18 -    |           |          | 301       |                |              |             | 11.3     | N          | ÿ         |                 |                   |                       |                          | CONDI      | UMMARY<br>TIONS      | ENCO       | THE<br>UNTERI | ED A             | T T  | THE           |
| E 10 -       | 目         |          |           |                |              |             |          | Π          | 8         |                 |                   |                       |                          | SPECIF     | TIC TEST             | HOLI       | E LOC         | ATION            | AT   | THE           |
| E            |           |          |           |                |              |             |          |            | ÿ         |                 |                   |                       |                          | CONDI      |                      | MAY        | VAR           | Y AT             | 01   | THER<br>TIME, |
| E            | <u> </u>  |          |           |                |              |             |          |            | 3         |                 |                   |                       |                          | MAY C      | HANGE                | AT T       | HIS           | SPECI            |      | TEST          |
| F 19 -       |           |          |           |                |              |             | <u> </u> |            | ÿ         |                 |                   |                       |                          |            |                      |            | NCIN          | EEDU             |      |               |
| Ē            |           |          |           |                |              |             | 13.0     | $\nabla$   | X         |                 |                   |                       |                          | P. MA      | CHIDKU               |            | NGIN          | EERI             | NGL  | - I D.        |
| F            |           |          |           |                |              |             |          | R          | ⑶         |                 |                   |                       |                          |            |                      |            |               |                  |      |               |
| E 20 -       |           |          |           |                |              |             |          |            | 쑁         |                 |                   |                       |                          |            |                      | R          |               |                  |      |               |
| F            |           |          |           |                |              |             |          |            | ⑶         |                 |                   |                       |                          |            |                      |            |               |                  |      |               |
| F            |           |          |           |                |              |             |          |            | 겘         |                 |                   |                       |                          | L          |                      |            |               |                  |      |               |
| E 🔒          |           |          |           |                |              |             | 13.4     | N.         | 3         |                 |                   |                       |                          |            |                      |            |               |                  |      |               |
| - 21 -<br>F  |           |          |           |                |              |             |          | T.         | Ķ         |                 |                   |                       |                          |            | FIEL                 |            | ILL L         | OG               |      |               |
| E            |           |          |           |                |              |             |          |            | 3         |                 |                   |                       |                          |            |                      | AN         | D             |                  | _    | ľ             |
| E            |           |          |           |                |              |             |          |            | X         |                 |                   |                       |                          |            | SOIL 1               | rest       | RES           | ULTS             | 5    |               |
| - 22 -       | 1. V<br>1 |          |           |                |              |             |          |            | 3         |                 |                   |                       |                          |            |                      |            |               |                  |      |               |
| Ē            |           |          |           |                |              |             | 14,3     | <b>∐</b> ≩ | X         |                 |                   |                       |                          | PROJE      | PROP                 |            |               |                  |      |               |
| Ē            |           |          |           |                |              |             | A-T13    | T,         | 3         |                 |                   |                       |                          | 306        | SASKAT               |            |               |                  | CEN  | т             |
| -<br>23 -    |           |          |           |                |              |             |          |            | ž         | h               |                   |                       | 4                        | LOCAT      |                      |            |               |                  |      |               |
| Ē            |           |          |           |                |              |             |          |            | <u> </u>  | -broke<br>NOTE: | auger             | r at 23.              | 1 m.                     |            |                      | SKATO      | DON, S        | SK               |      |               |
|              |           |          |           |                |              |             | ĺ        |            |           |                 | Hole              | sloughe               | d to 5.2 m               | DATE       | DRILLED              |            | DRAW          | ING N            | IUM  | BER:          |
| <u> </u>     |           |          |           |                |              |             |          |            |           |                 |                   |                       |                          | AL         | JG 14/03             |            | S03           | 8-4869           | 9-5A |               |

|                            | PII                                                   | Z0.            | ELEV.=                | 498  | .2 m | n  |                                                                                                                         | LEGEND:                                                                                                                            |                                                           |
|----------------------------|-------------------------------------------------------|----------------|-----------------------|------|------|----|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| DEPTH<br>(m)               | N                                                     |                |                       |      |      |    | <br>-101A                                                                                                               |                                                                                                                                    |                                                           |
|                            |                                                       |                |                       | Pw   | Lw   | WE | 498.4 m<br>ASPHALT CONCRETE (25 mm)<br>FILL, gravel and sand, some silt,<br>moist, brown.                               |                                                                                                                                    |                                                           |
|                            |                                                       | - BEN          | ITONITE               | SE/  |      |    | <b>CLAY,</b> some silt, firm, highly plastic, moist, brown.                                                             | wWATER CONTER                                                                                                                      | ROMETER (kg/cm <sup>2</sup> )                             |
|                            |                                                       | -   SCI        | mm c<br>40,           | PVC  |      |    | SAND, some silt, medium dense,<br>poorly graded, fine grained,<br>moist, brown.                                         | DRY SOIL WEIG<br>LwLIQUID LIMIT                                                                                                    | HT)                                                       |
| E 2 -                      |                                                       |                | ER PIP                |      |      |    | <b>CLAY,</b> some silt, stiff, highly plastic, moist, brown.                                                            | PwPLASTIC LIMIT $\gamma_{wWET}$ Unit weight                                                                                        | GHT (kN/m³)                                               |
|                            |                                                       | - CUT          | TINGS                 |      |      |    |                                                                                                                         | UUNCONFINED (<br>STRENGTH (kP                                                                                                      | a)                                                        |
| - 3 -                      |                                                       |                |                       |      |      |    | -silt lense 3.2 m.                                                                                                      | NSTANDARD PEN<br>SO4SULPHATE CO<br>DRY SOIL)                                                                                       | ILTRATION TEST<br>NTENT (PERCENT OF                       |
| E<br>E 4 -                 |                                                       | SAK            | D PAC                 | KED  |      |    |                                                                                                                         | I.A.DIMMEDIATELY                                                                                                                   | AFTER DRILLING<br>R LEVEL TEST HOLE                       |
| Ē                          |                                                       | ANN<br>50      | ULUS<br>mm d          | am.  | ED   |    |                                                                                                                         | (I.A.D.)                                                                                                                           |                                                           |
| - 5 -                      |                                                       | SCH            | HINE 5<br>40 P<br>EEN | VC V | VELL |    | —silty, trace seepage, sloughing<br>below 4.7 m.                                                                        | SHELBY SP                                                                                                                          |                                                           |
| -<br>-<br>-<br>-<br>-<br>- | <b>1</b> 11<br>111<br>111<br>111<br>111<br>111<br>200 | 7 m<br>5/08/27 |                       |      |      |    | SILT, sandy, soft, low plastic,<br>wet, brown, seepage, sloughing.<br>NOTE:<br>1. Test Hole sloughed to 5.2 m<br>I.A.D. | LIMITATIONS: THE<br>A SUMMARY OF<br>CONDITIONS ENCO<br>SPECIFIC TEST HOL<br>TIME OF TEST DR<br>CONDITIONS MAY<br>LOCATIONS OF THIS | ILLING. SUBSURFACE<br>VARY AT OTHER<br>SITE AND, IN TIME, |
|                            |                                                       |                |                       |      |      |    |                                                                                                                         | HOLE LOCATION.                                                                                                                     | THIS SPECIFIC TEST                                        |
| - 8 -                      |                                                       |                |                       |      |      |    |                                                                                                                         | P                                                                                                                                  |                                                           |
| -<br>9                     |                                                       |                |                       |      |      | _  |                                                                                                                         | FIELD DF                                                                                                                           | RILL LOG                                                  |
| E<br>E<br>- 10             |                                                       |                |                       |      |      |    |                                                                                                                         | A                                                                                                                                  | ND<br>' RESULTS                                           |
|                            |                                                       |                |                       |      |      |    |                                                                                                                         | PROJECT:<br>PROPOSE<br>306 SASKATCHE                                                                                               | -                                                         |
| E 11 -                     |                                                       |                |                       |      |      |    |                                                                                                                         | LOCATION:<br>SASKAT                                                                                                                | OON, SK                                                   |
|                            |                                                       |                |                       |      |      |    |                                                                                                                         | DATE DRILLED:<br>AUG 14/03                                                                                                         | DRAWING NUMBER:<br>S03-4869-6                             |

|                                 | PIE   | ZO.               | ELEV.=                        | 479      | ).4 m     | n            |   |                                                                                               | LEGEND:                                                                                                       |                                                                                                                    |
|---------------------------------|-------|-------------------|-------------------------------|----------|-----------|--------------|---|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| DEPTH<br>(m)                    |       |                   |                               |          |           |              |   | B-102                                                                                         | GRAVEL SI                                                                                                     |                                                                                                                    |
| È `o´ -                         |       | U<br>PP           | Yw<br>                        | <u> </u> | <u>Lw</u> | <u>w E</u>   |   | <b>FILL,</b> till, clay, silt, sand, gravel.                                                  |                                                                                                               |                                                                                                                    |
|                                 |       | BEN               | TONITE                        | SEA      | L         | 21.0         |   | GLACIAL TILL, clay, some silt, some sand, trace gravel, stiff,                                | ppPOCKET PENET                                                                                                | ROMETER (kg/cm²)                                                                                                   |
|                                 |       | SCI               | mm c<br>1 40,<br>ER PIF       | PVC      |           | 20.0         |   | medium plastic, moist, dark<br>brown, trace topsoil.<br>SILT, sandy, firm, low plastic,       | DRY SOIL WEIG<br>LwLIQUID LIMIT<br>PwPLASTIC LIMIT                                                            | htt)                                                                                                               |
| <u>-</u> 2 –                    |       |                   |                               |          |           | 21.0         |   | moist, olive brown.                                                                           | YwWET UNIT WEIG                                                                                               | -                                                                                                                  |
| - 3 -                           |       |                   |                               |          |           |              |   | —some sand, medium plastic,<br>below 2.6 m.                                                   | STRENGTH (kP<br>NSTANDARD PEN                                                                                 | a)                                                                                                                 |
| -<br>-<br>-<br>-                |       |                   | 18,9                          |          | 9         | 22,1         |   |                                                                                               | SO <sub>4</sub> SULPHATE CO<br>DRY SOIL)                                                                      | AFTER DRILLING                                                                                                     |
| - 4 -                           |       | СЛ                | TINGS_                        |          |           | 19.8         |   |                                                                                               |                                                                                                               | R LEVEL TEST HOLE                                                                                                  |
| -<br>-<br>-<br>-<br>-<br>-<br>- |       |                   |                               |          |           |              |   | GLACIAL TILL, silt and sand,<br>some clay, trace gravel, stiff,<br>low plastic, moist, brown. |                                                                                                               |                                                                                                                    |
|                                 |       |                   | 21.6                          |          |           | 15.4<br>16.4 |   | –grey below 5.8 m.<br>SAND, silty, dense, poorly                                              | LIMITATIONS: THE<br>A SUMMARY OF<br>CONDITIONS ENCO<br>SPECIFIC TEST HOL<br>TIME OF TEST DR<br>CONDITIONS MAY | FIELD DRILL LOG IS<br>THE SUBSURFACE<br>UNTERED AT THE<br>E LOCATION AT THE<br>ILLING, SUBSURFACE<br>VARY AT OTHER |
| -<br>-<br>-<br>-<br>-<br>-      | 2003/ | 08/27             |                               |          |           |              |   | graded, fine grained, moist, grey,<br>seepage, sloughing.                                     | MAY CHANGE AT THOLE LOCATION.                                                                                 | SITE AND, IN TIME,<br>THIS SPECIFIC TEST                                                                           |
| - 8 -                           |       | ANN<br>50         | D PAC<br>ULUS<br>mm d         | am.      |           | 18.1         | Z | <b>GLACIAL TILL,</b> silt, sandy, some<br>clay, trace gravel, stiff, medium                   |                                                                                                               |                                                                                                                    |
| -<br>-<br>-<br>-<br>-           |       | SCH<br>SCR<br>3.5 | HINE 3<br>40 P<br>EEN<br>21.7 | VC V     |           | 14.2<br>13.9 |   | plastic, moist, grey.                                                                         | FIELD DR                                                                                                      | ND                                                                                                                 |
| - 10 -                          |       |                   |                               |          |           |              |   |                                                                                               | SOIL TEST<br>Project:<br>Propose                                                                              |                                                                                                                    |
| E<br>- 11                       |       |                   |                               |          |           |              |   |                                                                                               | 306 SASKATCHE<br>LOCATION:<br>SASKAT                                                                          |                                                                                                                    |
|                                 |       |                   |                               |          |           |              |   |                                                                                               | DATE DRILLED:<br>AUG 15/03                                                                                    | DRAWING NUMBER:<br>S03-4869-7                                                                                      |

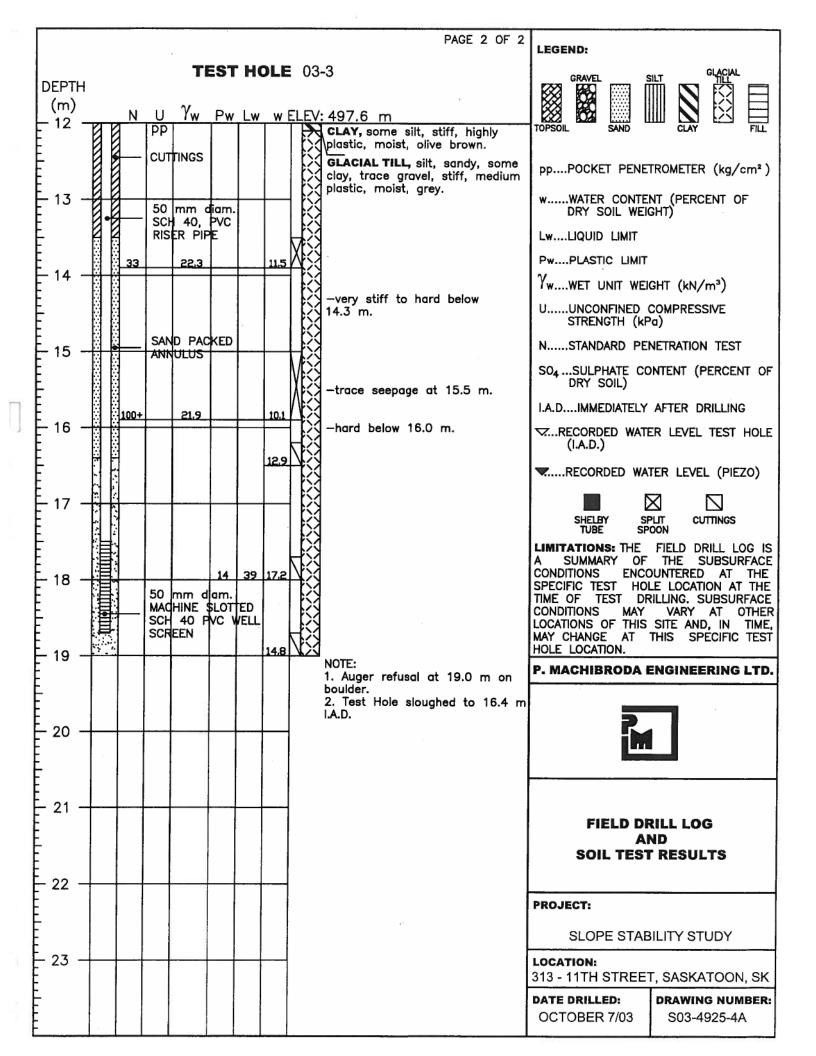
|                       | PIE   | ZO. E          | ELEV.=                  | 488 | .1 m | 1    |                   |     | -31                                                                            | LEGEND:                                                                                                        |                                                                                |
|-----------------------|-------|----------------|-------------------------|-----|------|------|-------------------|-----|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| DEPTH<br>(m)          | 2/    |                |                         |     |      |      |                   |     |                                                                                | GRAVEL S                                                                                                       |                                                                                |
|                       | N     | U<br>PP<br>BEN | TONITE                  | SEA | LW   | wt   |                   |     | 488.3 M<br>ASPHALT CONCRETE (25 mm)<br>FILL- Clay, some silt, moist,<br>brown. | TOPSOIL SAND                                                                                                   | CLAY FILL                                                                      |
|                       |       |                |                         |     |      | 21.3 | Y                 |     | SILT, sandy, soft to firm, low<br>plastic, moist, olive brown.                 | PPPOCKET PENET<br>wWATER CONTEN<br>DRY SOIL WEIG                                                               | ROMETER (kg/cm <sup>2</sup> )                                                  |
|                       |       | SCH            | mm d<br>I 40,<br>ER PIP | PVC |      | 33.6 | Z                 |     | -clay seam 1.4 to 1.5 m.                                                       | LwLIQUID LIMIT                                                                                                 | )<br>                                                                          |
| 2 -                   |       |                |                         |     |      |      |                   |     |                                                                                | $\gamma_{wwet}$ unit weight                                                                                    |                                                                                |
|                       |       |                |                         |     |      |      |                   |     | <b>CLAY,</b> some sand, stiff. highly<br>plastic, moist, brown.                | UUNCONFINED (<br>STRENGTH (kP<br>NSTANDARD PEI                                                                 | a)                                                                             |
|                       |       | 164            | 18.2                    | 19  | 53   | 36.0 |                   |     | GLACIAL TILL, silt and sand,                                                   | DRY SOIL)                                                                                                      | NTENT (PERCENT OF                                                              |
| -<br>- 4              |       |                |                         |     |      |      | ()<br>()<br>()    | (1) | some clay, trace gravel, stiff,<br>low plastic, moist, grey.                   | I.A.DIMMEDIATELY                                                                                               | AFTER DRILLING                                                                 |
|                       | 483.5 | m,             |                         |     |      | 10.0 | <u> </u>          |     |                                                                                |                                                                                                                |                                                                                |
| - 5 -                 |       | 8/27           |                         |     |      |      | KXXX<br>XXXX      |     | -very stiff below 5.4 m.                                                       | SHELBY SF                                                                                                      | FIELD DRILL LOG IS                                                             |
| 6 —                   |       | СЛ             | TINGS                   |     |      | 10.6 | <b>XXXXXXXXXX</b> |     |                                                                                | A SUMMARY OF<br>CONDITIONS ENCO<br>SPECIFIC TEST HOL<br>TIME OF TEST DR<br>CONDITIONS MAY<br>LOCATIONS OF THIS | THE SUBSURFACE<br>DUNTERED AT THE<br>LE LOCATION AT THE<br>SILLING. SUBSURFACE |
|                       |       |                |                         |     |      | 10.7 | V)                |     |                                                                                | P. MACHIBRODA E                                                                                                | ENGINEERING LTD.                                                               |
| -<br>-<br>-<br>-      |       | 99             | 20.7                    |     |      | 13.7 | 00000             | 1   | -cobbles/boulders, seepage at<br>7.8 m.<br>-hard below 8.0 m.                  | P                                                                                                              |                                                                                |
| -<br>-<br>-<br>-<br>- |       |                |                         |     |      | 10,4 |                   |     |                                                                                |                                                                                                                | ND                                                                             |
| -<br>-<br>-<br>-<br>- |       |                |                         |     |      |      |                   |     |                                                                                |                                                                                                                | RESULTS                                                                        |
|                       |       |                |                         |     | ŀ    | 12.7 |                   |     |                                                                                | PROJECT:<br>PROPOSE<br>306 SASKATCHE                                                                           |                                                                                |
|                       |       |                |                         |     |      |      | Ř                 |     |                                                                                | LOCATION:<br>SASKAT                                                                                            | OON, SK                                                                        |
|                       |       |                |                         | 10  | 23   | 10.8 |                   |     |                                                                                | DATE DRILLED:<br>AUG 15/03                                                                                     | DRAWING NUMBER:<br>S03-4869-8                                                  |






## HISTORICAL BOREHOLE LOGS TH03-1, TH 03-2, TH 03-3, TH 03-4, TH 03-5 (PMEL03B)

P. Machibroda Engineering Ltd. October 31, 2003. Geotechnical Investigation and Slope Stability Study Proposed Residence, 313-11th Street East, Saskatoon, Saskatchewan, PMEL File No. S03-4925




|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | PIEZO. ELEV.= 499.6 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEGEND:                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and the second s | DEPTH<br>(m)<br>- 0 | <b>TEST HOLE</b> 03-1<br>Ν U Ŷw Pw Lw w ELEV: 498.7 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | PP<br>SILT, some sand, trace clay,<br>firm, low plastic, damp, light<br>9,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ppPOCKET PENETROMETER (kg/cm <sup>2</sup> )                                                                                                                                                                                                                                                                                                         |
| red many and the ensurement from a generation of the second                                                                                                                                                                                                                                              | 2                   | 50 mm diam.<br>SCH 40, PVC<br>RISER PIPE<br>-some clay, moist, below 1.8<br>m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WWATER CONTENT (PERCENT OF<br>DRY SOIL WEIGHT)<br>LwLIQUID LIMIT<br>PwPLASTIC LIMIT<br>$\gamma_{wWET}$ UNIT WEIGHT (kN/m <sup>3</sup> )<br>UUNCONFINED COMPRESSIVE                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 -                 | CUTTINGS<br>CLAY, some silt, stiff, highly<br>plastic, damp, dark brown, oxide<br>stained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STRENGTH (kPg)<br>NSTANDARD PENETRATION TEST<br>SO4SULPHATE CONTENT (PERCENT OF<br>DRY SOIL)<br>I.A.DIMMEDIATELY AFTER DRILLING<br>CRECORDED WATER LEVEL TEST HOLE<br>(I.A.D.)                                                                                                                                                                      |
| and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 34.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SHELBY SPLIT CUTTINGS<br>TUBE SPOON<br>LIMITATIONS: THE FIELD DRILL LOG IS<br>A SUMMARY OF THE SUBSURFACE<br>CONDITIONS ENCOUNTERED AT THE<br>SPECIFIC TEST HOLE LOCATION AT THE<br>TIME OF TEST DRILLING. SUBSURFACE<br>CONDITIONS MAY VARY AT OTHER<br>LOCATIONS OF THIS SITE AND, IN TIME,<br>MAY CHANGE AT THIS SPECIFIC TEST<br>HOLE LOCATION. |
| Concernent of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                   | 16 61 33.3<br>-firm below 8.3 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P. MACHIBRODA ENGINEERING LTD.                                                                                                                                                                                                                                                                                                                      |
| كسيبر مسينا المستخمسينا ال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                   | -grey below 9.1 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FIELD DRILL LOG<br>AND<br>SOIL TEST RESULTS                                                                                                                                                                                                                                                                                                         |
| in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 11                | 50 mm dam.<br>MACHINE SLOTTED NOTE:<br>1. Test Hole open to 12.0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROJECT:<br>SLOPE STABILITY STUDY                                                                                                                                                                                                                                                                                                                   |
| . LJ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | MACHINE \$LOT ED<br>SCH 40 PVC WELL<br>SCREEN<br>10 23 15.4<br>Note that the second of the second s | 313 - 11TH STREET, SASKATOON, SKDATE DRILLED:DRAWING NUMBER:OCTOBER 7/03S03-4925-2                                                                                                                                                                                                                                                                  |

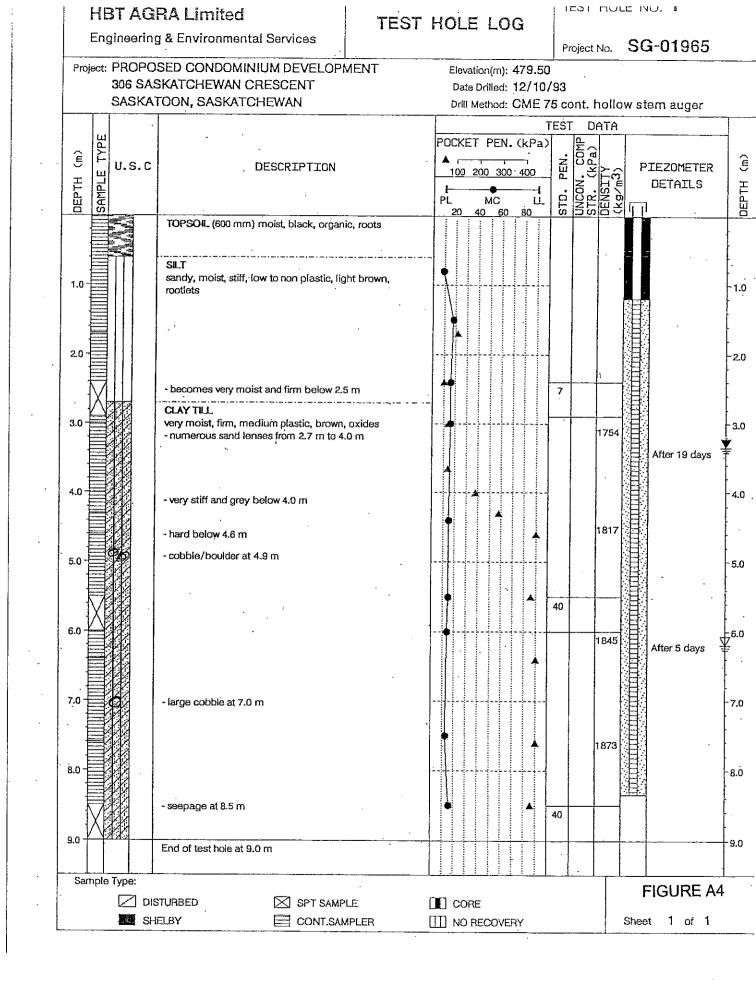


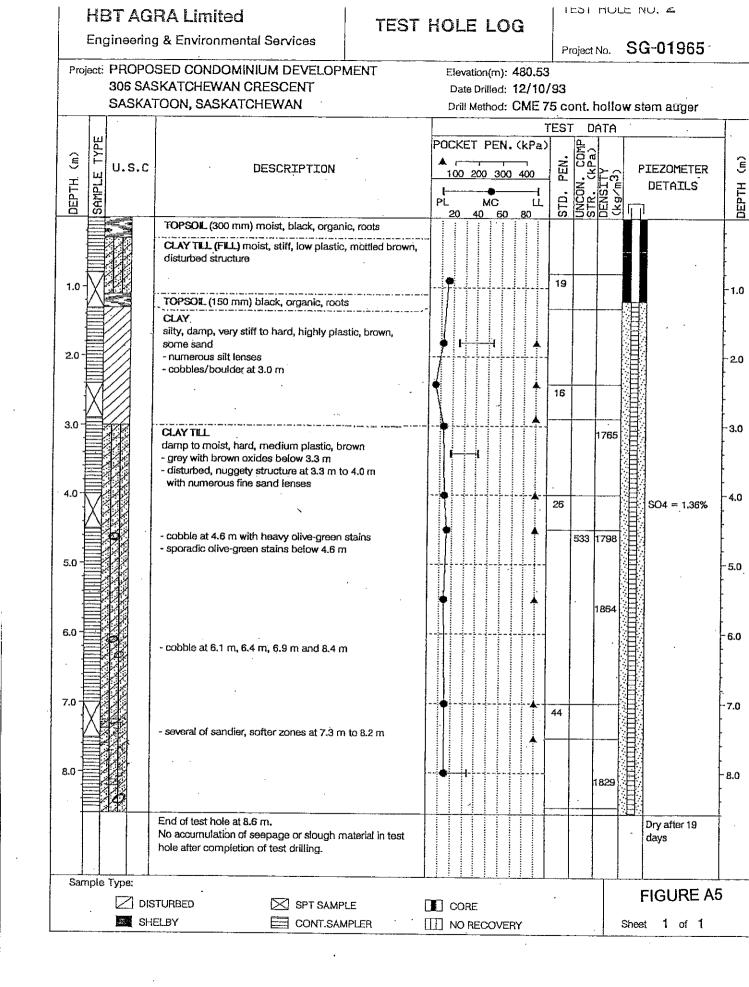
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |   |                  |                                            |      |             |      | PAGE 2 OF 2                                                                                                                                                                              | LEGEND:                                                                                                        |                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---|------------------|--------------------------------------------|------|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Particular do state film destande de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEPTH<br>(m)<br>- 12 -                                                                      |   | <u>N U</u>       | γ <sub>w</sub>                             |      |             |      | ELEV: 497.8 m                                                                                                                                                                            | GRAVEL S                                                                                                       |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |   | - MA<br>SC<br>SC | MMM d<br>CHINE<br>H 40 F<br>REEN<br>ND PAC | SLOT | TED<br>WELL |      | CLAY, some silt, stiff, highly<br>plastic, moist, grey, gypsum<br>crystals, oxide stained.<br>GLACIAL TILL, silt, sandy, some<br>clay, trace gravel, stiff, low<br>plastic, moist, grey. |                                                                                                                | ROMETER (kg/cm <sup>2</sup> )<br>NT (PERCENT OF<br>SHT)                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>- 14 -                                                                       |   |                  |                                            | _18  | 22          | 13,1 | NOTE:<br>1. Test Hole open to 13.5 m<br>and dry I.A.D.                                                                                                                                   | LwLIQUID LIMIT<br>PwPLASTIC LIMIT                                                                              | NUT (1.11 (3)                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |   |                  |                                            |      |             |      | *                                                                                                                                                                                        | YwWET UNIT WEIG<br>UUNCONFINED C<br>STRENGTH (kP                                                               | COMPRESSIVE<br>a)                                                                                                                                              |
| and the second s | - 15 -                                                                                      |   |                  |                                            |      |             |      |                                                                                                                                                                                          |                                                                                                                | NTENT (PERCENT OF                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-                                                                            |   |                  |                                            |      |             |      |                                                                                                                                                                                          | I.A.DIMMEDIATELY                                                                                               | AFTER DRILLING                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    |   |                  |                                            |      |             |      |                                                                                                                                                                                          | SHELBY SP                                                                                                      | ER LEVEL (PIEZO)                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 -                                                                                        |   |                  | ia.                                        |      |             |      |                                                                                                                                                                                          | A SUMMARY OF<br>CONDITIONS ENCO<br>SPECIFIC TEST HOL<br>TIME OF TEST DR<br>CONDITIONS MAY<br>LOCATIONS OF THIS | FIELD DRILL LOG IS<br>THE SUBSURFACE<br>UNTERED AT THE<br>E LOCATION AT THE<br>ILLING. SUBSURFACE<br>VARY AT OTHER<br>SITE AND, IN TIME,<br>THIS SPECIFIC TEST |
| ~7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F 19 -                                                                                      |   |                  |                                            |      |             |      |                                                                                                                                                                                          |                                                                                                                | NGINEERING LTD.                                                                                                                                                |
| and so the state of the state o | 20 –                                                                                        | 6 |                  |                                            |      |             |      |                                                                                                                                                                                          | P                                                                                                              |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 -                                                                                        |   |                  |                                            |      |             |      |                                                                                                                                                                                          | FIELD DR<br>AN<br>SOIL TEST                                                                                    | ND .                                                                                                                                                           |
| المريب المحافظ والم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 22                                                                                        |   | -                |                                            |      |             |      |                                                                                                                                                                                          | PROJECT:                                                                                                       |                                                                                                                                                                |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ē                                                                                           |   |                  |                                            |      |             |      |                                                                                                                                                                                          | SLOPE STAB                                                                                                     | ILITY STUDY                                                                                                                                                    |
| A CONTRACT OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | – 23 –                                                                                      |   |                  |                                            |      |             |      |                                                                                                                                                                                          | LOCATION:<br>313 - 11TH STREET                                                                                 |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |   |                  | 2                                          |      |             | ų.   |                                                                                                                                                                                          | DATE DRILLED:<br>OCTOBER 7/03                                                                                  | DRAWING NUMBER:<br>S03-4925-3A                                                                                                                                 |

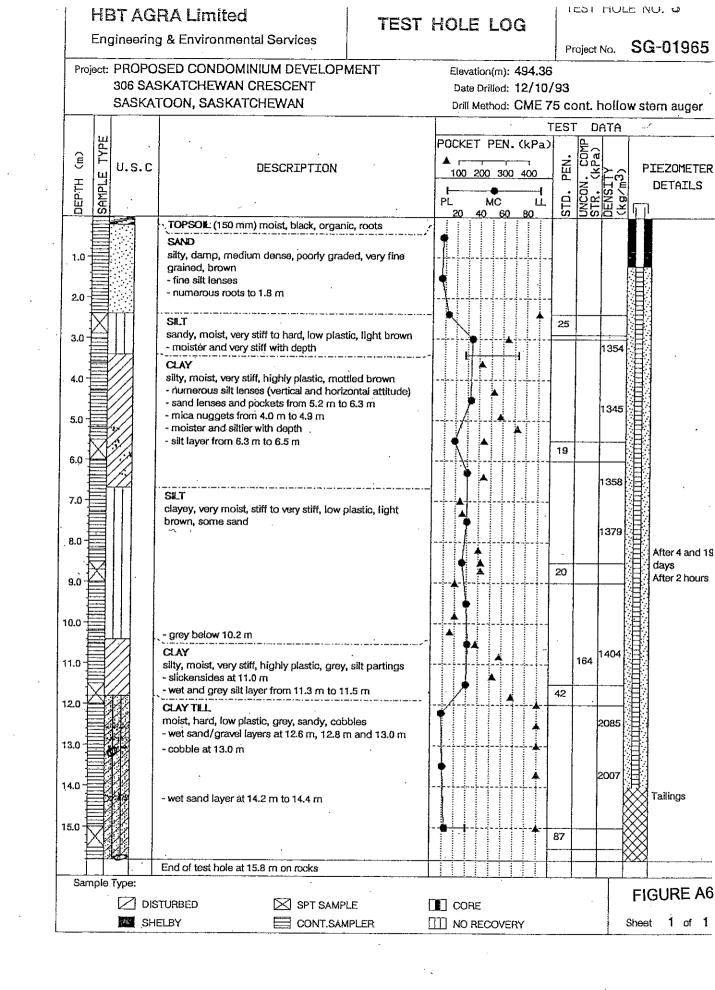
|                                         | PIEZO. ELEV.≈ 498.4 m                                                                                                    | AGE 1 OF 2                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH<br>(m)                            | <b>TEST HOLE</b> 03-3<br>N U $\gamma_{\rm W}$ Pw Lw w ELEV: 497.6 m                                                      |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | N U Yw Pw Lw w ELEV: 497.6 m<br>PP<br>BA                                                                                 | TOPSOIL SAND CLAY FILL                                                                                                                                                                                                                                                                                                                                                                |
| 2                                       | 50 mm diam.<br>SCH 40, PVC<br>RISER PIPE<br>16.0 -sand lense at 1.5 m<br>-clay, some silt, met<br>highly plastic, moist, | DRY SOIL WEIGHT)<br>m. LwLIQUID LIMIT<br>PwPLASTIC LIMIT<br>dium to γ <sub>w</sub> wet linit weight (kn/m <sup>3</sup> )                                                                                                                                                                                                                                                              |
|                                         | 24.8<br>18.7<br>18.8<br>SAND, some silt, med                                                                             | dium dense,                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | B.7 poorly graded, fine g<br>moist, brown.<br>CLAY, some silt, stiff<br>plastic, moist, olive b                          | , highly (I.A.D.)                                                                                                                                                                                                                                                                                                                                                                     |
|                                         | GUTTINGS<br>18 38 22.0                                                                                                   | SHELBY SPLIT CUTTINGS<br>TUBE SPOON<br>LIMITATIONS: THE FIELD DRILL LOG IS<br>A SUMMARY OF THE SUBSURFACE<br>CONDITIONS ENCOUNTERED AT THE<br>SPECIFIC TEST HOLE LOCATION AT THE<br>TIME OF TEST DRILLING. SUBSURFACE<br>CONDITIONS MAY VARY AT OTHER<br>LOCATIONS OF THIS SITE AND, IN TIME,<br>MAY CHANGE AT THIS SPECIFIC TEST<br>HOLE LOCATION.<br>P. MACHIBRODA ENGINEERING LTD. |
| 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - | 18.6 33.5<br>grey below 9.3 m.                                                                                           | FIELD DRILL LOG<br>AND<br>SOIL TEST RESULTS                                                                                                                                                                                                                                                                                                                                           |
| 10 -                                    | 18.6 24 49 30.8<br>18.6 24 49 30.8<br>2003 40 /23<br>36.7<br>CONTINUED ON NEXT                                           | PROJECT:<br>SLOPE STABILITY STUDY<br>LOCATION:<br>313 - 11TH STREET, SASKATOON, SK<br>DATE DRILLED: DRAWING NUMBER:<br>OCTOBER 7/03 S03-4925-4                                                                                                                                                                                                                                        |

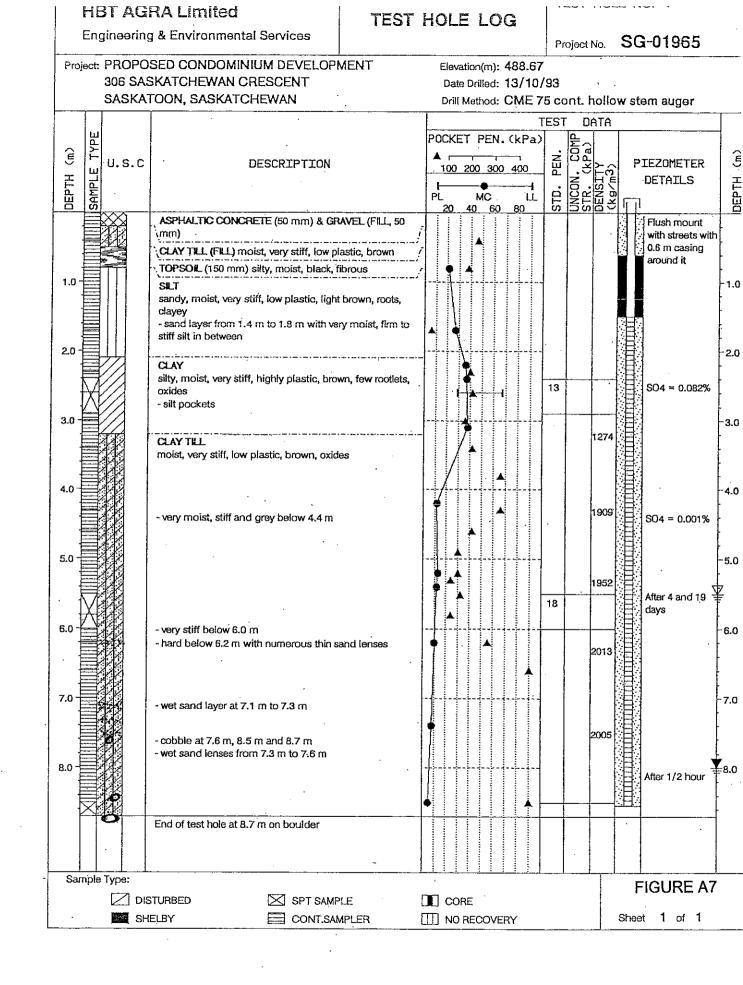


| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b>  |     |         |           |                                                                      | Τ                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|---------|-----------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     | TEQT    | HOLE 03   | A                                                                    | LEGEND:                                                                                                                                                                                                                                                                                                      |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DEPTH    |     | IEƏI    | HULE 03   | -4                                                                   |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (m)      | N U | γω Ρω Ι | Lw w ELEV | 4934 m                                                               |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EOT      | PP  |         |           | FILL, sand, gravelly, some silt,                                     | TOPSOIL SAND CLAY FILL                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E I      |     |         | 17.3      | trace clay, dense, well graded,<br>fine to coarse grained, damp,     |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ē        |     |         |           | brown.<br>CLAY, silty, stiff, low to medium                          | ppPOCKET PENETROMETER (kg/cm <sup>2</sup> )                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1 -    |     |         |           | plastic, moist, brown.<br>-highly plastic below 650 mm.              | WWATER CONTENT (PERCENT OF<br>DRY SOIL WEIGHT)                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E        |     |         | 26.6      | —silt lense at 1.3 m.                                                | LwLIQUID LIMIT                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | È        | ~:  |         |           | SILT, some clay, trace sand,<br>stiff, low plastic, moist, light     | PwPLASTIC LIMIT                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |     |         |           | olive brown.                                                         | $\gamma_{wWet UNIT WEIGHT (kN/m3)$                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |         |           |                                                                      | UUNCONFINED COMPRESSIVE<br>STRENGTH (kPa)                                                                                                                                                                                                                                                                    |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E 3 —    |     |         | 16.3      |                                                                      | NSTANDARD PENETRATION TEST                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |         |           |                                                                      | SO4 SULPHATE CONTENT (PERCENT OF<br>DRY SOIL)                                                                                                                                                                                                                                                                |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |         |           |                                                                      | I.A.DIMMEDIATELY AFTER DRILLING                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 4 -    |     |         |           |                                                                      | CRECORDED WATER LEVEL TEST HOLE<br>(I.A.D.)                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |         | 16,9      |                                                                      | RECORDED WATER LEVEL (PIEZO)                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 5 -    |     |         |           | 9                                                                    |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 -      |     |         | 14.4      |                                                                      | LIMITATIONS: THE FIELD DRILL LOG IS<br>A SUMMARY OF THE SUBSURFACE<br>CONDITIONS ENCOUNTERED AT THE<br>SPECIFIC TEST HOLE LOCATION AT THE<br>TIME OF TEST DRILLING. SUBSURFACE<br>CONDITIONS MAY VARY AT OTHER<br>LOCATIONS OF THIS SITE AND, IN TIME,<br>MAY CHANGE AT THIS SPECIFIC TEST<br>HOLE LOCATION. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E / T    | ÷   |         |           | -soft, wet, seepage, sloughing                                       | P. MACHIBRODA ENGINEERING LTD.                                                                                                                                                                                                                                                                               |
| Andrea Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -        |     | 19 3    | 30 27.3   | below 7.3 m.                                                         |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |         |           |                                                                      | 5 1                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 -      |     |         |           |                                                                      |                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |     |         |           |                                                                      |                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |         |           | <b>CLAY,</b> silty, firm, low to medium plastic, moist, olive brown. |                                                                                                                                                                                                                                                                                                              |
| and the second s | - 9 -    |     |         | 31.7      | -highly plastic, stiff, grey below                                   |                                                                                                                                                                                                                                                                                                              |
| ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E        |     |         |           | 9.1 m.                                                               | FIELD DRILL LOG<br>AND                                                                                                                                                                                                                                                                                       |
| and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E        |     |         |           |                                                                      | SOIL TEST RESULTS                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 10     |     | 3       | _ _  N    |                                                                      |                                                                                                                                                                                                                                                                                                              |
| And in the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |         |           |                                                                      | PROJECT:                                                                                                                                                                                                                                                                                                     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     | 19 6    | 59 30.8   | NOTE:                                                                | SLOPE STABILITY STUDY                                                                                                                                                                                                                                                                                        |
| n i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 11 -   |     |         |           | 1. Test Hole sloughed to 11.8 m<br>and dry I.A.D.                    |                                                                                                                                                                                                                                                                                                              |
| ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |         |           | GLACIAL TILL, silt, sandy, some<br>clay, trace gravel, very stiff,   | 313 - 11TH STREET, SASKATOON, SK                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        |     |         |           | medium plastic, moist, grey.                                         | DATE DRILLED: DRAWING NUMBER:                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |         | 10.2      | -cobbles/boulders at 12.0 m.                                         | OCTOBER 7/03 S03-4925-5                                                                                                                                                                                                                                                                                      |


| Г            | PIEZO. ELEV.= 481.4 m<br><b>TEST HOLE</b> 03-5                                                                                                                                                  | LEGEND:                                                                                                                                                                                                                               |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH<br>(m) | N U Yw Pw Lw w ELEV: 480.5 m                                                                                                                                                                    |                                                                                                                                                                                                                                       |
|              | PP<br>TOPSOIL, organic, black, rootlet<br>FILL, clay, silty, trace organics,<br>firm, medium plastic, damp,<br>brown.<br>-low plastic below 800 mm.<br>50 mm diam.<br>SCH 40, PVC<br>RISER PIPE | B. TOPSOIL SAND CLAY FILL<br>PPPOCKET PENETROMETER (kg/cm <sup>2</sup> )<br>wWATER CONTENT (PERCENT OF<br>DRY SOIL WEIGHT)<br>LwLIQUID LIMIT                                                                                          |
| 2            | -wire at 2.1 m.<br>-some sand, trace gravel,<br>medium plastic, damp to moist<br>below 2.1 m.<br>8.1                                                                                            | STRENGTH (kPa)<br>NSTANDARD PENETRATION TEST                                                                                                                                                                                          |
|              | CUTTINGS<br>14 43 14.7                                                                                                                                                                          | SO4SULPHATE CONTENT (PERCENT OF<br>DRY SOIL)<br>I.A.DIMMEDIATELY AFTER DRILLING<br>RECORDED WATER LEVEL TEST HOLE<br>(I.A.D.)                                                                                                         |
| 5            | -cobbles/boulders 5.4 to 6.9 n                                                                                                                                                                  | RECORDED WATER LEVEL (PIEZO)     SHELBY SPLIT CUTTINGS     TUBE SPOON     LIMITATIONS: THE FIELD DRILL LOG IS     A SUMMARY OF THE SUBSURFACE                                                                                         |
|              |                                                                                                                                                                                                 | CONDITIONS ENCOUNTERED AT THE<br>SPECIFIC TEST HOLE LOCATION AT THE<br>TIME OF TEST DRILLING. SUBSURFACE<br>CONDITIONS MAY VARY AT OTHER<br>LOCATIONS OF THIS SITE AND, IN TIME<br>MAY CHANGE AT THIS SPECIFIC TEST<br>HOLE LOCATION. |
| 8            | SAND PACKED<br>ANNULUS<br>50 mm dam.<br>MACHINE SLOT ED<br>SCH 40 PVC WELL<br>SCREEN                                                                                                            | P. MACHIBRODA ENGINEERING LTD                                                                                                                                                                                                         |
| 9            | -sand seam, seepage, sloughing<br>at 8.6 m.<br>NOTE:<br>1. Test Hole sloughed to 8.6 m<br>I.A.D.                                                                                                | FIELD DRILL LOG                                                                                                                                                                                                                       |
| 10           |                                                                                                                                                                                                 | SOIL TEST RESULTS                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                 | SLOPE STABILITY STUDY<br>LOCATION:<br>313 - 11TH STREET, SASKATOON, SK                                                                                                                                                                |
|              |                                                                                                                                                                                                 | DATE DRILLED:DRAWING NUMBER:OCTOBER 7/03S03-4925-6                                                                                                                                                                                    |





# HISTORICAL BOREHOLE LOGS TH 1, TH 2, TH 3, TH 4, TH 5, TH 6 (AMEC05)


AMEC Earth & Environmental. July 27, 2005. Revised Slope Stability Assessment Proposed Condominium Development, 316 Saskatchewan Crescent, Saskatcon, Saskatchewan











| energy<br>Markov State And The And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | * AGRA Limited                                                                                                                              | Services                                                       | TEST I  | HOLE LO    |      | ect No. SG | -01065               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------|------------|------|------------|----------------------|
| and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project: Pl<br>30             | ROPOSED CONDOMINIU<br>D6 SASKATCHEWAN CR<br>ASKATOON, SASKATCH                                                                              | JM DEVELOPME<br>ESCENT                                         | ENT     |            |      |            |                      |
| Conservation of the second sec | DEPTH (m)<br>SAMPLE TYPE<br>C | .s.c D                                                                                                                                      | ESCRIPTION                                                     | ·       | POCKET PER | TEST |            | IEZOMETER<br>DETAILS |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                           | TOPSOIL (50 mm) sil<br>SILT<br>sandy, damp, low pla<br>CLAY<br>silty, moist, stiff, med<br>- rootlets, sand lense<br>- very moist below 1.0 | istic, brown, clayey, o<br>lium to highly plastic,<br>s, salts | rganics |            |      |            | -1.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20-                           | CLAY TILL moist, stiff<br>brown, rootlets, axide<br>End of test hole at 2.4                                                                 | S                                                              |         |            |      |            | days                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                             |                                                                |         |            |      |            |                      |
| •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                             |                                                                |         |            |      |            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                             |                                                                |         |            |      |            |                      |
| т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                                                                                                                             | -<br>-                                                         |         |            |      |            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Ty                     | ype:<br>DISTURBED<br>SHELBY                                                                                                                 |                                                                |         |            | /FRY | F          | FIGURE A8            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                             | · · · · · · · · · · · · · · · · · · ·                                                                                                       |                                                                |         |            |      | 1          |                      |

A. C. Martin and A. Martina and

|           |             |        | GRA Limited                                    |                                                     | TEST | HOL                 | e log                                             |            |                                      | SC 01005       |   |
|-----------|-------------|--------|------------------------------------------------|-----------------------------------------------------|------|---------------------|---------------------------------------------------|------------|--------------------------------------|----------------|---|
| Pro       |             | 306 SA | DSED CONDOMIN<br>SKATCHEWAN C<br>TOON, SASKATC | RESCENT                                             | MENT | Date                | ution(m): 486.2<br>Drilled: 14/10<br>Method: Hand | 13<br>)/93 | oject No.                            | SG-01965       |   |
|           |             |        |                                                |                                                     |      |                     | ·····                                             | TEST       | í data                               |                |   |
| DEPTH (m) | SAMPLE TYPE | U.S.C  |                                                | DESCRIPTION                                         |      | ▲<br>100<br>↓<br>PL | T PEN. (kPa<br>200 300 400<br>MC LI               | EN.        | UNCON. COMP<br>STR. (kPa)<br>DENSITY | OTHER<br>TESTS |   |
|           |             |        | SILT                                           | ) silty, moist, black, f<br>plastic, light brown, c |      | 20                  | 40 <u>60_80</u>                                   |            |                                      | <              |   |
| 1.0       |             |        | •                                              | ow plastic, brown, ox                               |      |                     |                                                   |            |                                      |                |   |
|           |             |        | End of test hole at 1                          | .5 m on cobble or bo                                |      |                     |                                                   |            |                                      |                |   |
|           |             |        | -<br>-<br>-<br>-                               |                                                     |      |                     |                                                   |            |                                      |                |   |
|           | •           |        |                                                |                                                     |      |                     |                                                   |            |                                      |                |   |
|           |             |        |                                                | . ·                                                 |      |                     |                                                   |            |                                      | -              |   |
|           |             |        |                                                |                                                     |      |                     |                                                   |            |                                      |                |   |
|           |             |        |                                                |                                                     |      |                     |                                                   |            | Ŧ                                    |                |   |
|           |             |        |                                                |                                                     |      |                     |                                                   |            |                                      |                |   |
|           | -           |        |                                                |                                                     |      |                     |                                                   |            |                                      |                |   |
| Sar       | nple        | Туре:  |                                                |                                                     |      |                     |                                                   |            |                                      | FIGURE A       | g |
|           |             |        | STURBED<br>ELBY                                | SPT SAMPL                                           |      |                     | e<br>Recovery                                     |            |                                      | Sheet 1 of 1   |   |

and a second second

-----



### HISTORICAL BOREHOLE LOGS TH 06-1, TH 06-2 (PMEL06)

P. Machibroda Engineering Ltd. July 14, 2006. Geotechnical Investigation and Slope Stability Study Proposed Condominium 316 - Saskatchewan Crescent East, Saskatoon, SK



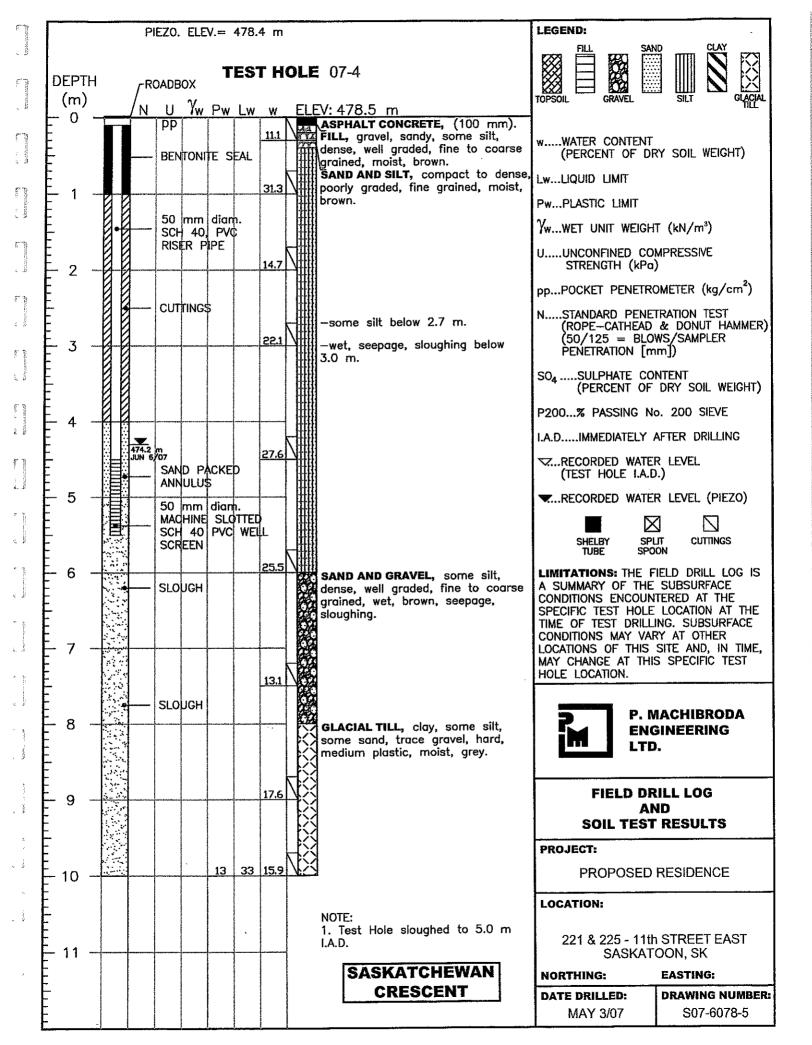
|           | PIEZO. ELEV.= 482.0 m                                                                                                                                                                                                                                                                                                                                                                                                       | LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH (m) | TEST HOLE 06-1                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | N U Yw Pw Lw w ELEV: 480.9 m<br>PP<br>BENTONITE SEAL<br>20.0<br>FILL, silt, sandy, some clay,<br>stiff, low plastic, moist, brown.<br>26 41 13.2<br>50 mm diam.<br>SCH 40, PVC<br>RISER PIPE<br>16 33 13.6<br>TOPSOIL, organic, brown,<br>rootlets.<br>FILL, silt, sandy, some clay,<br>stiff, low plastic, moist, brown.<br>GLACIAL TILL, silty, sandy, some<br>clay, trace gravel, stiff, medium<br>plastic, moist, grey. | TOPSOIL SAND CLAY FILL<br>WWATER CONTENT<br>(PERCENT OF DRY SOIL WEIGHT)<br>LWLIQUID LIMIT<br>PWPLASTIC LIMIT<br>ŶWWET UNIT WEIGHT (kN/m <sup>3</sup> )<br>UUNCONFINED COMPRESSIVE<br>STRENGTH (kPg)                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4         | SAND PACKED<br>ANNULUS                                                                                                                                                                                                                                                                                                                                                                                                      | P200% PASSING No. 200 SIEVE<br>I.A.DIMMEDIATELY AFTER DRILLING<br>WATER LEVEL TEST HOLE<br>(I.A.D.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | 50 mm dam.<br>MACHINE SLOTED<br>SCH 40 PVC WELL<br>SCREEN<br>155<br>NOTE:<br>1. Test Hole open to 7.6 m and<br>dry I.A.D.                                                                                                                                                                                                                                                                                                   | TRECORDED WATER LEVEL (PIEZO)      SHELBY SPLIT CUTTINGS     TUBE     SPOON      LIMITATIONS: THE FIELD DRILL LOG IS     A SUMMARY OF THE SUBSURFACE     CONDITIONS ENCOUNTERED AT THE     SPECIFIC TEST HOLE LOCATION AT THE     TIME OF TEST DRILLING. SUBSURFACE     CONDITIONS MAY VARY AT OTHER     LOCATIONS OF THIS SITE AND, IN TIME,     MAY CHANGE AT THIS SPECIFIC TEST     HOLE LOCATION.      P. MACHIBRODA ENGINEERING LTD.      FIELD DRILL LOG     AND     SOIL TEST RESULTS      PROJECT:         PROPOSED     CONDOMINIUM DEVELOPMENT      LOCATION:         SASKATOON, SK      DATE DRILLED:         MAR 17/06 |

| Beeren | s            | ſ | PIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z0.                                          | ELEV.=                       | = 49 | 5.6 r | n              | erionan   | n kenan kan kenan ken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             | LEGEND:                                                                                                                           |                                                                                                                                                                 |
|--------|--------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|------|-------|----------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | DEPTH<br>(m) |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * 1                                          |                              | EST  |       |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                 |
|        | - 0 -        |   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BEN                                          | TONIT                        | E SE | AL    | 8.3            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : 494.4 m<br>TOPSOIL, organic, brown,<br>rootlets.<br>SILT, sandy, firm, non-plastic,<br>moist, brown.<br>-frozen to 300 mm.                                | LwLIQUID LIMIT<br>PwPLASTIC LIMIT                                                                                                 | DRY SOIL WEIGHT)                                                                                                                                                |
|        | - 2 -        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCI                                          | mm<br>40,<br>ER PI           | PVC  |       | 9,9            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             | NSTANDARD PEN<br>(ROPE-CATHEA                                                                                                     | OMPRESSIVE<br>a)<br>ROMETER (kg/cm <sup>2</sup> )<br>ETRATION TEST<br>D & DONUT HAMMER)                                                                         |
|        | - 3          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |      |       | 14.5           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>CLAY,</b> some silt, stiff, highly<br>plastic, moist, brown.                                                                                             | PENETRATION)                                                                                                                      | F DRY SOIL WEIGHT)<br>No. 200 SIEVE                                                                                                                             |
|        | - 5          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              | 30   | 76_   | 30.0           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>SILT,</b> some clay, some sand,<br>stiff, low plastic, moist, brown.                                                                                     | (I.A.D.)<br>RECORDED WAT<br>SHELBY SF                                                                                             | ER LEVEL TEST HOLE<br>ER LEVEL (PIEZO)                                                                                                                          |
|        | - 6          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | D PAC<br>ULUS                | KED  |       | 12.8           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —some clay, trace sand, firm,<br>medium plastic below 6.1 m.<br>—seepage at 7.0 m.                                                                          | LIMITATIONS: THE<br>A SUMMARY OF<br>CONDITIONS ENCO<br>SPECIFIC TEST HO<br>TIME OF TEST DF<br>CONDITIONS MAY<br>LOCATIONS OF THIS | FIELD DRILL LOG IS<br>THE SUBSURFACE<br>DUNTERED AT THE<br>E LOCATION AT THE<br>ILLING. SUBSURFACE<br>VARY AT OTHER<br>SITE AND, IN TIME,<br>THIS SPECIFIC TEST |
|        | - 8          |   | de ser de la construction de la con<br>La construction de la construction<br>La construction de la construction<br>La construction de la construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                              | 20   | 41    | 27.0           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             | HOLE LOCATION.                                                                                                                    | ENGINEERING LTD.                                                                                                                                                |
|        | 9 - 10 -     |   | 484.5<br>(JUN 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 706)                                         |                              |      |       | <u>C. 1.99</u> |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |                                                                                                                                   | RILL LOG<br>ND<br>TRESULTS                                                                                                                                      |
|        |              |   | Server or only on the server of the server o | Na manana na n |                              |      |       | 27.5           |           | Vetter Wester Schemister (Vetter Schemister)<br>Vetter Wester Vetter Schemister Schemister (Vetter Schemister)<br>Vetter Wester Vetter Poster Schemister (Vetter Schemister)<br>Vetter Wester Vetter Schemister)<br>Vetter Wester Vetter Schemister (Vetter Schemister)<br>Vetter Wester Vetter Schemister (Vetter Schemister)<br>Vetter Wester Vetter Schemister (Vetter Schemister)<br>Vetter Wester Vetter Schemister)<br>Vetter Wester Vetter Schemister (Vetter Schemister)<br>Vetter Wester Vetter Schemister (Vetter Schemister)<br>Vetter Schemister (Vetter Sche |                                                                                                                                                             | CONDOMINIUM                                                                                                                       | OSED<br>DEVELOPMENT                                                                                                                                             |
|        |              |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MACH                                         | nm d<br>HINE S<br>40 P<br>EN | LOT  |       |                | N N N N N |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>GLACIAL TILL,</b> silt, sandy, some<br>clay, trace gravel, stiff, medium<br>plastic, moist, grey.<br>NOTE:<br>1. Test Hole open to 12.2 m<br>and dry LAD | LOCATION:<br>SASKAT<br>DATE DRILLED:<br>MAR 17/06                                                                                 | OON, SK<br><b>DRAWING NUMBER:</b><br>S06-5722-4                                                                                                                 |

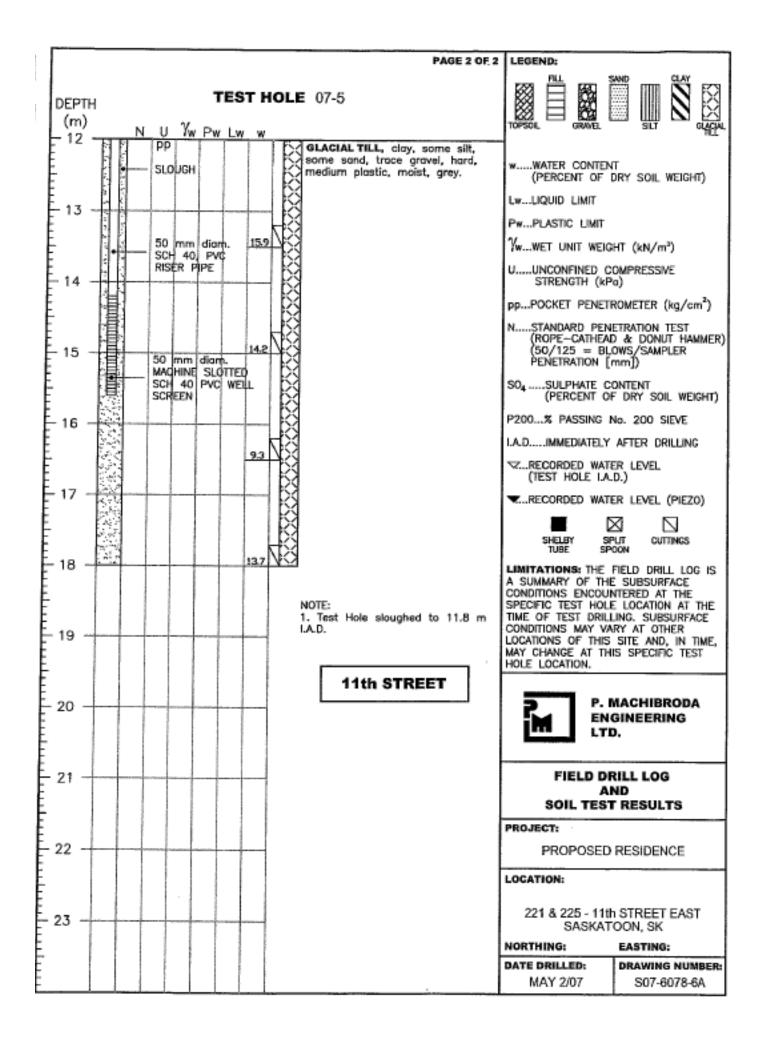


#### HISTORICAL BOREHOLE LOGS TH07-01, TH 07-02, TH 07-03, TH 07-04, TH 07-5 (PMEL07)

P. Machibroda Engineering Ltd. June 12, 2007. Geotechnical Investigation and Slope Stability Study Proposed Residences, 221 & 225 - 11th Street East, Saskatoon, SK




| ALCONDUCT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     | P              | IEZO.     | ELE          | V.=                                                                                                             | 491. | 7 m      | -            | PAGE 1 OF 2                                                                                    | LEGEND:                                                             |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----------------|-----------|--------------|-----------------------------------------------------------------------------------------------------------------|------|----------|--------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|
| 5,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEPT     |     | ſ <sup>R</sup> | OADB      | юх           | Т                                                                                                               | ES   | гн       | DLI          | ∎ 07-1                                                                                         | TOPSOIL GRAVEL                                                      |                                    |
| 11/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (m)      |     | <u>/N</u>      | U         |              | Pw                                                                                                              | Lw   |          | EL           | EV: 491.8 m                                                                                    | TOPSOIL GRAVEL                                                      |                                    |
| Contration and American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                | рр<br>вел |              | TE S                                                                                                            | FAL  | 27.2     |              | <b>TOPSOIL,</b> organic, brown, rootlets.<br><b>FILL,</b> clay, some silt, some sand,          | wWATER CONTENT<br>(PERCENT OF DI                                    | RY SOIL WEIGHT)                    |
| phone second and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1      |     | 2              |           |              |                                                                                                                 |      | 27.6     | 100          | trace gravel, stiff, medium plastic,<br>moist, olive, oxide stained.                           | LwLIQUID LIMIT                                                      |                                    |
| AUNUT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F        | Ø   |                | сит       | TING         | \$                                                                                                              |      |          |              |                                                                                                | PwPLASTIC LIMIT                                                     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |                |           |              |                                                                                                                 |      | 22.2     |              | SILT, some clay, trace sand, stiff,<br>medium plastic, moist, brown, trace<br>gypsum crystals. | YwWET UNIT WEIGH<br>UUNCONFINED CO<br>STRENGTH (kPa                 | MPRESSIVE                          |
| . <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E 2      | Ĩ   | 8              | <u> </u>  |              | <u>†</u>                                                                                                        |      | <u> </u> | -111         | 37F                                                                                            |                                                                     |                                    |
| per a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E        | 8   | 8              |           |              |                                                                                                                 |      |          |              |                                                                                                | ppPOCKET PENETR                                                     |                                    |
| transfer former                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 3      |     |                |           |              | Tarona de activamenta da la companya de la companya |      |          |              |                                                                                                | NSTANDARD PENE<br>(ROPE-CATHEAD<br>(50/125 = BLO<br>PENETRATION [rr | & DONUT HAMMER)<br>WS/SAMPLER      |
| there are a sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     | 35             |           |              |                                                                                                                 |      | 24.8     | ЧII          |                                                                                                | SO4SULPHATE CO<br>(PERCENT OF                                       | ntent<br>Dry Soil Weight)          |
| baccus a cospact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ē,       | Ø   |                |           |              |                                                                                                                 |      |          |              |                                                                                                | P200% PASSING N                                                     | p. 200 SIEVE                       |
| Lave:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 4      | Ø   |                |           |              |                                                                                                                 |      | K        | -            |                                                                                                | I.A.DIMMEDIATELY                                                    | AFTER DRILLING                     |
| kerennappi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     |                |           |              |                                                                                                                 |      | 19.0     | УII          |                                                                                                | TEST HOLE I.A.D                                                     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 5      | -8- | <u>}</u>       |           |              |                                                                                                                 |      |          |              |                                                                                                | RECORDED WATE                                                       | r level (piezo)                    |
| Representation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | •   |                | SCH       |              | dian<br>PV(<br>IPE                                                                                              |      |          |              | <b>CLAY,</b> some silt, stiff, highly<br>plastic, moist, grey, trace seepage.                  |                                                                     |                                    |
| pan and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 6      | -8- | /              |           |              |                                                                                                                 |      |          | N            |                                                                                                | LIMITATIONS: THE                                                    |                                    |
| e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -        |     | 44             |           | 50'5         |                                                                                                                 |      | 28.0     | $\mathbb{R}$ | GLACIAL TILL, clay, some silt,                                                                 | A SUMMARY OF THE<br>CONDITIONS ENCOUN                               | tered at the                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>     |     |                |           |              |                                                                                                                 |      |          | K            | some sand, trace gravel, very stiff,<br>medium plastic, moist, grey.                           | SPECIFIC TEST HOLE<br>TIME OF TEST DRILL                            | LOCATION AT THE<br>ING. SUBSURFACE |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 7      |     | 484.9<br>JUN 6 | m         |              | ļ                                                                                                               |      |          |              |                                                                                                | CONDITIONS MAY VAI                                                  |                                    |
| Jerrer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - '<br>  |     | JUN 6          | /07       |              |                                                                                                                 |      | 15.0     | Ķ            |                                                                                                | MAY CHANGE AT THI<br>HOLE LOCATION.                                 |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        |     |                |           |              |                                                                                                                 |      |          |              |                                                                                                |                                                                     |                                    |
| and the second se | 8        |     |                |           |              |                                                                                                                 |      |          |              |                                                                                                |                                                                     | IACHIBRODA<br>BINEERING<br>J.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Ø   |                |           |              |                                                                                                                 |      |          | K            |                                                                                                | FIELD DR                                                            |                                    |
| tores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u> |     |                |           |              |                                                                                                                 |      | T        | ₫?           | -hard below 9.0 m.                                                                             |                                                                     | 1D                                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-   |     | 78             |           | 21.4         |                                                                                                                 |      | 9.9      | 长            |                                                                                                | SOIL TEST                                                           |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        | Ø   |                |           | •            |                                                                                                                 |      |          | K            |                                                                                                | PROJECT:                                                            |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 10 ·   |     |                |           |              |                                                                                                                 |      |          | Ķ            | -sand lense, wet, seepage,<br>sloughing at 10.0 m.                                             | PROPOSED                                                            | RESIDENCE                          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -        |     |                |           |              |                                                                                                                 |      | 12.7     | ¥X           |                                                                                                | LOCATION:                                                           |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 11 ·   |     |                |           |              |                                                                                                                 |      |          |              | 11th STREET                                                                                    | 221 & 225 - 11tt<br>SASKAT                                          | N STREET EAST<br>OON, SK           |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -        |     |                |           |              |                                                                                                                 |      |          | Ř            |                                                                                                | NORTHING:                                                           | EASTING:                           |
| ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>-</u> |     |                |           |              | <b>.</b>                                                                                                        |      |          | Ķ            |                                                                                                | DATE DRILLED:                                                       | DRAWING NUMBER                     |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -        |     |                |           | D P/<br>ULU: |                                                                                                                 |      |          | R            | CONTINUED ON NEXT PAGE                                                                         | MAY 1/07                                                            | S07-6078-2                         |

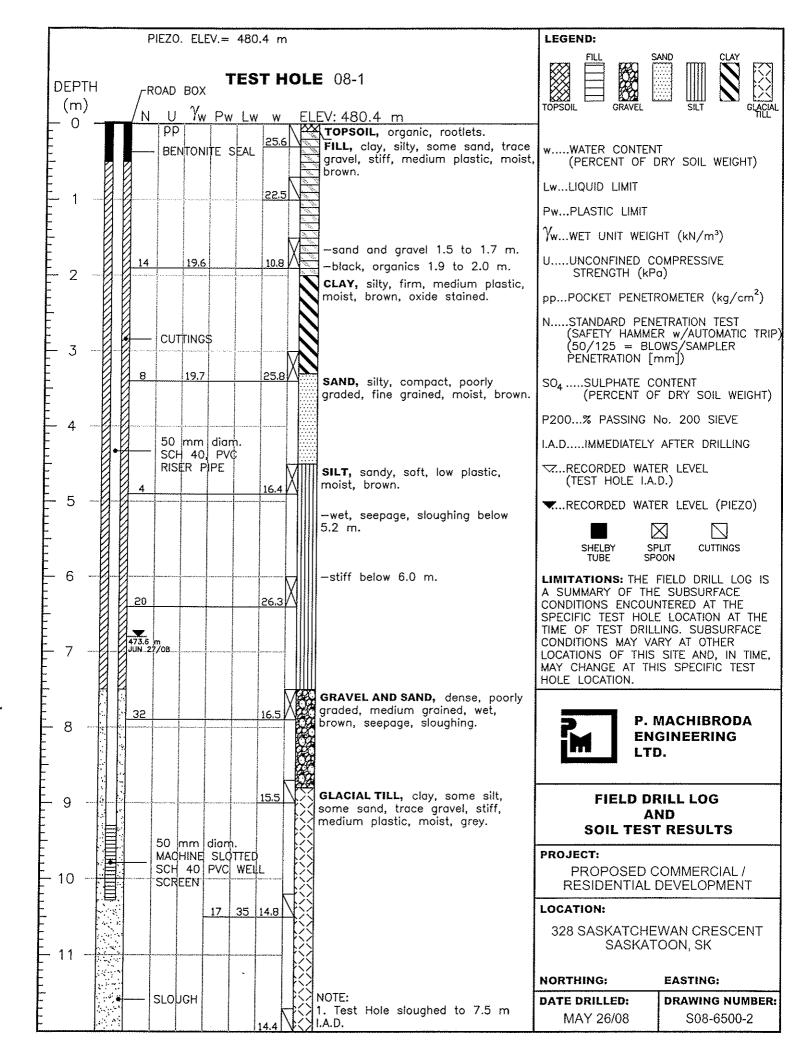

| faire a                                     | <b></b>      |           |                                     |             |            |             |         |            | PAGE 2 OF 2                                                                        | LEGEND:                                                                                                                                                                                  |                                                                                                        |
|---------------------------------------------|--------------|-----------|-------------------------------------|-------------|------------|-------------|---------|------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| other models                                | DEPTH<br>(m) |           | XI 11                               | γ           |            |             |         | OLI        | E 07-1                                                                             |                                                                                                                                                                                          |                                                                                                        |
| 24                                          | - 12 -       | स ल       | N U<br>PP                           | <u>Iw</u>   | Pw         | <u>Lw</u>   | <u></u> | NAC.       | GLACIAL TILL, clay, some silt,                                                     |                                                                                                                                                                                          | 18.6                                                                                                   |
| Isouchananada                               |              |           | <u>00+</u><br>— 50                  | mm<br>H 40  |            |             | 12.5    |            | some sand, trace gravel, hard,<br>medium plastic, moist, grey,<br>cobbles/boulders | wWATER CONTENT<br>(PERCENT OF D                                                                                                                                                          | Ry Soil Weight)                                                                                        |
|                                             | E            | 国         | RIS                                 | ER P        | PE         | ĺ           |         |            |                                                                                    | LwLIQUID LIMIT                                                                                                                                                                           |                                                                                                        |
| COLUMN STREET                               | - 13 -<br>C  | 目         |                                     |             | İ          |             |         | ĽŃ         |                                                                                    | PwPLASTIC LIMIT                                                                                                                                                                          |                                                                                                        |
| 10/2                                        | -            |           | 50<br>MA                            | mm<br>CHINE | dian       | h.<br>NTTEC | 14.6    | NX         |                                                                                    | $\gamma_{wWet}$ unit weigh                                                                                                                                                               | IT (LAL/m <sup>3</sup> )                                                                               |
| 3.00                                        | -            |           | SCI                                 | 4 40        | <b>PVC</b> | WEL         | L       | Hč         |                                                                                    | WWET UNIT WEIGH                                                                                                                                                                          | 11 (KN/m <sup>-</sup> )                                                                                |
| terter mental terter                        | -<br>- 14 -  |           | SCI                                 | REEN        |            |             |         |            |                                                                                    | UUNCONFINED CC<br>STRENGTH (kPc                                                                                                                                                          | 1)                                                                                                     |
| 101                                         |              |           |                                     |             |            |             |         | X          |                                                                                    | ppPOCKET PENETR                                                                                                                                                                          | OMETER (kg/cm²)                                                                                        |
| lanasa ata kata ata kata ata kata kata kata | -<br>- 15 -  |           |                                     |             |            |             | 16.7    |            |                                                                                    | NSTANDARD PENE<br>(ROPE-CATHEAD<br>(50/125 = BLC<br>PENETRATION [n                                                                                                                       | & DONUT HAMMER)                                                                                        |
| - and -                                     |              |           |                                     |             |            |             |         |            |                                                                                    | SO <sub>4</sub> SULPHATE CO<br>(PERCENT OF                                                                                                                                               | ONTENT<br>DRY SOIL WEIGHT)                                                                             |
| Van Terrahad                                | - 16 -       |           | SLC                                 | UGH         |            |             |         |            |                                                                                    | P200% PASSING N                                                                                                                                                                          | lo. 200 SIEVE                                                                                          |
|                                             | - 10         |           |                                     |             |            |             |         | HX.        |                                                                                    | I.A.DIMMEDIATELY                                                                                                                                                                         | AFTER DRILLING                                                                                         |
| 1                                           |              |           |                                     |             |            |             | 14.2    |            |                                                                                    | TRECORDED WATE<br>(TEST HOLE I.A.I                                                                                                                                                       | R LEVEL                                                                                                |
|                                             | _<br>17      |           |                                     |             |            |             |         | 公          |                                                                                    | RECORDED WATE                                                                                                                                                                            | R I FVFI (PIFZO)                                                                                       |
| t F                                         | -<br>-<br>-  |           |                                     |             |            |             |         | X          | -sand seam, wet, seepage,                                                          |                                                                                                                                                                                          |                                                                                                        |
|                                             | <u>-</u>     |           |                                     |             |            |             |         | $ \aleph $ | sloughing 17.2 to 17.7 m.                                                          | . — –                                                                                                                                                                                    |                                                                                                        |
| Ē                                           | -            |           |                                     |             |            |             |         | τix        |                                                                                    | shelby sp<br>tube spo                                                                                                                                                                    | LIT CUTTINGS<br>DON                                                                                    |
|                                             | - 18<br>- 19 | · · · · · |                                     |             |            |             | 9.5     | <u>v</u> ~ | NOTE:<br>1. Test Hole sloughed to 11.8 m<br>I.A.D.                                 | LIMITATIONS: THE I<br>A SUMMARY OF THE<br>CONDITIONS ENCOUN<br>SPECIFIC TEST HOLE<br>TIME OF TEST DRILL<br>CONDITIONS MAY VA<br>LOCATIONS OF THIS<br>MAY CHANGE AT THI<br>HOLE LOCATION. | SUBSURFACE<br>ITERED AT THE<br>LOCATION AT THE<br>ING. SUBSURFACE<br>RY AT OTHER<br>SITE AND, IN TIME, |
|                                             |              |           |                                     |             |            |             |         |            | 11th STREET                                                                        | <b>P.</b> A                                                                                                                                                                              | ACHIBRODA                                                                                              |
|                                             | - 20         |           |                                     |             |            |             |         |            |                                                                                    |                                                                                                                                                                                          | GINEERING<br>).                                                                                        |
|                                             | -<br>21 —    |           |                                     |             |            |             |         |            |                                                                                    | FIELD DF                                                                                                                                                                                 | RILL LOG                                                                                               |
| E                                           | <u>~</u> 1   |           |                                     |             |            |             |         |            |                                                                                    |                                                                                                                                                                                          |                                                                                                        |
| , F                                         | -            |           |                                     |             |            |             |         |            |                                                                                    | SUIL TEST                                                                                                                                                                                | RESULTS                                                                                                |
| Ē                                           |              |           | ******                              |             |            |             |         |            |                                                                                    | PROJECT:                                                                                                                                                                                 |                                                                                                        |
| ' <b> </b>                                  | - 22         |           |                                     |             |            |             |         |            |                                                                                    | PROPOSED                                                                                                                                                                                 | RESIDENCE                                                                                              |
| Ē                                           | -            |           | a na na sana na mangana na minanga. |             |            |             |         |            |                                                                                    | LOCATION:                                                                                                                                                                                |                                                                                                        |
|                                             | - 23         |           |                                     |             |            |             |         |            |                                                                                    |                                                                                                                                                                                          | N STREET EAST<br>OON, SK                                                                               |
| Ē                                           |              |           |                                     |             |            |             |         |            |                                                                                    | NORTHING:                                                                                                                                                                                | EASTING:                                                                                               |
| F                                           | -            |           |                                     |             |            |             |         |            |                                                                                    | DATE DRILLED:                                                                                                                                                                            | DRAWING NUMBER:                                                                                        |
| Ē                                           |              |           |                                     |             |            |             |         |            |                                                                                    | MAY 1/07                                                                                                                                                                                 | S07-6078-2A                                                                                            |

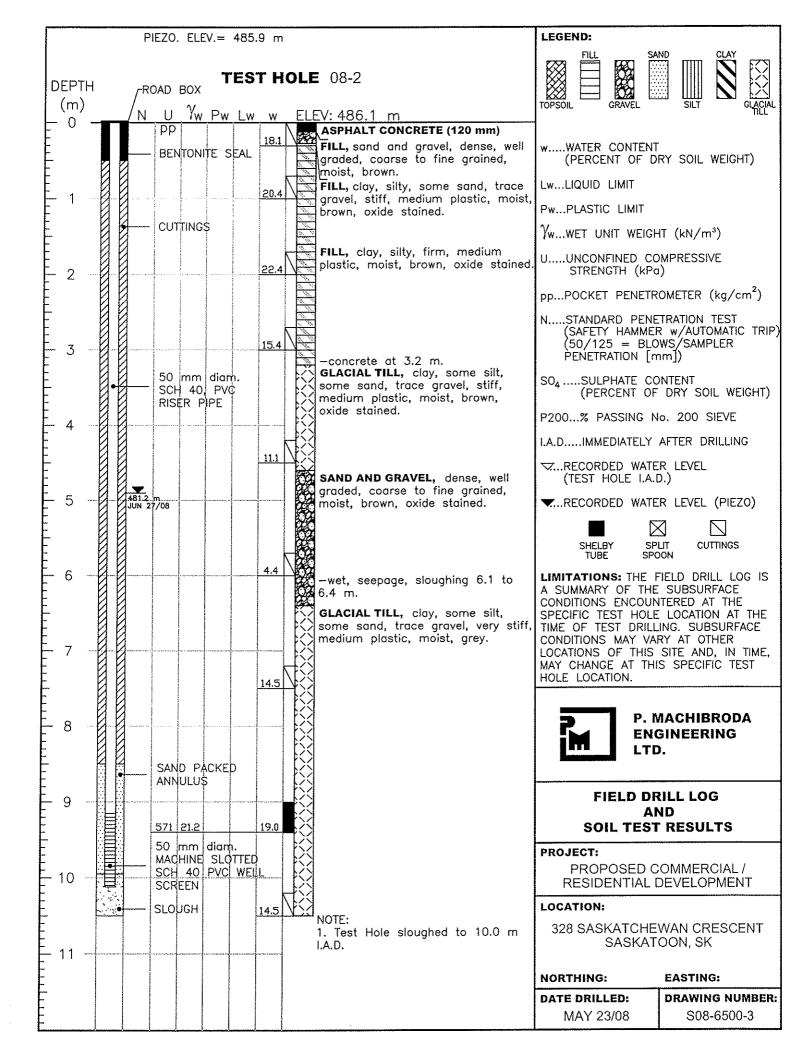
|                   | DEPTH<br>(m)    | /`                    | ROADE                                    |                                  |             |               |                  |     |                    | 07-2                                                                                                                        |                                                                                                                       |                                                                                                 |
|-------------------|-----------------|-----------------------|------------------------------------------|----------------------------------|-------------|---------------|------------------|-----|--------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                   | - o -           | <u> </u>              |                                          | ľw                               | Pw          | <u>    Lw</u> | W                | EL  | <u>_EV:</u>        | 489.4 m                                                                                                                     | TOPSOIL GRAVEL                                                                                                        |                                                                                                 |
| e                 |                 |                       | - BEN                                    | ITONI                            | TE S        | EAL           | <u>19.4</u>      |     | SI                 | <b>DPSOIL,</b> organic, brown, rootlets.<br>LT, some clay, firm, low to<br>edium plastic, moist, brown.                     | wWATER CONTE<br>(PERCENT OF                                                                                           | NT<br>DRY SOIL WEIGHT)                                                                          |
|                   | - 1             |                       |                                          |                                  |             |               | 22.6             | NII |                    |                                                                                                                             | LwLIQUID LIMIT                                                                                                        |                                                                                                 |
| portrosperimental | - I ~<br>-<br>- |                       | - CUT                                    | TING                             | 5           |               |                  |     |                    |                                                                                                                             | PwPLASTIC LIMIT                                                                                                       |                                                                                                 |
| ۲.<br>۲.          |                 | 88                    |                                          |                                  |             |               |                  | Ш   |                    | SID - The same of the                                                                                                       | YwWET UNIT WEI                                                                                                        | GHT (kN/m³)                                                                                     |
| e                 | _ 2 -           |                       |                                          |                                  |             |               | 23.3             | N   |                    | <b>ND,</b> silty, compact, poorly<br>aded, fine grained, moist, brown.                                                      | UUNCONFINED<br>STRENGTH (k                                                                                            |                                                                                                 |
|                   | -               |                       |                                          |                                  |             |               |                  |     |                    |                                                                                                                             |                                                                                                                       | TROMETER (kg/cm²)                                                                               |
| a para            | - 3             |                       |                                          |                                  |             |               | 12.9             | N   | 2.6                | race seepage, sloughing below<br>5 m.                                                                                       | (50/125 = B                                                                                                           | AD & DONUT HAMMER)<br>LOWS/SAMPLER                                                              |
|                   | -               | <b>[</b> • <b>[</b> — | SCH                                      | mm<br>40,                        | PV(         | n.            |                  |     | pla                | AY, some silt, stiff, medium<br>stic, moist, brown, oxide stained.                                                          | SU4SULPHATE                                                                                                           | CONTENT                                                                                         |
|                   | - 4             |                       | RISE                                     | R P                              | IPE         |               |                  |     |                    |                                                                                                                             | (PERCENT (<br>P200% PASSING                                                                                           | DF DRY SOIL WEIGHT)<br>No. 200 SIEVE                                                            |
|                   | •               | 88                    |                                          |                                  |             |               |                  |     |                    |                                                                                                                             | I.A.DIMMEDIATEL                                                                                                       | AFTER DRILLING                                                                                  |
|                   | •<br>•••<br>•   |                       |                                          |                                  |             |               | 30.3             |     |                    |                                                                                                                             | マRECORDED WA<br>(TEST HOLE L/                                                                                         | TER LEVEL                                                                                       |
|                   | - 5             |                       |                                          |                                  |             |               |                  |     | san<br>  pla:      | ACIAL TILL, clay, silty, some<br>Id, trace gravel, stiff, medium<br>stic, moist, brown, oxide stained,                      | RECORDED WA                                                                                                           | -                                                                                               |
|                   | -               |                       | SAN                                      | D PA                             | CKE         | >             |                  | ×   | ] gyp              | sum crystals.                                                                                                               | SHELBY S                                                                                                              |                                                                                                 |
|                   | - 6             |                       | ANN<br>50 r<br>MACI<br>SCH<br>SCR        | ULU\$<br>nm<br>HINE<br>40<br>EEN | dian<br>SLO | TTED<br>WEL   | 17.9<br>L<br>9.6 |     | ciay<br>gra        | ACIAL TILL, sand, silty, some<br>, trace gravel, dense, poorly<br>ded, fine to medium grained,<br>st, brown, oxide stained. | LIMITATIONS: THE<br>A SUMMARY OF TH<br>CONDITIONS ENCOU<br>SPECIFIC TEST HOI<br>TIME OF TEST DRII<br>CONDITIONS MAY V | INTERED AT THE<br>E LOCATION AT THE<br>LING. SUBSURFACE<br>ARY AT OTHER<br>S SITE AND, IN TIME. |
|                   | - 8             |                       |                                          |                                  |             |               | 2.0              | *>~ | NOT<br>1. 1<br>and |                                                                                                                             | <b>Б</b> Р.                                                                                                           | MACHIBRODA<br>IGINEERING<br>D.                                                                  |
|                   | - 9             |                       |                                          |                                  |             |               |                  |     | 1                  | 11th STREET                                                                                                                 | A                                                                                                                     | RILL LOG<br>ND<br>T RESULTS                                                                     |
|                   |                 |                       |                                          |                                  |             |               |                  |     |                    |                                                                                                                             | PROJECT:                                                                                                              |                                                                                                 |
| -<br>-<br>-       | 10              |                       |                                          |                                  |             |               |                  |     |                    |                                                                                                                             | PROPOSED                                                                                                              | RESIDENCE                                                                                       |
|                   |                 |                       | 10-10-10-10-10-10-10-10-10-10-10-10-10-1 |                                  |             |               |                  |     |                    |                                                                                                                             | LOCATION:                                                                                                             |                                                                                                 |
|                   | 11              |                       |                                          |                                  |             |               |                  |     |                    |                                                                                                                             |                                                                                                                       | h STREET EAST<br>TOON, SK                                                                       |
| E                 |                 |                       |                                          |                                  |             |               |                  |     |                    |                                                                                                                             | NORTHING:                                                                                                             | EASTING:                                                                                        |
|                   |                 |                       |                                          |                                  |             |               |                  |     |                    |                                                                                                                             | DATE DRILLED:<br>MAY 3/07                                                                                             | DRAWING NUMBER:<br>S07-6078-3                                                                   |

| formation results                                                                                                |              |   | P              | IEZO.      | ELE              | V.=                | 481.0   | 0 m               |                     |                  | -                                                                                             |             | LEGEND:                                                                                                                  |                                                                            |
|------------------------------------------------------------------------------------------------------------------|--------------|---|----------------|------------|------------------|--------------------|---------|-------------------|---------------------|------------------|-----------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| an and a state of the second | DEPTI<br>(m) | 4 |                |            | ٩/               |                    |         |                   | OLE                 |                  |                                                                                               |             |                                                                                                                          |                                                                            |
| ber-bernungs (parational                                                                                         | - 0          |   | N              | PP         |                  | Pw<br>TES          |         | W<br>24.6<br>32.6 |                     | AS<br>FIL<br>gro | 481.1 m<br>PHALT CONCRETE, (<br>L, clay, silty, some<br>vel, firm, medium pl<br>ck, organics. | sand, trace | wWATER CONTEN<br>(PERCENT OF D<br>LwLIQUID LIMIT<br>PwPLASTIC LIMIT                                                      | RY SOIL WEIGHT)                                                            |
| Assessment Assess                                                                                                | 2            |   |                |            |                  |                    |         | 21.0              | of the start of the |                  |                                                                                               |             | YwWET UNIT WEIGI<br>UUNCONFINED CO<br>STRENGTH (kPo<br>PPPOCKET PENETF                                                   | OMPRESSIVE<br>a)<br>COMETER (kg/cm <sup>2</sup> )                          |
|                                                                                                                  | - 3          |   |                | сит        | TINGS            |                    | _40     | <u>22.3</u>       |                     | me               | <b>AY AND SILT,</b> firm to<br>dium plastic, moist,<br><b>ACIAL TILL,</b> clay, siit          | brown.      | NSTANDARD PENI<br>(ROPE-CATHEAD<br>(50/125 = BLC<br>PENETRATION [r                                                       | & DONUT HAMMER)<br>DWS/SAMPLER                                             |
| transformed the second                                                                                           | - 4          | • |                | SCH        | mm<br>40,<br>R P | dian<br>PVC<br>IPE | n.<br>; |                   |                     | san<br>me        | ined.                                                                                         | stiff,      | SO <sub>4</sub> SULPHATE CO<br>(PERCENT OF<br>P200% PASSING N<br>I.A.DIMMEDIATELY                                        | DRY SOIL WEIGHT)<br>Io. 200 SIEVE                                          |
|                                                                                                                  | - 5          |   | 476.6<br>JUN 6 | F.<br>707  |                  |                    |         | 11.9              |                     |                  |                                                                                               |             | ✓RECORDED WATE<br>(TEST HOLE I.A.                                                                                        | ER LEVEL<br>D.)<br>ER LEVEL (PIEZO)                                        |
|                                                                                                                  | - 6 -        |   |                | ANN<br>50  | ULUS             | dian               | ).      | 8.9               |                     |                  | ery stiff to hard belo                                                                        | ow 5.9 m.   | SHELBY SF                                                                                                                | SUBSURFACE                                                                 |
|                                                                                                                  | - 7 -        |   |                | SCH<br>SCR | 40               | PVC                | WEL     | L.                |                     | -gı              | rey below 6.5 m.                                                                              |             | SPECIFIC TEST HOLI<br>TIME OF TEST DRILL<br>CONDITIONS MAY VA<br>LOCATIONS OF THIS<br>MAY CHANGE AT TH<br>HOLE LOCATION. | E LOCATION AT THE<br>LING. SUBSURFACE<br>RY AT OTHER<br>SITE AND, IN TIME, |
|                                                                                                                  | - 8 -        |   |                |            |                  |                    |         |                   |                     |                  | 'E:<br>Test Hole sloughed t<br>I dry I.A.D.                                                   | o 7.2 m     |                                                                                                                          | MACHIBRODA<br>GINEERING<br>).                                              |
|                                                                                                                  | - 9 -        |   |                |            |                  |                    |         |                   |                     |                  | CHERRY LA                                                                                     | NE          | A<br>SOIL TES                                                                                                            | RILL LOG<br>ND<br>F RESULTS                                                |
|                                                                                                                  | - 10 -       |   |                |            |                  |                    |         |                   |                     |                  |                                                                                               |             | PROJECT:<br>PROPOSED                                                                                                     | RESIDENCE                                                                  |
|                                                                                                                  |              |   |                |            |                  |                    |         |                   |                     |                  |                                                                                               |             | LOCATION:                                                                                                                |                                                                            |
|                                                                                                                  | - 11 -       |   |                |            |                  |                    |         |                   |                     |                  |                                                                                               |             |                                                                                                                          | h STREET EAST<br>'OON, SK                                                  |
| Ē                                                                                                                |              |   |                |            |                  |                    | ******  |                   |                     |                  |                                                                                               |             | NORTHING:                                                                                                                | EASTING:                                                                   |
|                                                                                                                  |              |   |                |            |                  |                    | ******  |                   |                     |                  |                                                                                               |             | DATE DRILLED:<br>MAY 10/07                                                                                               | DRAWING NUMBER:<br>S07-6078-4                                              |

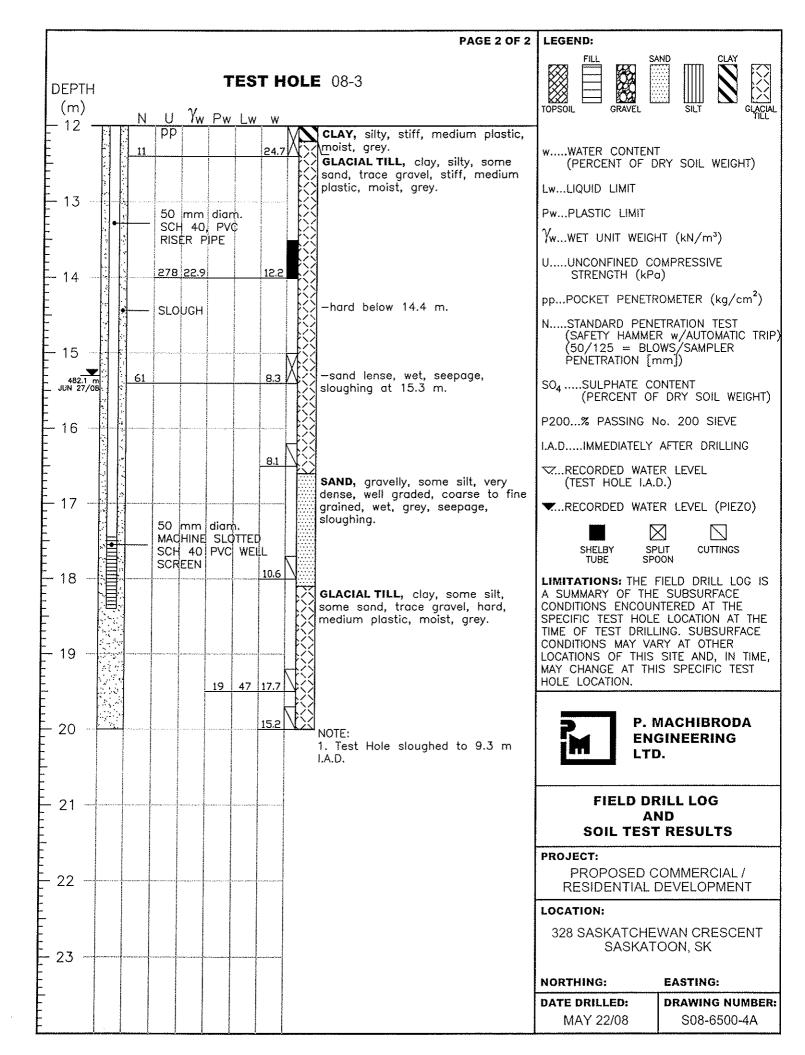


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |            | PIEZO. EL         | EV.= 493       | 5.2 m                                  | <del>.</del> | PAGE 1 OF 2                                                                                                                                                                                                                                                                 | LEGEND:                                                                                                                                                                                  |                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------------|----------------|----------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| EECO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEDT         | 1          |                   | TES            | т но                                   | DLE          | 07-5                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                        |
| - Andrew Concerne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEPTI<br>(m) | /`         | ROADBOX           |                |                                        |              |                                                                                                                                                                                                                                                                             | TOPSOIL GRAVEL                                                                                                                                                                           |                                                                                                        |
| <ul> <li>International States 1 and 1</li> <li>Particular States 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            | рр                | <u>/ Pw Lw</u> | 26.2                                   |              | FILL, gravel, sandy, dense, well<br>graded, fine to coarse grained,<br>moist, brown.<br>FILL, clay, some silt, some sand,<br>some gravel, stiff, medium plastic,<br>moist, brown, oxide stained.<br>SAND, some silt, compact, poorly<br>graded, fine grained, moist, brown. | wWATER CONTENT<br>(PERCENT OF D<br>LwLIQUID LIMIT<br>PwPLASTIC LIMIT                                                                                                                     | Ry Soil Weight)                                                                                        |
| n Vra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2            |            |                   | ×              | 8.5                                    |              | graded, nite graned, moist, provit                                                                                                                                                                                                                                          | YwWET UNIT WEIGH<br>UUNCONFINED CO<br>STRENGTH (kPo                                                                                                                                      | DMPRESSIVE                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3            |            |                   |                | 16.3                                   |              | -silty below 2.5 m.                                                                                                                                                                                                                                                         | PPPOCKET PENETR<br>NSTANDARD PENE<br>(ROPE-CATHEAD<br>(50/125 = BLC<br>PENETRATION [r                                                                                                    | TRATION TEST<br>& DONUT HAMMER)<br>WS/SAMPLER                                                          |
| e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>         |            |                   |                | a, ha . Ya yi a shaqo qayaa a          |              | SILT, clayey, some sand, firm,<br>medium plastic, moist, brown.                                                                                                                                                                                                             | SO4SULPHATE CO<br>(PERCENT OF                                                                                                                                                            | NTENT<br>DRY SOIL WEIGHT)                                                                              |
| (Particle second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 4 ·        |            |                   |                |                                        |              |                                                                                                                                                                                                                                                                             | P200% PASSING N                                                                                                                                                                          | o. 200 SIEVE                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |            |                   |                |                                        |              |                                                                                                                                                                                                                                                                             | I.A.DIMMEDIATELY                                                                                                                                                                         | AFTER DRILLING                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -            |            | 18.4              |                | 16.1                                   |              |                                                                                                                                                                                                                                                                             | CRECORDED WATE<br>(TEST HOLE I.A.)                                                                                                                                                       |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.           |            | 50 mm             |                |                                        | N            | <b>CLAY,</b> silty, stiff, medium plastic, moist, brown.                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-<br>-  |            | SCH 40<br>RISER F | PV¢            | ······································ |              |                                                                                                                                                                                                                                                                             | SHELBY SP<br>TUBE SPC                                                                                                                                                                    | LIT CUTTINGS                                                                                           |
| renovalization of the second | - 6 -        |            | 17.9              |                | 23.4                                   |              |                                                                                                                                                                                                                                                                             | LIMITATIONS: THE I<br>A SUMMARY OF THE<br>CONDITIONS ENCOUN<br>SPECIFIC TEST HOLE<br>TIME OF TEST DRILL<br>CONDITIONS MAY VA<br>LOCATIONS OF THIS<br>MAY CHANGE AT THI<br>HOLE LOCATION. | SUBSURFACE<br>ITERED AT THE<br>LOCATION AT THE<br>ING. SUBSURFACE<br>RY AT OTHER<br>SITE AND, IN TIME, |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 8 -        | ₩<br>485.0 | 3707              |                |                                        |              | <b>GLACIAL TILL,</b> clay, some silt,<br>some sand, trace gravel, very stiff,<br>medium plastic, moist, grey.                                                                                                                                                               |                                                                                                                                                                                          | ACHIBRODA<br>3INEERING<br>).                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 9 ~        |            |                   |                |                                        | 泛            |                                                                                                                                                                                                                                                                             | FIELD DF                                                                                                                                                                                 | NILL LOG                                                                                               |
| , F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>-<br>-  |            | 22,4              |                | 11.2                                   | X            | -hard below 9.5 m.                                                                                                                                                                                                                                                          |                                                                                                                                                                                          | RESULTS                                                                                                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 10         |            |                   |                |                                        | 区            |                                                                                                                                                                                                                                                                             | PROJECT:                                                                                                                                                                                 | RESIDENCE                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 10 -       |            |                   |                |                                        | $\bigotimes$ | 11th STREET                                                                                                                                                                                                                                                                 | LOCATION:                                                                                                                                                                                |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 11         |            | 22.2              |                | 10,1                                   |              | —sand layer, wet, , seepage,<br>sloughing 11.0 to 11.8 m.                                                                                                                                                                                                                   | 221 & 225 - 11tt                                                                                                                                                                         | STREET EAST<br>OON, SK                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -            |            |                   |                |                                        | 訤            | oraginity into the the                                                                                                                                                                                                                                                      | NORTHING:                                                                                                                                                                                | EASTING:                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |            | SLOUGH            |                | 11.0                                   | $\mathbb{X}$ | CONTINUED ON NEXT PAGE                                                                                                                                                                                                                                                      | DATE DRILLED:<br>MAY 2/07                                                                                                                                                                | DRAWING NUMBER:<br>S07-6078-6                                                                          |

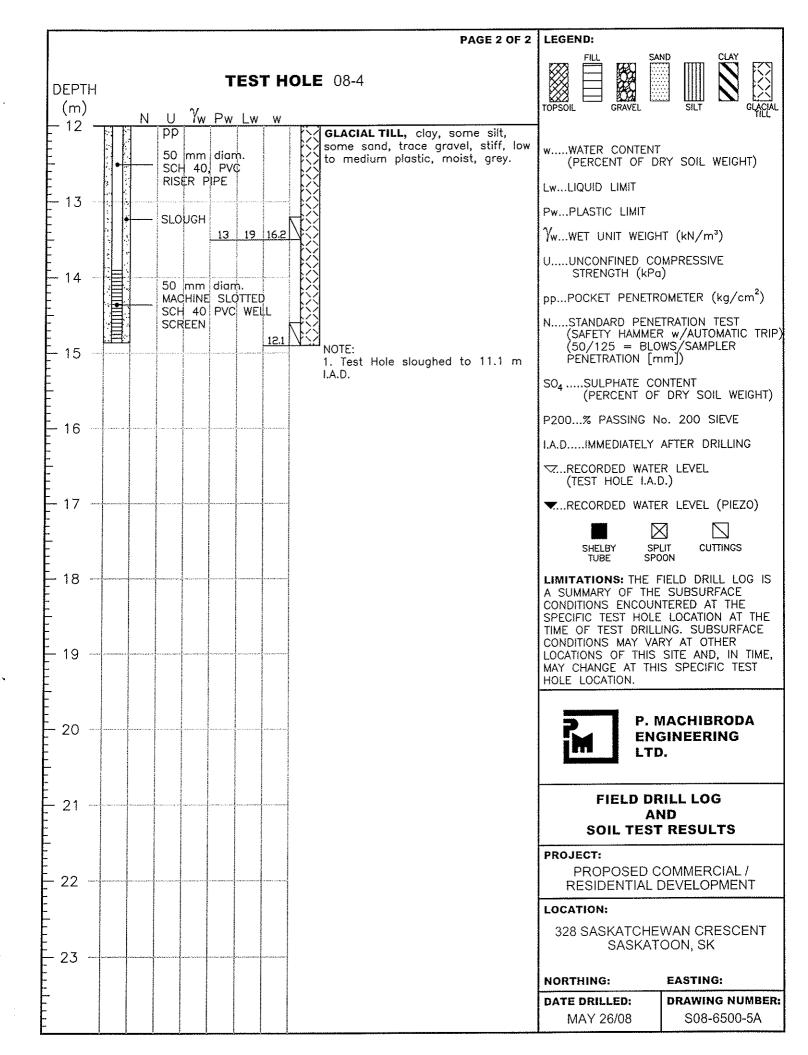



### HISTORICAL BOREHOLE LOGS TH08-01, TH 08-02, TH 08-03, TH 08-04 (PMEL08)


P. Machibroda Engineering Ltd. July 8, 2008. Proposed Commercial/Residential Development 328 Saskatchewan Crescent East, Saskatoon, SK








| PIEZO. ELEV.= 498.4 m PAGE 1 OF 2                                                                                                                                                                                                                                                                             | LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH         TEST HOLE 08-3           (m)         N         Vw         Pw         Lw         w         ELEV: 497.4         m                                                                                                                                                                                 | TOPSOIL FILL GRAVEL SAND III CLAY GLACIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0       IV OF IN THELW IN CELEVITY         PP       BENTONITE SEAL         18.7       Fill., clay, sandy, some silt, trace gravel, firm, low to medium plastic moist, mottled brown/black, organics, rootlets, brick pieces.         1       11.1         1       11.1         2       26.6         3       9 | C, (PERCENT OF DRY SOIL WEIGHT)<br>LwLIQUID LIMIT<br>PwPLASTIC LIMIT<br>γwWET UNIT WEIGHT (kN/m <sup>3</sup> )<br>UUNCONFINED COMPRESSIVE                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                               | P200% PASSING No. 200 SIEVE<br>I.A.DIMMEDIATELY AFTER DRILLING<br>MILLING WATER LEVEL<br>(TEST HOLE I.A.D.)                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 - CUTTINGS<br>6                                                                                                                                                                                                                                                                                             | ▼RECORDED WATER LEVEL (PIEZO)          SHELBY       SPLIT       CUTTINGS         TUBE       SPOON       CUTTINGS         LIMITATIONS:       THE FIELD DRILL LOG IS         A SUMMARY OF THE SUBSURFACE       CONDITIONS ENCOUNTERED AT THE         SPECIFIC TEST HOLE LOCATION AT THE         TIME OF TEST DRILLING.       SUBSURFACE         CONDITIONS       MAY VARY AT OTHER         LOCATIONS OF THIS SITE AND, IN TIME,         MAY CHANGE AT THIS SPECIFIC TEST         HOLE LOCATION. |
| SILT, some clay, firm, low plastic, moist, brown.                                                                                                                                                                                                                                                             | P. MACHIBRODA<br>ENGINEERING<br>LTD.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9<br>12 18.5 32.8 CLAY, silty, stiff, medium plastic, moist, brown, oxide stained.<br>-silt layer 9.8 to 10.1 m.                                                                                                                                                                                              | FIELD DRILL LOG<br>AND<br>SOIL TEST RESULTS<br>PROJECT:<br>PROPOSED COMMERCIAL /                                                                                                                                                                                                                                                                                                                                                                                                              |
| - 10<br>                                                                                                                                                                                                                                                                                                      | <b>IOCATION:</b><br>325 SASKATCHEWAN CRESCENT<br>SASKATOON, SK                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                       | NORTHING:EASTING:DATE DRILLED:DRAWING NUMBER:MAY 22/08\$08-6500-4                                                                                                                                                                                                                                                                                                                                                                                                                             |



| _            | PIEZO. ELEV.= 495.5 m <b>PAGE 1 OF 2</b>                                               | LEGEND:                                                                                                                                                                                                                                    |
|--------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH<br>(m) | <b>TEST HOLE</b> 08-4<br>Ν U Ŷw Pw Lw w ELEV: 494.4 m                                  | $\underset{TOPSOIL}{\overset{FILL}{\longmapsto}} \underset{GRAVEL}{\overset{FILL}{\longmapsto}} \underset{SILT}{\overset{SAND}{\longmapsto}} \underset{SILT}{\overset{CLAY}{\longmapsto}} \underset{GLACIAL}{\overset{CLAY}{\longmapsto}}$ |
|              | PP PP <b>EXAMPSOIL</b> organic, rootlets.                                              |                                                                                                                                                                                                                                            |
|              | BENTONITE SEAL 5.2 SAND, some silt, compact, poorly graded, fine grained, damp, brown. | wWATER CONTENT<br>(PERCENT OF DRY SOIL WEIGHT)                                                                                                                                                                                             |
|              | 5.7                                                                                    | LwLIQUID LIMIT                                                                                                                                                                                                                             |
|              |                                                                                        | PwPLASTIC LIMIT                                                                                                                                                                                                                            |
|              |                                                                                        | γwWET UNIT WEIGHT (kN/m³)                                                                                                                                                                                                                  |
| - 2          | 5.9                                                                                    | UUNCONFINED COMPRESSIVE<br>STRENGTH (kPa)                                                                                                                                                                                                  |
|              |                                                                                        | ppPOCKET PENETROMETER (kg/cm <sup>2</sup> )                                                                                                                                                                                                |
| - 3          | 9.2<br>CLAY, silty, stiff, highly plastic,                                             | NSTANDARD PENETRATION TEST<br>(SAFETY HAMMER w/AUTOMATIC TRIP)<br>(50/125 = BLOWS/SAMPLER<br>PENETRATION [mm])                                                                                                                             |
|              | moist, brown, oxide stained.                                                           | SO4SULPHATE CONTENT<br>(PERCENT OF DRY SOIL WEIGHT)                                                                                                                                                                                        |
| . 4          |                                                                                        | P200% PASSING No. 200 SIEVE                                                                                                                                                                                                                |
|              | 31 67 31.0                                                                             | I.A.DIMMEDIATELY AFTER DRILLING                                                                                                                                                                                                            |
|              |                                                                                        | TRECORDED WATER LEVEL<br>(TEST HOLE I.A.D.)                                                                                                                                                                                                |
| - 5          |                                                                                        | ▼RECORDED WATER LEVEL (PIEZO)                                                                                                                                                                                                              |
|              |                                                                                        | SHELBY SPLIT CUTTINGS<br>TUBE SPOON                                                                                                                                                                                                        |
| 6            | SAND, silty, compact, poorly                                                           | LIMITATIONS: THE FIELD DRILL LOG IS<br>A SUMMARY OF THE SUBSURFACE                                                                                                                                                                         |
|              | 50 mm diam.<br>SCH 40, PVC brown, oxide stained.                                       | CONDITIONS ENCOUNTERED AT THE<br>SPECIFIC TEST HOLE LOCATION AT THE                                                                                                                                                                        |
| -            | RISER PIPE                                                                             | TIME OF TEST DRILLING. SUBSURFACE<br>CONDITIONS MAY VARY AT OTHER                                                                                                                                                                          |
|              |                                                                                        | LOCATIONS OF THIS SITE AND, IN TIME,<br>MAY CHANGE AT THIS SPECIFIC TEST<br>HOLE LOCATION.                                                                                                                                                 |
|              | 9.3 SILT, some clay, firm, medium                                                      | HOLE EUCATION.                                                                                                                                                                                                                             |
| 8            | plastic, wet, brown.                                                                   | P. MACHIBRODA                                                                                                                                                                                                                              |
|              |                                                                                        | ENGINEERING<br>LTD.                                                                                                                                                                                                                        |
|              |                                                                                        |                                                                                                                                                                                                                                            |
| 9            | 30.0                                                                                   | FIELD DRILL LOG<br>AND                                                                                                                                                                                                                     |
|              |                                                                                        | SOIL TEST RESULTS                                                                                                                                                                                                                          |
|              |                                                                                        | PROJECT:<br>PROPOSED COMMERCIAL /                                                                                                                                                                                                          |
| 10           | ₩<br>484.2 m<br>JUN 27/08<br>29.6                                                      | RESIDENTIAL DEVELOPMENT                                                                                                                                                                                                                    |
|              | 29.6 -sand and gravel seam, wet,<br>seepage, sloughing 11.0 to                         | <b>LOCATION:</b><br>328 SASKATCHEWAN CRESCENT                                                                                                                                                                                              |
| . 11         | 11.2 m.                                                                                | SASKATONEWAN OKESCENT<br>SASKATOON, SK                                                                                                                                                                                                     |
|              | GLACIAL TILL, clay, some silt,                                                         | NORTHING: EASTING:                                                                                                                                                                                                                         |
|              | SLOUGH Some sand, trace gravel, stiff, medium plastic, moist, grey.                    | DATE DRILLED: DRAWING NUMBER:<br>MAY 26/08 S08-6500-5                                                                                                                                                                                      |
| .:           | 27.0 CONTINUED ON NEXT PAGE                                                            | WAT 20/00                                                                                                                                                                                                                                  |





# HISTORICAL BOREHOLE LOGS 11-0057-BH1, 11-0057-BH2, 11-0057-BH3 (GAL12)

Golder Associates Ltd. May 2013. Assessment of Slope Instability at 200 Block, 11th Street East.



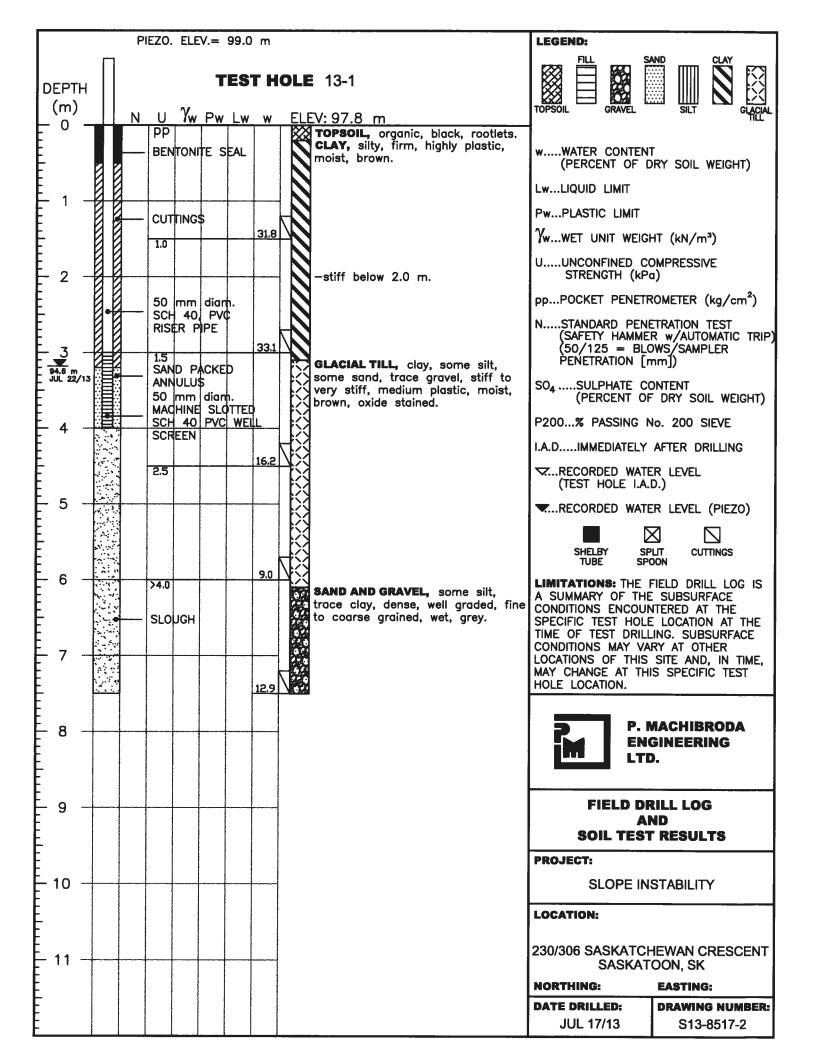
| SOIL PROFILE<br>DESCRIPTION<br>GROUND SURFACE<br>SPHALT PAVEMENT<br>AND and GRAVEL, well graded,<br>ngular, some silt, medium brown, dry<br>BRANULAR BASE)<br>AL) CLAYEY SILT, trace fine sand,<br>ledium brown, (FILL), w>PL, soft<br>D) SILTY CLAY, medium brown, w>PL,<br>oft to firm<br>CH) CLAY, medium brown, w>PL, firm | STRATA PLOT                                                                                                                                                                                          | ELEV.<br>DEPTH<br>(m)<br>488.30<br>488.10<br>0.20<br>487.44<br>0.46<br>487.08<br>1.22                                                                                                                                           | SAN<br>21<br>80<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                             | AS                                                                                                                                                                                                                                                                                                          | BLOWS/0.3m 0                                                                                                                                                                                                                                                                                                                                                                                                                                             | RESIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANCE, E                                                                                                                                                                                                                                                                  | GTH nat<br>ren                                                                                                                                                                                                                                                                             | 3m (<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ``\<br>- ●                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VATER C                                                                                                                                                                          | D <sup>-5</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) <sup>-4</sup> 10 <sup>-3</sup><br>PERCENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PIEZOMETER OI<br>STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATEI<br>OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUND SURFACE<br>SPHALT PAVEMENT<br>AND and GRAVEL, well graded,<br>ngular, some sit, medium brown, dry<br>BRANULAR BASE)<br>(L) CLAYEY SILT, trace fine sand,<br>wedium brown, (FILL), w>PL, soft<br>CI) SILTY CLAY, medium brown, w>PL,<br>oft to firm                                                                      |                                                                                                                                                                                                      | DEPTH<br>(m)<br>488.30<br>488.10<br>0.20<br>487.84<br>0.46<br>487.08                                                                                                                                                            | 1-1                                                                                                                                                                                                                                                                                                       | AS                                                                                                                                                                                                                                                                                                          | BLOWS/0.3m                                                                                                                                                                                                                                                                                                                                                                                                                                               | SHEAR<br>Cu, kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STREN                                                                                                                                                                                                                                                                    | GTH nat<br>ren                                                                                                                                                                                                                                                                             | V. + Q<br>1 V. ⊕ U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VATER C(<br>Vp                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INSTALLATION<br>AND<br>GROUNDWATEI<br>OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SPHALT PAVEMENT<br>AND and GRAVEL, well graded,<br>ngular, some silt, medium brown, dry<br>SRANULAR BASE)<br>//L) CLAYEY SILT, trace fine sand,<br>ledium brown, (FILL), w>PL, soft<br>CI) SILTY CLAY, medium brown, w>PL,<br>oft to firm                                                                                      |                                                                                                                                                                                                      | 488.10<br>0.20<br>487.84<br>0.46<br>487.08                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flushmount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AND and GRAVEL, well graded,<br>ngular, some silt, medium brown, dry<br>JRANULAR BASE)<br>//L) CLAYEY SILT, trace fine sand,<br>ledium brown, (FILL), w>PL, soft<br>CI) SILTY CLAY, medium brown, w>PL,<br>oft to firm                                                                                                         |                                                                                                                                                                                                      | 0.20<br>487.84<br>0.46<br>487.08                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.0 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| edium brown, (FILL), w>PL, soft<br>CI) SILTY CLAY, medium brown, w>PL,<br>oft to firm                                                                                                                                                                                                                                          |                                                                                                                                                                                                      | 487.08<br>1.22                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ofi to firm                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                      | * 487.08<br>1.22                                                                                                                                                                                                                | 1-2                                                                                                                                                                                                                                                                                                       | AS                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PP=<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CH) CLAY, medium brown, w>PL, firm                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PP=<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 9 N 9 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CLAT, MEQIUM DIOWN, W2PL, IIIM                                                                                                                                                                                                                                                                                                 | V///                                                                                                                                                                                                 | 485.86                                                                                                                                                                                                                          | 1-3                                                                                                                                                                                                                                                                                                       | AS                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PP=<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      | 2.44                                                                                                                                                                                                                            | 1-4                                                                                                                                                                                                                                                                                                       | AS                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ö                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. 8. 8. 8. 9. 8. 9. 8. 9. 8. 9. 8. 9. 8. 9. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CI) SILTY CLAY, some sand and ravel, medium brown, (TILL), w~PL,                                                                                                                                                                                                                                                               |                                                                                                                                                                                                      | 484.64<br>3.66                                                                                                                                                                                                                  | 1-5                                                                                                                                                                                                                                                                                                       | AS                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •••                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ⊢–•                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.75<br>MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Slope Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| iff<br>medium grey                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                                 | 1-6                                                                                                                                                                                                                                                                                                       | AS                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PP=<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 N.0 N.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                                                                                 | 1-7                                                                                                                                                                                                                                                                                                       | AS                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · ·                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| // ) condu CII T, como fino gravel                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      | 481.90                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N 9 N 9 N 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| iedium grey, (TILL), w <pl, stiff<="" td="" very=""><td></td><td></td><td>1-8</td><td>AS</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>PP=<br/>3.0</td><td>8°9 8'9</td></pl,>                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                                 | 1-8                                                                                                                                                                                                                                                                                                       | AS                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PP=<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8°9 8'9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SM) SILTY SAND, fine grained, medium rown, wet                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      | 7.01                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Slough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND OF BOREHOLE = 7.62m                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      | 480.68                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Slough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                | Avel, medium brown, (TILL), w~PL,<br>ff<br>nedium grey<br>IL) sandy SILT, some fine gravel,<br>edium grey, (TILL), w <pl, stiff<br="" very="">M) SILTY SAND, fine grained, medium<br/>own, wet</pl,> | avel, medium brown, (TILL), w~PL,<br>ff<br>nedium grey<br>IL) sandy SILT, some fine gravel,<br>edium grey, (TILL), w <pl, stiff<br="" very="">M) SILTY SAND, fine grained, medium<br/>own, wet<br/>ND OF BOREHOLE = 7.62m</pl,> | <ul> <li>I) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, ff nedium grey</li> <li>IL) sandy SILT, some fine gravel, edium grey, (TILL), w<pl, li="" stiff<="" very=""> <li>M) SILTY SAND, fine grained, medium own, wet</li> <li>ND OF BOREHOLE = 7.62m</li> <li>7.62</li> </pl,></li></ul> | 1) SILTY CLAY, some sand and avel, medium brown, (TILL), w~PL, ff       3.66         1.6       1.6         1.7       1.7         1.8       481.90         1.9       6.40         1.8       481.29         M) SILTY SAND, fine grained, medium own, wet       7.01         MD OF BOREHOLE = 7.62m       7.62 | 494.64         1) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, ff         nedium grey         1.6         AS         1.7         AS         1.7         AS         1.7         AS         1.7         AS         1.7         AS         1.7         AS         481.90         AS         481.90         AS         481.29         M) SILTY SAND, fine grained, medium own, wet         480.68         ND OF BOREHOLE = 7.62m         7.62 | 1) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, ff       3.66       48.64         ff       1.6       AS         ff       1.6       AS         IL) sandy SILT, some fine gravel, edium grey, (TILL), w-PL, very stiff       6.40       1.8         M) SILTY SAND, fine grained, medium own, wet       7.01       481.29         M) SILTY SAND, fine grained, medium own, wet       7.01       480.68         ND OF BOREHOLE = 7.62m       7.62       1.6 | I) SILTY CLAY, some sand and<br>avel, medium brown, (TILL), w-PL,<br>ff<br>nedium grey<br>IL) sandy SILT, some fine gravel,<br>edium grey, (TILL), w <pl, stiff<br="" very="">M) SILTY SAND, fine grained, medium<br/>own, wet<br/>ND OF BOREHOLE = 7.62m<br/>7.62</pl,> | IL) SILTY CLAY, some sand and<br>avel, medium brown, (TILL), w~PL,<br>ff<br>nedium grey<br>L) sandy SILT, some fine gravel,<br>edium grey, (TILL), w <pl, stiff<br="" very="">M) SILTY SAND, fine grained, medium<br/>own, wet<br/>ND OF BOREHOLE = 7.62m<br/>ND OF BOREHOLE = 7.62m</pl,> | I) SILTY CLAY, some sand and avel, medium brown, (TILL), w~PL, ff inedium grey 16 16 As in the interval of the | I) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, ff       3.66         nedium grey       1.6         1.6       AS         1.7       AS         1.8       AS         1.9       1.6         1.1       AS         481.90       AS         490.058       AS         M) SILTY SAND, fine grained, medium       7.01         490.058       AS         AD OF BOREHOLE = 7.62m       7.62 | 1) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, ff nedium grey       3.66       As       C         1.17       As       1.7       As       C         1.17       As | 1) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, ff       446.64       0         16       As       0         11.7       As       0         11.9       1.6       As         11.7       As       0         11.9       0       0         11.9       0       0         12.9       0       0         13.8       0       0         10.9       0       0         10.9       1.8       0         10.0F BOREHOLE = 7.62m       7.62       0         10.9       1.8       0         10.9       1.8       0         10.9       1.9       1.9         10.9       1.9       1.9         10.9       1.9       1.9         10.9       1.9       1.9         10.9       1.9       1.9         10.9       1.9       1.9         10.9       1.9       1.9 <t< td=""><td>1) SILTY CLAY, some sand and avel, medium brown, (TiLL), w-PL, the redium grey       3 66       0         14       48       6       0         15       14       48       0         11, sandy SILT, some fine gravel, edium grey, (TILL), w-PL, very stiff       6 40       14         10, sandy SILT, some fine gravel, edium grey, (TILL), w-PL, very stiff       6 40       14         10, sandy SILT, some fine gravel, edium grey, (TILL), w-PL, very stiff       6 40       14         40:08       7 01       40:08       0         ND OF BOREHOLE = 7.62m       7 62       0       0</td><td>1) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, medium grey       3.6       44.64         1.6       AS       0       0         1.7       AS       0       0         1.17       AS       0       0         1.17       AS       0       0         1.17       AS       0       0         1.13       AS       0       0         1.13       AS       0       0         1.13       AS       0       0         481.90       1.8       AS       0         M) SILTY SAND, fine grained, medium over, wet       7.62       0       0         ND OF BOREHOLE = 7.62m       7.62       0       0       0</td><td>1) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, fine fine gravel, edum grey       14       as       0       0         11.7       14       as       0       0       0       0         11.9 sandy SILT, some fine gravel, edum grey, (TILL), w-PL, very stiff       0.649       1.4       as       0       0         11.9 sandy SILT, some fine gravel, edum grey, (TILL), w-PL, very stiff       0.649       1.4       as       0       0         11.9 sandy SILT, some fine gravel, edum grey, (TILL), w-PL, very stiff       0.649       1.4       as       0       0         M) SILTY SAND, fine grained, medium       7.01       48.08       0       0       0       0         ND OF BOREHOLE = 7.62m       7.86       7.86       0       0       0       0       0</td><td>1) SILTY CLAY, some sand and<br/>wed, medium brown, (TILL), w-PL,<br/>fiedum grey       44.64<br/>3.86<br/>16       0       0       0       0         117       AS       0       0       0       125         117       AS       0       0       0       125         119       117       AS       0       0       125         119       118       AS       0       0       125         119       118       AS       0       0       125         119       118       AS       0       0       0         119       118       AS       0       0       0         119       118</td></t<> | 1) SILTY CLAY, some sand and avel, medium brown, (TiLL), w-PL, the redium grey       3 66       0         14       48       6       0         15       14       48       0         11, sandy SILT, some fine gravel, edium grey, (TILL), w-PL, very stiff       6 40       14         10, sandy SILT, some fine gravel, edium grey, (TILL), w-PL, very stiff       6 40       14         10, sandy SILT, some fine gravel, edium grey, (TILL), w-PL, very stiff       6 40       14         40:08       7 01       40:08       0         ND OF BOREHOLE = 7.62m       7 62       0       0 | 1) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, medium grey       3.6       44.64         1.6       AS       0       0         1.7       AS       0       0         1.17       AS       0       0         1.17       AS       0       0         1.17       AS       0       0         1.13       AS       0       0         1.13       AS       0       0         1.13       AS       0       0         481.90       1.8       AS       0         M) SILTY SAND, fine grained, medium over, wet       7.62       0       0         ND OF BOREHOLE = 7.62m       7.62       0       0       0 | 1) SILTY CLAY, some sand and avel, medium brown, (TILL), w-PL, fine fine gravel, edum grey       14       as       0       0         11.7       14       as       0       0       0       0         11.9 sandy SILT, some fine gravel, edum grey, (TILL), w-PL, very stiff       0.649       1.4       as       0       0         11.9 sandy SILT, some fine gravel, edum grey, (TILL), w-PL, very stiff       0.649       1.4       as       0       0         11.9 sandy SILT, some fine gravel, edum grey, (TILL), w-PL, very stiff       0.649       1.4       as       0       0         M) SILTY SAND, fine grained, medium       7.01       48.08       0       0       0       0         ND OF BOREHOLE = 7.62m       7.86       7.86       0       0       0       0       0 | 1) SILTY CLAY, some sand and<br>wed, medium brown, (TILL), w-PL,<br>fiedum grey       44.64<br>3.86<br>16       0       0       0       0         117       AS       0       0       0       125         117       AS       0       0       0       125         119       117       AS       0       0       125         119       118       AS       0       0       125         119       118       AS       0       0       125         119       118       AS       0       0       0         119       118       AS       0       0       0         119       118 |

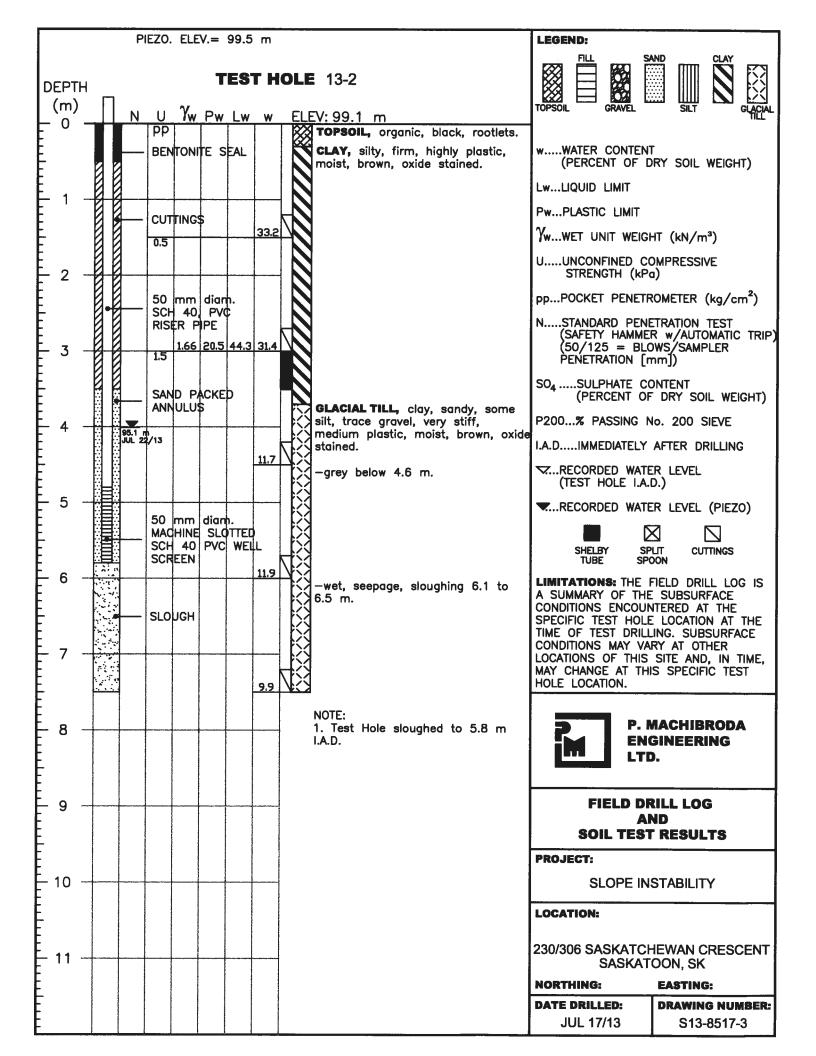
BOREHOLE 11-1362-0057-5000-BOREHOLES.GPJ GAL-SASK.GDT 1/10/12

|                  |                                                    | T: 11-1362-0057.5000<br>DN: Cherry Lane N 5775616.80 E 3860                      |             |                | U C      | 7    | В(         | BORING DAT                 | ΓE: 23           | 6/12                | 005/           | -вн      | Ĩ                  |        |        |         |                            | HEET 1 OF 1<br>ATUM: City Datum |  |
|------------------|----------------------------------------------------|----------------------------------------------------------------------------------|-------------|----------------|----------|------|------------|----------------------------|------------------|---------------------|----------------|----------|--------------------|--------|--------|---------|----------------------------|---------------------------------|--|
|                  |                                                    | r                                                                                |             |                |          |      |            | DRILLING CO                |                  |                     | Paddock        | -        |                    |        |        |         |                            |                                 |  |
|                  | ОР                                                 | SOIL PROFILE                                                                     |             |                | SAM      | /PLE | S          | DYNAMIC PEN<br>RESISTANCE, | IETRATI<br>BLOWS | ON<br>5/0.3m        | ~              | HYDRA    | ULIC CO<br>k, cm/s | NDUCTI | VITY,  | T       | 4G<br>K                    | PIEZOMETER C<br>STANDPIPE       |  |
| METRES           | BORING METHOD                                      |                                                                                  | STRATA PLOT |                | L H      |      | 0.3m       |                            | 1                | 60 8                |                | 10       | - i                |        |        | ₃⊥      | ADDITIONAL<br>LAB. TESTING | INSTALLATION                    |  |
| ž                | RING                                               | DESCRIPTION                                                                      | ATA         | ELEV.<br>DEPTH | NUMBER   | TYPE | BLOWS/0.3m | SHEAR STREM<br>Cu, kPa     | NGTH             | nat V. +<br>rem V.⊕ | Q - ●<br>U - ○ | WA<br>Wp |                    |        | PERCEN | T<br>// | ADDI<br>AB. T              | GROUNDWATER                     |  |
|                  | BO                                                 |                                                                                  | STR         | (m)            | z        |      | BLO        | 20 4                       | 10               | 60 8                | 0              | 20       |                    |        |        |         | Ľ^                         | OBSERVATION                     |  |
|                  | _                                                  | GROUND SURFACE                                                                   |             | 488.30         |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            |                                 |  |
|                  |                                                    | ASPHALT PAVEMENT<br>SAND and GRAVEL, well graded,                                | .0:.0       | 488.10         |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            | P. 4                            |  |
|                  |                                                    | angular, some silt, medium brown, dry<br>(GRANULAR BASE)                         | 000         | 487.84         |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            | <i>K</i> . <i>R</i> .           |  |
|                  |                                                    | (ML) CLAYEY SILT, trace fine sand,<br>medium brown, (FILL), w>PL, soft           |             |                |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            | N. 9                            |  |
| 1                |                                                    |                                                                                  |             |                |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            | \$. q                           |  |
|                  | p                                                  |                                                                                  |             | 487.08         |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            | P. 9                            |  |
|                  | Acker MP-5 Power Auger Boring<br>Solid Stem Augers | (CI) SILTY CLAY, medium brown, w>PL, soft to firm                                |             | 1.22           |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            | Grout                           |  |
|                  | NP-5 Power Auger<br>Solid Stem Augers              |                                                                                  |             |                |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            | Giout                           |  |
| 2                | d Sterr                                            |                                                                                  |             |                | 1P-1     | то   |            |                            |                  |                     |                |          | -0                 | -      |        |         | PP=<br>0.5<br>MH           | P. 9                            |  |
| 4                | Soli                                               |                                                                                  |             |                | <u> </u> |      |            |                            |                  |                     |                |          | ·                  |        |        |         |                            | P. 4                            |  |
|                  | ACK                                                | (CH) CLAY, medium brown, w>PL, firm                                              |             | 485.86<br>2.44 |          | -    |            |                            |                  |                     |                |          |                    | ÷      |        |         |                            | <i>P</i> . 4                    |  |
|                  |                                                    |                                                                                  |             |                | 1P-2     | то   |            |                            |                  |                     |                |          | 0                  |        |        |         | PP=                        | P                               |  |
| 3                |                                                    |                                                                                  |             |                |          |      |            |                            |                  |                     |                |          |                    |        |        |         | 1.25                       | 4                               |  |
|                  |                                                    |                                                                                  |             |                |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            | VW11192                         |  |
|                  |                                                    |                                                                                  |             | 484.64         | 1P-3     | то   |            |                            |                  |                     |                | ŀ        | -0                 | -      |        |         | PP=<br>1.5<br>MH           | $K = d_1 = K = d_2$             |  |
| 5<br>6<br>7<br>8 |                                                    | borehole 11-0057-BH1.<br>Soil description derived from the<br>adjacent borehole. |             |                |          |      |            |                            |                  |                     |                |          |                    |        |        |         |                            |                                 |  |
| DEP              |                                                    | SCALE                                                                            |             |                |          |      |            |                            | folde            | r                   |                |          |                    |        |        |         |                            | DGGED: CSF<br>ECKED: HV         |  |

| PRC                | DJEC                                               | T: 11-1362-0057.5000                                                                                                                                                                                                                                                                                                           | RE          | ECOF                  | RD (       | OF                 | В    | ORI                            | EHC    | LE:                         | 11                                                 | -005     | 57-B                                                                                                                        | H2   |        |          |                            | Sł                                                  | HEET 1 OF 1             |                             |
|--------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|------------|--------------------|------|--------------------------------|--------|-----------------------------|----------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|------|--------|----------|----------------------------|-----------------------------------------------------|-------------------------|-----------------------------|
| LOC                | ATIC                                               | DN: Cherry Lane N 5775620.20 E 385                                                                                                                                                                                                                                                                                             | 5980.90     | 0                     |            |                    |      | DRIL                           | L RIG: | TE: 23/<br>Acker M<br>ONTRA | P-5                                                | Paddock  | Drilling                                                                                                                    | Ltd. |        |          |                            | D                                                   | ATUM: City Date         | um                          |
|                    | ПО                                                 | SOIL PROFILE                                                                                                                                                                                                                                                                                                                   |             |                       | SAN        | /IPLE              | s    | DYNA                           |        | NETRATI                     | ON                                                 | <u>\</u> | -                                                                                                                           |      | ONDUCT | IVITY,   | T                          | .0                                                  | PIEZOMETE               |                             |
| METRES             | BORING METHOD                                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                    | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER     | TYPE<br>BLOWS/0.3m |      | SHEAR STRENGTH n<br>Cu, kPa re |        |                             | 60 80<br>nat V. + Q - ●<br>rem V. ⊕ U - ○<br>60 80 |          | 10 <sup>-8</sup> 10 <sup>-5</sup> 10 <sup>-4</sup> 10<br>WATER CONTENT PERCEI<br>Wp I W I N N N N N N N N N N N N N N N N N |      |        | NT<br>NI | ADDITIONAL<br>LAB. TESTING | STANDPI<br>INSTALLAT<br>AND<br>GROUNDW/<br>OBSERVAT | TION<br>ATER            |                             |
| 0                  |                                                    | GROUND SURFACE<br>ASPHALT PAVEMENT                                                                                                                                                                                                                                                                                             |             | 485.90<br>0.00        |            |                    |      |                                |        |                             |                                                    |          |                                                                                                                             |      |        |          |                            |                                                     | Flushmount              |                             |
|                    |                                                    | ORGANIC SILT, black, wet, soft                                                                                                                                                                                                                                                                                                 |             | 485.67<br>0.23        |            |                    |      |                                |        |                             |                                                    |          |                                                                                                                             |      |        |          |                            |                                                     |                         | A 7 A                       |
| 1                  |                                                    | (CI) SILTY CLAY, trace fine sand,<br>medium brown, w>PL, firm                                                                                                                                                                                                                                                                  |             | <u>485.14</u><br>0.76 | 2-1        | AS                 |      |                                |        |                             |                                                    |          |                                                                                                                             | 0    |        |          |                            | PP=<br>0.5<br>PP=<br>0.75                           |                         | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
| 2                  | Acker MP-5 Power Auger Boring<br>Solid Stem Augers | (CH) CLAY, medium brown, w>PL, firm                                                                                                                                                                                                                                                                                            |             | 483.46<br>2.44        | 2-3<br>2-4 | AS<br>AS           |      |                                |        |                             |                                                    |          |                                                                                                                             |      |        |          | PP=<br>1.5<br>PP=<br>0.5   | Slope Indicator<br>in Grout                         | A A A A A A             |                             |
| 3                  | Acker MP-5 F<br>Solid S                            | (CI) SILTY CLAY, some sand and<br>gravel, medium brown, (TILL), w~PL,<br>very stiff                                                                                                                                                                                                                                            |             | 483.00<br>2.90        | 2-5        | AS                 |      |                                |        |                             |                                                    |          | Ф                                                                                                                           |      |        |          |                            | PP=                                                 | in Giul                 | A A A A A                   |
| 4                  |                                                    | (ML) sandy SILT, some fine gravel,<br>medium brown, (TILL), w <pl, stiff<="" td="" very=""><td></td><td>482.24<br/>3.66</td><td>2-5</td><td>AS</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>PP=<br/>3.0<br/>PP=<br/>3.0</td><td></td><td>2 4 4 4 4 4</td></pl,> |             | 482.24<br>3.66        | 2-5        | AS                 |      |                                |        |                             |                                                    |          | 0                                                                                                                           |      |        |          |                            | PP=<br>3.0<br>PP=<br>3.0                            |                         | 2 4 4 4 4 4                 |
| 5                  |                                                    | - grey                                                                                                                                                                                                                                                                                                                         |             | 480.69                | 2-7        | AS                 | •••• |                                |        |                             | · · ·                                              |          | 0                                                                                                                           |      |        |          |                            |                                                     |                         | 4 4 4 4 4 4 4               |
| 6                  |                                                    | END OF BOREHOLE = 5.21m                                                                                                                                                                                                                                                                                                        |             | 5.21                  |            |                    |      |                                |        |                             |                                                    |          |                                                                                                                             |      |        |          |                            |                                                     |                         |                             |
| 8                  |                                                    |                                                                                                                                                                                                                                                                                                                                |             |                       | 1T         |                    |      |                                |        |                             |                                                    |          |                                                                                                                             |      |        |          |                            |                                                     |                         |                             |
| 9                  |                                                    |                                                                                                                                                                                                                                                                                                                                |             |                       |            |                    |      |                                |        |                             |                                                    |          |                                                                                                                             |      |        |          |                            |                                                     |                         |                             |
| 10<br>DEF<br>1 : 5 |                                                    | SCALE                                                                                                                                                                                                                                                                                                                          |             |                       |            |                    |      | Ø                              |        | Golde                       | r                                                  |          |                                                                                                                             |      |        |          |                            |                                                     | DGGED: CSF<br>ECKED: HV |                             |

|        |                                                    |                                                                                                                                                           |             |                          |        |      |            | DRILL RIG: Acker MP-5<br>DRILLING CONTRACTOR: F                         | addock         | _                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|--------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|--------|------|------------|-------------------------------------------------------------------------|----------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|        | DOH.                                               | SOIL PROFILE                                                                                                                                              |             |                          | SAM    | MPLE | -          | DYNAMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m                           | Ì,             | HYDRAULIC COND<br>k, cm/s                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PIEZOMETER C                                                                  |
| MEIKES | BORING METHOD                                      | DESCRIPTION                                                                                                                                               | STRATA PLOT | ELEV.<br>DEPTH<br>(m)    | NUMBER | TYPE | BLOWS/0.3m | 20 40 60 8<br>SHEAR STRENGTH nat V. +<br>Cu, kPa rem V. ⊕<br>20 40 60 8 | Q - ●<br>U - ○ | 10 <sup>-6</sup> 10 <sup>-5</sup><br>WATER CONT<br>Wp I | $\begin{array}{c} 10^4 & 10^3 \\ \hline 1 & 1 \\ \hline 1 &$ | PIEZOMETER C<br>STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATE<br>OBSERVATION |
| 0      |                                                    | GROUND SURFACE<br>ASPHALT PAVEMENT                                                                                                                        |             | 485.90<br>0.00           |        |      |            |                                                                         |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|        |                                                    | ORGANIC SILT, black, wet, soft                                                                                                                            |             | 485.67<br>0.23           |        |      |            |                                                                         |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
| 1      | бu                                                 | (CI) SILTY CLAY, trace fine sand,<br>medium brown, w>PL, firm                                                                                             |             | 485.14<br>0.76           |        |      |            |                                                                         |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grout                                                                         |
| 2      | Acker MP-5 Power Auger Boring<br>Solid Stem Augers | - stiff                                                                                                                                                   |             |                          | 2P-1   | то   | то         |                                                                         |                | 0                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PP=<br>1.0                                                                    |
|        | Acker                                              | (CH) CLAY, medium brown, w>PL, firm                                                                                                                       |             | 483.46<br>2.44           | 2P-2   | то   |            |                                                                         |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ър=<br>3.0<br>ИН                                                              |
| 3      |                                                    | (CI) SILTY CLAY, some sand and<br>gravel, medium brown, (TILL), w~PL,<br>very stiff                                                                       |             | 483.00<br>2.90<br>482.45 | 2P-3   | то   |            |                                                                         |                | 0                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9P> P-                                    |
|        |                                                    | END OF BOREHOLE = 3.45m<br>NOTE:<br>Borehole was drilled 0.3m west of<br>borehole 11-0057-BH2.<br>Soil description derived from the<br>adjacent borehole. |             | 3.45                     |        |      |            |                                                                         |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|        |                                                    | SCALE                                                                                                                                                     |             |                          |        |      |            | Golder                                                                  |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOGGED: CSF                                                                   |

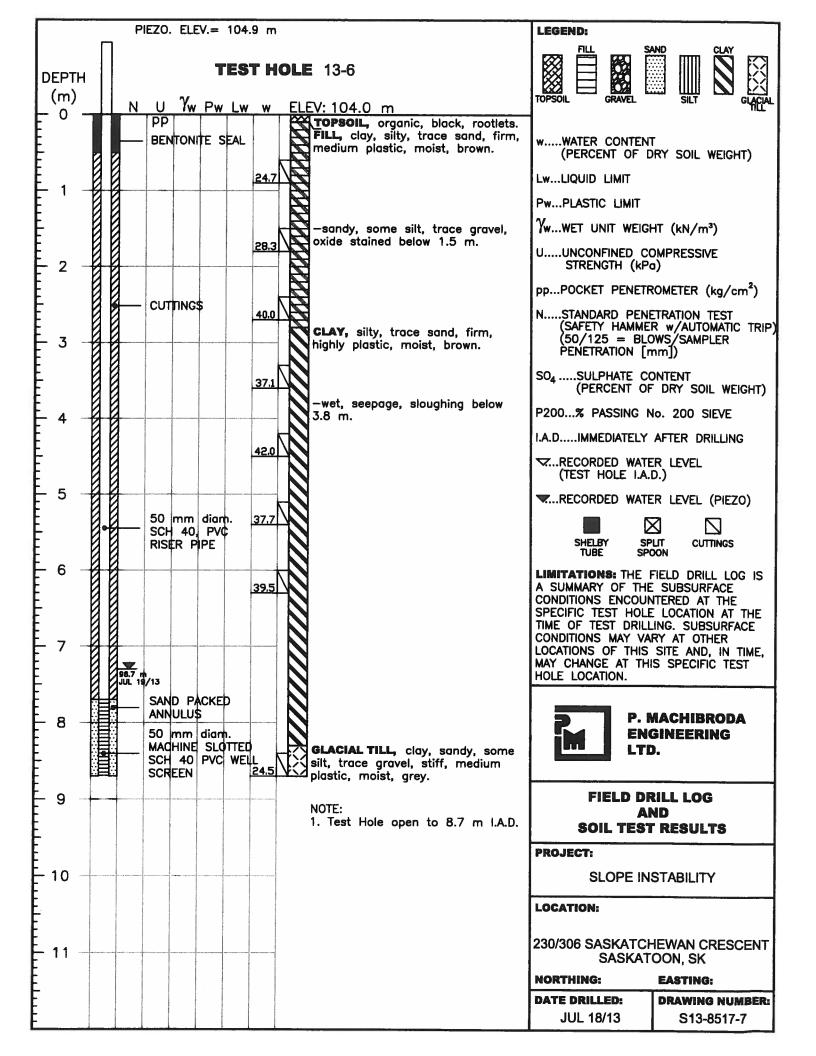

| PRO     | CATIC                                              | DN: Cherry Lane N 5775622.30 E 3859                                                                                                                                                                             | 959.40      | )                                |        |      |            | BORING DA                                | Acker M    | P-5                               | -005                |         |          |                                 |        |          | D                          | ATUM: City Datu                                      | JM                    |
|---------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|--------|------|------------|------------------------------------------|------------|-----------------------------------|---------------------|---------|----------|---------------------------------|--------|----------|----------------------------|------------------------------------------------------|-----------------------|
| Т       | 0                                                  | SOIL PROFILE                                                                                                                                                                                                    |             |                                  | SAN    | /PLE | s          | DRILLING CO<br>DYNAMIC PEN<br>RESISTANCE |            |                                   | Paddock             | -       | AULIC CO | ONDUCT                          | IVITY, | <b>–</b> |                            | PIEZOMETE                                            |                       |
| MILINEO | BORING METHOD                                      | DESCRIPTION                                                                                                                                                                                                     | STRATA PLOT | ELEV.<br>DEPTH<br>(m)            | NUMBER | TYPE | BLOWS/0.3m | 20<br>SHEAR STREI<br>Cu, kPa             | 40<br>NGTH | 50 8<br>⊥<br>nat V. +<br>rem V. ⊕ | 0<br>Q - •<br>U - O | w<br>wr | ATER C   | 0 <sup>-5</sup> 10<br>NTENT<br> |        | NT<br>MI | ADDITIONAL<br>LAB. TESTING | STANDPI<br>INSTALLAT<br>AND<br>GROUNDWA<br>OBSERVATI | PE<br>TION<br>ATE     |
| 0 -     | Boring                                             | GROUND SURFACE<br>ASPHALT PAVEMENT<br>SAND and GRAVEL, well graded,<br>angular, some silt, medium brown, moist<br>(GRANULAR BASE)<br>(CL) sandy SILTY CLAY, some gravel,<br>medium brown, (Possibly FILL), w>PL |             | 484.10<br>0.08<br>0.13<br>482.58 | 3-1    | AS   |            |                                          |            |                                   |                     |         | 0        |                                 |        |          |                            | Flushmount<br>Grout<br>VW11984                       | 8 0 8 0 8 0 8 0 8 0 8 |
| 2       | Acker MP-5 Power Auger Boring<br>Solid Stem Augers | (SC) CLAYEY SAND, fine grained, some<br>silt, medium brown, moist<br>(SM) SILTY SAND, fine grained, some to<br>trace gravel, light brown, very moist                                                            |             | 1.52<br>481.66<br>2.44           | 3-3    | AS   |            |                                          |            |                                   |                     | +<br>0  | <b>D</b> |                                 |        |          | МН                         | Slope Indicator<br>in Grout                          | 0 0 0 0 0 0 0 0 0 0   |
| 3       |                                                    | END OF BOREHOLE = 3.81m                                                                                                                                                                                         |             | 480.29<br>3.81                   | 3-5    | AS   |            |                                          |            |                                   |                     | 0       |          |                                 |        |          |                            |                                                      | A A A A A A           |
| 5       |                                                    |                                                                                                                                                                                                                 |             |                                  |        |      |            |                                          |            |                                   |                     |         |          |                                 |        |          |                            |                                                      |                       |
| 6<br>7  |                                                    |                                                                                                                                                                                                                 |             |                                  |        |      |            |                                          |            |                                   |                     |         |          |                                 |        |          |                            |                                                      |                       |
| 8       |                                                    |                                                                                                                                                                                                                 |             |                                  |        |      |            |                                          |            |                                   |                     |         |          |                                 |        |          |                            |                                                      |                       |
| 10      |                                                    | SCALE                                                                                                                                                                                                           |             |                                  |        |      |            |                                          | Folde      |                                   |                     |         |          |                                 |        |          |                            | DGGED: CSF                                           |                       |




# HISTORICAL BOREHOLE LOGS TH 13-1, 13-2, 13-3, 13-4, 13-5, 13-6 AND CPT 13-1 (PMEL13)

P. Machibroda Engineering Ltd. July 18, 2013. Slope Instability 230/306 Saskatchewan Crescent Saskatoon, SK. Drawing No S13-8517-1 to 7,

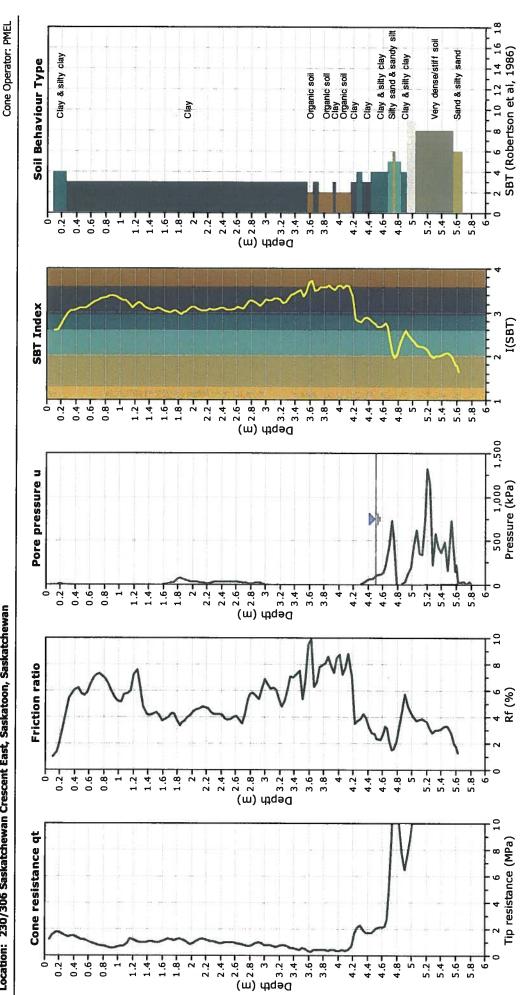


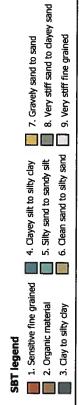





|              | PIEZO. ELEV.= 99.9 m                                                                                      |                                                                                                                                               | LEGEND:                                                                                                                                                                                                                                                                                    |
|--------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH<br>(m) | <b>TEST HOL</b><br>N U <sup>γ</sup> w Pw Lw w E                                                           | LE 13-3<br>ILEV: 99.1 m                                                                                                                       |                                                                                                                                                                                                                                                                                            |
|              | CUTTINGS 20.4                                                                                             | <b>TOPSOIL,</b> organic, black, rootlets.<br><b>CLAY,</b> silty, some sand, firm to<br>stiff, highly plastic, moist, brown,<br>oxide stained. | wWATER CONTENT<br>(PERCENT OF DRY SOIL WEIGHT)<br>LwLIQUID LIMIT<br>PwPLASTIC LIMIT<br>γwWET UNIT WEIGHT (kN/m³)                                                                                                                                                                           |
| 2            | 1.0<br>50 mm diam.<br>SCH 40, PVC<br>RISER PIPE<br>1.76 18.5 43.6 32.8                                    |                                                                                                                                               | <ul> <li>WWET UNIT WEIGHT (KN/M<sup>2</sup>)</li> <li>UUNCONFINED COMPRESSIVE<br/>STRENGTH (kPa)</li> <li>ppPOCKET PENETROMETER (kg/cm<sup>2</sup>)</li> <li>NSTANDARD PENETRATION TEST<br/>(SAFETY HAMMER w/AUTOMATIC TRIP)<br/>(50/125 = BLOWS/SAMPLER</li> </ul>                        |
|              | SAND PACKED                                                                                               |                                                                                                                                               | PENETRATION [mm])<br>SO <sub>4</sub> SULPHATE CONTENT<br>(PERCENT OF DRY SOIL WEIGHT)<br>P200% PASSING No. 200 SIEVE<br>I.A.DIMMEDIATELY AFTER DRILLING                                                                                                                                    |
|              | 50 mm diam.<br>MACHINE SLOTTED<br>SCH 40 PVC WELL                                                         | <b>GLACIAL TILL,</b> clay, sandy, some<br>silt, trace gravel, stiff to very stiff,<br>medium plastic, moist, brown.<br>-grey below 5.5 m.     | <ul> <li>✓RECORDED WATER LEVEL<br/>(TEST HOLE I.A.D.)</li> <li>✓RECORDED WATER LEVEL (PIEZO)</li> </ul>                                                                                                                                                                                    |
|              | 2.0<br>2.0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | -wet, seepage, sloughing 6.1 to<br>6.5 m.                                                                                                     | LIMITATIONS: THE FIELD DRILL LOG IS<br>A SUMMARY OF THE SUBSURFACE<br>CONDITIONS ENCOUNTERED AT THE<br>SPECIFIC TEST HOLE LOCATION AT THE<br>TIME OF TEST DRILLING. SUBSURFACE<br>CONDITIONS MAY VARY AT OTHER<br>LOCATIONS OF THIS SITE AND, IN TIME,<br>MAY CHANGE AT THIS SPECIFIC TEST |
|              |                                                                                                           | NOTE:<br>1. Test Hole sloughed to 5.9 m<br>I.A.D.                                                                                             | HOLE LOCATION.  P. MACHIBRODA ENGINEERING LTD.                                                                                                                                                                                                                                             |
| - 9<br>-     |                                                                                                           |                                                                                                                                               | FIELD DRILL LOG<br>AND<br>SOIL TEST RESULTS                                                                                                                                                                                                                                                |
| - 10         |                                                                                                           |                                                                                                                                               | PROJECT:<br>SLOPE INSTABILITY<br>LOCATION:                                                                                                                                                                                                                                                 |
| E<br>- 11    |                                                                                                           |                                                                                                                                               | 230/306 SASKATCHEWAN CRESCENT<br>SASKATOON, SK<br>NORTHING: EASTING:                                                                                                                                                                                                                       |
|              |                                                                                                           |                                                                                                                                               | DATE DRILLED:<br>JUL 17/13DRAWING NUMBER:<br>S13-8517-4                                                                                                                                                                                                                                    |

|                 |   | PIE               | ZO.                 | ELE         | V.=  | 100.                | 3 m                |                                   |                                                                        | LEGEND:                                                                                                          |                                               |                                          |                                  |             |
|-----------------|---|-------------------|---------------------|-------------|------|---------------------|--------------------|-----------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------|-------------|
| DEPTH<br>(m)    | 1 | N                 | U                   | γw          |      | ' <b>ES</b> '<br>Lw |                    | <b>E</b> 13-4<br>EV: 99.9 m       |                                                                        |                                                                                                                  |                                               | SILT                                     | CLAY                             | GLACIAL     |
|                 |   | 1                 | pp                  |             | TE S |                     |                    | TOPSOIL, org<br>CLAY, silty, f    | anic, black, rootlets.<br>irm to stiff, highly<br>brown, oxide stained | (FERCENT                                                                                                         | OF DR                                         | Y SOIL                                   | WEIGH                            | IT)         |
|                 |   |                   | 1.5                 |             |      |                     | 33.5               |                                   |                                                                        | LwLIQUID LIMI<br>PwPLASTIC LII<br>YwWET UNIT V                                                                   | MIT                                           | (kN/n                                    | n³)                              |             |
| - 2             |   |                   |                     |             |      |                     |                    |                                   |                                                                        | UUNCONFINE<br>STRENGTH                                                                                           |                                               | IPRESS                                   | VE                               |             |
|                 |   | 0                 | ситт                | INGS        | 5    |                     |                    |                                   |                                                                        | ppPOCKET PE<br>NSTANDARD<br>(SAFETY HA                                                                           |                                               | RATION<br>w/AUT                          | TEST                             | -           |
|                 |   |                   | 1.0<br>50 r         | mm          | dian |                     | 34.9               |                                   |                                                                        | (50/125 =<br>PENETRATIO<br>SO₄ŞULPHAT                                                                            | BLOW<br>N [mn                                 | s/sam<br>n])                             | PLER                             |             |
|                 |   |                   |                     | 40,         | PV(  |                     |                    |                                   |                                                                        | (PERCEN                                                                                                          | IT OF<br>NG No                                | DRY SC<br>200                            | SIEVE                            | -           |
|                 |   | 95.2 m<br>JUL 22/ | 1.5                 | <u>1.67</u> | 17.7 | 43.5                | 34.2               |                                   |                                                                        | I.A.DIMMEDIA                                                                                                     | WATER                                         | LEVEL                                    |                                  | 3           |
| - 5 ·           |   |                   | 50 r<br>MAQH        | HINE        |      | )TTEC               |                    | sand, trace g                     | , clay, silty, some<br>ravel, stiff, medium                            |                                                                                                                  |                                               |                                          |                                  | 0)          |
| - 6 -           |   |                   | SCRE<br>1.5<br>SANE | EEN         | CKE  | WEL<br>D            | L<br>11.8          | plastic, moist,<br>SAND AND GR    | AVEL, some silt,                                                       | TUBE<br>LIMITATIONS: 1<br>A SUMMARY OF                                                                           | Spoo<br>The Fie<br>The S                      | n<br>Eld Dr<br>Subsuf                    | ILL LO<br>RFACE                  | G IS        |
|                 |   |                   | ANNU<br>SLOU        |             | 5    |                     | <u>16.1</u><br>8.6 | seepage, sloug                    | clay, sandy, some<br>vel, hard, medium                                 | CONDITIONS EN<br>SPECIFIC TEST<br>TIME OF TEST<br>CONDITIONS MA<br>LOCATIONS OF<br>MAY CHANGE A<br>HOLE LOCATION | HOLE<br>DRILLIN<br>Y VARY<br>THIS S<br>T THIS | LOCATIC<br>IG. SUE<br>' AT O'<br>ITE ANI | DN AT<br>BSURFA<br>THER<br>D. IN | CE<br>TIME, |
| - 8 -           |   |                   |                     |             |      |                     |                    | NOTE:<br>1. Test Hole s<br>I.A.D. | sloughed to 6.5 m                                                      | Ĩm                                                                                                               |                                               | ACHIE<br>Neer                            |                                  | A           |
| -<br>- 9 -<br>- |   |                   |                     |             |      |                     |                    |                                   |                                                                        | FIELI<br>SOIL T                                                                                                  | ANI                                           | -                                        |                                  |             |
| E<br>- 10 -     |   |                   |                     |             |      |                     |                    |                                   |                                                                        | PROJECT:<br>SLOP                                                                                                 | E INS                                         |                                          | ΓY                               |             |
| Ē               |   |                   |                     |             |      |                     |                    |                                   |                                                                        | LOCATION:                                                                                                        |                                               |                                          |                                  |             |
| E 11 -          |   |                   |                     |             |      |                     |                    |                                   |                                                                        | 230/306 SASK/<br>SAS<br>NORTHING;                                                                                | <b>KATO</b>                                   | WAN (<br>ON, SM<br><b>Astin</b>          | C C                              | CENT        |
| F               |   |                   |                     |             |      |                     |                    |                                   |                                                                        |                                                                                                                  |                                               |                                          |                                  |             |
| Ē               |   |                   |                     |             |      |                     |                    |                                   |                                                                        | DATE DRILLED:<br>JUL 17/13                                                                                       | <b> </b>                                      | S13                                      | <b>ig nui</b><br>-8517-          | -           |


| PIEZO. ELEV.= 103.6 m                                                                                                       | LEGEND:                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH         TEST HOLE         13-5           (m)         N         0         γ <sub>w</sub> Pw Lw         w ELEV: 102.6 m |                                                                                                                                                                                                                |
| PP<br>BENTONITE SEAL<br>BENTONITE SEAL<br>FILL, clay, sandy, some silt, t<br>gravel, firm, medium plastic, m<br>brown.      | noist, (PERCENT OF DRY SOIL WEIGHT)                                                                                                                                                                            |
| <b>CLAY,</b> silty, trace sand, firm,<br>highly plastic, moist, brown, ov<br>stained.                                       | kide γwWET UNIT WEIGHT (kN/m³)                                                                                                                                                                                 |
| 2 50 mm diam.<br>SCH 40, PVC                                                                                                | UUNCONFINED COMPRESSIVE<br>STRENGTH (kPa)<br>ppPOCKET PENETROMETER (kg/cm <sup>2</sup> )                                                                                                                       |
| RISER PIPE                                                                                                                  | NSTANDARD PENETRATION TEST<br>(SAFETY HAMMER w/AUTOMATIC TRIP)<br>(50/125 = BLOWS/SAMPLER<br>PENETRATION [mm])<br>SO4SULPHATE CONTENT                                                                          |
|                                                                                                                             | (PERCENT OF DRY SOIL WEIGHT)<br>P200% PASSING No. 200 SIEVE<br>I.A.DIMMEDIATELY AFTER DRILLING                                                                                                                 |
| - 5                                                                                                                         | <ul> <li>✓RECORDED WATER LEVEL<br/>(TEST HOLE I.A.D.)</li> <li>✓RECORDED WATER LEVEL (PIEZO)</li> </ul>                                                                                                        |
|                                                                                                                             | SHELBY SPLIT CUTTINGS<br>TUBE SPOON                                                                                                                                                                            |
|                                                                                                                             | LIMITATIONS: THE FIELD DRILL LOG IS<br>A SUMMARY OF THE SUBSURFACE<br>CONDITIONS ENCOUNTERED AT THE<br>SPECIFIC TEST HOLE LOCATION AT THE<br>TIME OF TEST DRILLING. SUBSURFACE<br>CONDITIONS MAY VARY AT OTHER |
| <b>GLACIAL TILL,</b> clay, some silt,<br>some sand, trace gravel, stiff,<br>nedium plastic, moist, grey.                    | LOCATIONS OF THIS SITE AND, IN TIME,<br>MAY CHANGE AT THIS SPECIFIC TEST<br>HOLE LOCATION.                                                                                                                     |
| 8 SAND PACKED<br>ANNULUS<br>50 mm diam.<br>MACHINE SLOTTED<br>SCH 40 PVC WELL<br>SCREEN 11.4                                | P. MACHIBRODA<br>ENGINEERING<br>LTD.                                                                                                                                                                           |
| NOTE:<br>1. Test Hole open to 9.0 m a                                                                                       |                                                                                                                                                                                                                |
| dry I.A.D.                                                                                                                  | PROJECT:<br>SLOPE INSTABILITY                                                                                                                                                                                  |
|                                                                                                                             | LOCATION:<br>230/306 SASKATCHEWAN CRESCENT<br>SASKATOON, SK                                                                                                                                                    |
|                                                                                                                             | NORTHING: EASTING:                                                                                                                                                                                             |
|                                                                                                                             | DATE DRILLED:DRAWING NUMBER:JUL 18/13S13-8517-6                                                                                                                                                                |




P. Machibroda Engineering Ltd. Saskatoon, Saskatchewan S7K 4A2 www.machibroda.com 806-48th Street East

# **Slope Stability Assessment** Project:

Location: 230/306 Saskatchewan Crescent East, Saskatoon, Saskatchewan





CPeT-IT v.1.7.5.17 - CPTU data presentation & interpretation software - Report created on: 19/07/2013, 8:39:55 AM Project file: Y:\S13\8517\CPT.cpt

CPT: 13-1

Total depth: 5.81 m, Date: 18/07/2013 Surface Elevation: 0.00 m

Coords: X:0.00, Y:0.00

Cone Type: 15 cm^2



### 2013 BOREHOLE LOGS COS-13-001, COS-13-001B, COS-13-002, COS-13-003, COS-13-004, COS 13-005, COS-13-006, COS-13-007 (GAL13)



| PF                                                                                          | roje                        | ECT: | Cherry Lane Slope Remediation                                                                                                                                              | R           | ECO                              | RD     | OF       | = E        | BOREHOLE: CO                                                                     | S-1      | 3-001                                                                        |                                            | SH                         | IEET 1 OF 1                                                     |
|---------------------------------------------------------------------------------------------|-----------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|--------|----------|------------|----------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------|--------------------------------------------|----------------------------|-----------------------------------------------------------------|
| LC                                                                                          | )CA⁻                        | TION | k: N 5775616.7 E 386038.9                                                                                                                                                  |             |                                  |        |          |            | BORING DATE: 07/26/13<br>DRILL RIG: CME<br>DRILLING CONTRACTOR: Bos              | ss Drill | ling                                                                         |                                            | DA                         | ATUM: NAD83                                                     |
| щ                                                                                           | 6                           | 3    | SOIL PROFILE                                                                                                                                                               |             |                                  | SAN    | 1PLE     | s          | DYNAMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m                                    |          | HYDRAULIC CONDUCTIVI<br>k, cm/s                                              | тү, Т                                      | o.                         | PIEZOMETER OR                                                   |
| DEPTH SCALE<br>METRES                                                                       | RORING METHOD               |      | DESCRIPTION                                                                                                                                                                | STRATA PLOT | ELEV.<br>DEPTH<br>(m)            | NUMBER | TYPE     | BLOWS/0.3m | 20 40 60 80<br>SHEAR STRENGTH nat V. + Q<br>Cu, kPa rem V. ⊕ U<br>50 100 150 200 | J- O     | 10 <sup>-6</sup> 10 <sup>-5</sup> 10 <sup>-4</sup><br>WATER CONTENT PE<br>Wp | 10 <sup>-3</sup> ⊥<br>ERCENT<br>→ WI<br>80 | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATER<br>OBSERVATIONS |
| - 0                                                                                         |                             |      | GROUND SURFACE                                                                                                                                                             |             | 489.34                           |        |          |            |                                                                                  |          |                                                                              |                                            |                            |                                                                 |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    |                             | _    | ASPHALT<br>(ML) CLAYEY SILT, some fine grained<br>sand, brown, some black mottling,<br>w>PL, very soft                                                                     |             | 0.00 489.03 0.30                 |        | AS       |            |                                                                                  |          | 0                                                                            |                                            | PP>0                       | -                                                               |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                             |      | (CL) SILTY CLAY, low plasticity, trace<br>fine grained gravel, brown/black, trace<br>iron staining, trace gypsum/weathered<br>gypsum, some organics, w>PL, soft to<br>firm |             | 488.12<br>1.22                   | 001-2  | AS       |            |                                                                                  |          | 0                                                                            |                                            |                            | -                                                               |
|                                                                                             |                             |      | -plasticity increases with depth                                                                                                                                           |             |                                  | 001-3  | AS       |            |                                                                                  |          | 0                                                                            |                                            | PP=1                       |                                                                 |
| - 3<br>-<br>-<br>-<br>-<br>-                                                                |                             |      | (CI) SILTY CLAY, medium-high<br>plasticity, trace fine grained gravel,<br>brown, trace gypsum                                                                              |             | 486.29<br>3.05                   |        | _        |            |                                                                                  |          |                                                                              |                                            | P=0.75                     | -                                                               |
| -<br>-<br>- 4<br>-<br>-                                                                     | m Auger                     | Jht  |                                                                                                                                                                            |             |                                  | 001-4  | AS<br>AS |            |                                                                                  |          | 0                                                                            |                                            | PP>0                       | -                                                               |
| -<br>-<br>-<br>-<br>-<br>5                                                                  | 150mm Dia. Solid Stem Auger | 0    | (CH) CLAY, high plasticity, some silt,<br>brown, trace sand, trace gypsum, w>PL,                                                                                           |             | <u>484.46</u><br>4.88            | 001-6  | AS       |            |                                                                                  |          | H-0I                                                                         |                                            | SG<br>MH                   | -                                                               |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>6                                                        | 150r                        |      | soft to very soft                                                                                                                                                          |             |                                  | 001-7  | AS       |            |                                                                                  |          | 0                                                                            | P                                          | P=0.75-                    | 1                                                               |
|                                                                                             |                             |      | (CL) SILTY CLAY, some fine grained<br>gravel, grey, (TILL), w~PL, stiff to very<br>stiff                                                                                   |             | 482.79<br>6.55                   | 001-8  | AS       |            |                                                                                  |          | 0                                                                            |                                            | PP=1.5                     | 07/26/13∑                                                       |
|                                                                                             |                             | _    | (SM) SILTY SAND, trace gravel, fine to<br>medium grained, grey, wet<br>(CL) SILTY CLAY, some sand, some<br>gravel, fine to coarse grained, grey,                           |             | 481.41<br>7.92<br>481.11<br>8.23 | 001-9  | AS       |            |                                                                                  |          | 0                                                                            |                                            | МН                         |                                                                 |
| 9                                                                                           |                             |      | (TILL), w~PL<br>END OF BOREHOLE = 9.4m<br>Notes:<br>1. Upon completion of drilling, the<br>borehole was backfilled with bentonite<br>chips to the ground surface.          |             | 479.89<br>9.45                   | 001-10 | AS       |            |                                                                                  |          | 0                                                                            |                                            |                            |                                                                 |
|                                                                                             |                             |      |                                                                                                                                                                            |             |                                  |        |          |            |                                                                                  |          |                                                                              |                                            |                            |                                                                 |
| DE                                                                                          | EPTH<br>50                  | H SC | ALE                                                                                                                                                                        |             |                                  |        | -        | -          | Golder                                                                           | 1        |                                                                              |                                            |                            | DGGED: LM<br>ECKED: LDN                                         |

11-1362-0057-5100 BOREHOLES.GPJ GAL-SASK.GDT 05/05/14 SOIL

|                                                                                                                                                               | SOIL PROFILE |                                                                              | 644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | //PLE | \$         | DRILL RIG: CME<br>DRILLING CONTRACT<br>DYNAMIC PENETRATION |                                         |                                                  | ONDUCTIVITY,                                                                               | -                                  |                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------|
| BORING METHOD                                                                                                                                                 | DESCRIPTION  | (m) STRATA PLOT<br>(m) (m)                                                   | IBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | BLOWS/0.3m | RESISTANCE, BLOWS/0.<br>20 40 60<br>SHEAR STRENGTH nat     | .3m<br>80<br>tV. + Q - ●<br>nV. ⊕ U - O | k, cm/s<br>10 <sup>-6</sup> 1<br>WATER C<br>Wp I | 0 <sup>-5</sup> 10 <sup>-4</sup> 10 <sup>-3</sup><br>ONTENT PERCENT<br>OW I WI<br>40 60 80 | ADDITIONAL<br>LAB. TESTING         | PIEZOMETER C<br>STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATE<br>OBSERVATION |
| 0 1 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 4 3 4 2 4 3 4 2 4 3 4 2 4 3 4 2 4 3 4 2 4 3 4 2 4 3 4 3 |              | 489.3<br>0.0<br>484.1<br>5.1<br>482.1<br>7.1<br>482.1<br>7.1<br>482.1<br>7.1 | 0<br>6<br>8<br>001B-1<br>9<br>5<br>001B-3<br>8<br>6<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>001B-3<br>0 | то    |            |                                                            |                                         |                                                  |                                                                                            | PP=1.<br>D<br>PP=1.<br>2057*<br>MH | VW25927                                                                       |

| PR                    | OJEC                                             | T: Cherry Lane Slope Remediation                                                                       | R           | ECO              | RD             | OF       | E          | BOREHOLE:                                             | CC                  | <b>)S-</b> 1   | 13-0  | 02                           |                                                   |   | Sł                         | HEET 1 OF 2               |
|-----------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|------------------|----------------|----------|------------|-------------------------------------------------------|---------------------|----------------|-------|------------------------------|---------------------------------------------------|---|----------------------------|---------------------------|
| LO                    | CATIO                                            | DN: N 5775616.7 E 386038.9                                                                             |             |                  |                |          |            | BORING DATE: 07/<br>DRILL RIG: CME<br>DRILLING CONTRA |                     | oss Dril       | llina |                              |                                                   |   | D                          | ATUM: NAD83               |
|                       | DO                                               | SOIL PROFILE                                                                                           |             |                  | SAM            | IPLES    | \$         | DYNAMIC PENETRATI                                     | ON                  | ١              | -     |                              | ONDUCTIVITY,                                      | т |                            | PIEZOMETER OR             |
| DEPTH SCALE<br>METRES | BORING METHOD                                    |                                                                                                        | -0          |                  | <u>م</u>       |          | Зш         | RESISTANCE, BLOWS                                     | io.3m<br>io 80      | , `,           | 10    | k, cm/s<br>) <sup>-6</sup> 1 | 0 <sup>-5</sup> 10 <sup>-4</sup> 10 <sup>-3</sup> |   | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION |
| PTH 8                 | ING N                                            | DESCRIPTION                                                                                            | STRATA PLOT | ELEV.<br>DEPTH   | NUMBER         | TYPE     | BLOWS/0.3m | SHEAR STRENGTH<br>Cu, kPa                             | nat V. +<br>em V. ⊕ | Q - ●<br>U - O |       |                              | ONTENT PERCENT                                    |   | DDITIO                     | AND<br>GROUNDWATER        |
| DE                    | BOR                                              |                                                                                                        | STRA        | (m)              | Z              |          | BLO        |                                                       | 50 200              |                |       |                              | 0 60 80                                           |   | LA                         | OBSERVATIONS              |
| — 0                   |                                                  | GROUND SURFACE                                                                                         |             | 498.48           |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            | হিমা গোৱ                  |
| -                     |                                                  | TOPSOIL<br>FILL, (SC) CLAYEY SILT, fine, dark                                                          |             | 498.33<br>498.18 | 002-1<br>002-2 | AS<br>AS |            |                                                       |                     |                | 0     |                              |                                                   |   |                            |                           |
| -                     |                                                  | brown, some organics, non-cohesive,<br>dry                                                             |             | 0.30<br>497.87   | 002-3          | AS       |            |                                                       |                     |                | 0     |                              |                                                   |   |                            |                           |
|                       |                                                  | (SM) SILTY SAND, fine, some clay, low plasticity, brown, some organics,                                |             | 0.61             |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -<br>1                |                                                  | \non-cohesive, dry<br>(CL) SILTY CLAY, low plastic, brown,<br>some iron staining, some white staining, |             |                  | 002-4          | AS       |            |                                                       |                     |                |       | 0                            |                                                   | _ | PP=4.5                     |                           |
| -                     |                                                  | some iron staining, some white staining, cohesive, w~PL, hard                                          |             |                  | 002 4          |          |            |                                                       |                     |                |       |                              |                                                   | ľ | 1 -4.0                     |                           |
| E                     |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     |                                                  |                                                                                                        |             |                  | 002-5          | AS       |            |                                                       |                     |                |       | 0                            |                                                   | F | PP=1.5                     |                           |
| -<br>- 2              |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            | 2008<br>2008<br>-   -     |
| -                     |                                                  | -some fine grained sand at                                                                             |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     |                                                  | approximately 2.4m<br>-becomes stiff at approximately 2.4m                                             |             |                  | 002-6          | AS       |            |                                                       |                     |                |       | 0                            |                                                   |   |                            |                           |
| -                     |                                                  |                                                                                                        |             |                  | <u> </u>       |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| - 3<br>-              |                                                  | (CI) SILTY CLAY, medium plastic, trace                                                                 |             | 495.44<br>3.05   |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     |                                                  | sand, fine, trace/some iron staining, trace/some white staining, cohesive,                             |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     |                                                  | w>PL, stiff to very stiff                                                                              |             |                  | 002-7          | AS       |            |                                                       |                     |                |       | 0                            |                                                   |   | PP=3                       |                           |
| -                     |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| - 4                   |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     | er                                               |                                                                                                        |             |                  | 002-8          | AS       |            |                                                       |                     |                |       | 0                            |                                                   |   |                            |                           |
| -                     | 150mm Dia. Solid Stem Auger<br>Continuous Flight |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| - 5                   | m Dia. Solid Stem<br>Continuous Flight           |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            | Slope Indicator           |
| -                     | Dia. So<br>ontinuo                               |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            | in Grout                  |
| -                     | 50mm<br>C                                        |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     | -                                                |                                                                                                        |             |                  | 002-9          | AS       |            |                                                       |                     |                |       | 0                            |                                                   |   |                            |                           |
| - 6                   |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            | -                         |
|                       |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     |                                                  |                                                                                                        |             |                  | 002.40         | AS       |            |                                                       |                     |                |       | 0                            |                                                   |   | 0-0.00                     |                           |
| - 7                   |                                                  |                                                                                                        |             |                  | 002-10         | AS       |            |                                                       |                     |                |       |                              |                                                   | ſ | P=0.25                     |                           |
| -                     |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     |                                                  |                                                                                                        |             |                  | 002-11         | AS       |            |                                                       |                     |                |       | 0                            |                                                   |   |                            |                           |
| - 8                   |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
|                       |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -                     |                                                  |                                                                                                        |             |                  | 002-12         | AS       |            |                                                       |                     |                |       | 0                            |                                                   |   |                            |                           |
| -                     |                                                  |                                                                                                        |             |                  | 002-12         |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| - 9<br>-<br>-         |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            | · · · ·                   |
| -                     |                                                  |                                                                                                        |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| È                     |                                                  |                                                                                                        |             | 488.73           |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| -<br>-<br>- 10        | LL                                               | (CL) sandy, SILTY CLAY, fine grained,<br>brown, wet, very soft                                         |             | 9.75             | 002-13         | AS       | _          | └─┴──└──                                              | -                   |                |       | <u> </u>                     | LL_L                                              |   | PP=0                       |                           |
|                       |                                                  | CONTINUED NEXT PAGE                                                                                    |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   |                            |                           |
| DE                    | ртн ч                                            | SCALE                                                                                                  |             |                  |                |          |            |                                                       |                     |                |       |                              |                                                   |   | 10                         | DGGED: LM                 |
| 1:                    |                                                  |                                                                                                        |             |                  |                |          |            | Golde                                                 | r<br>ites           |                |       |                              |                                                   |   |                            | ECKED: LDN                |

SK\_SOIL 11-1362-0057-5100 BOREHOLES.GPJ GAL-SASK.GDT 05/05/14

|                                                                                             | ROJE                        | CT: Cherry Lane Slope Remediation<br>ION: N 5775616.7 E 386038.9                           | RE          | ECO                    | RD     | OF       | - E        | BOREHOLE:<br>BORING DATE: 07/2<br>DRILL RIG: CME     |                                       | 13-002                            |                                                                       |                            | HEET 2 OF 2<br>ATUM: NAD83                                      |
|---------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|-------------|------------------------|--------|----------|------------|------------------------------------------------------|---------------------------------------|-----------------------------------|-----------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|
|                                                                                             |                             |                                                                                            |             |                        |        |          |            | DRILLING CONTRAC                                     | TOR: Boss Dri                         | illing                            |                                                                       |                            |                                                                 |
| ш                                                                                           | Q                           | SOIL PROFILE                                                                               |             |                        | SAN    | 1PLE     | S          | DYNAMIC PENETRATIO<br>RESISTANCE, BLOWS/0            | N \<br>).3m \                         | HYDRAULIC<br>k, cm                | CONDUCTIVITY,                                                         | T .o                       | PIEZOMETER OR                                                   |
| DEPTH SCALE<br>METRES                                                                       | BORING METHOD               | DESCRIPTION                                                                                | STRATA PLOT | ELEV.<br>DEPTH<br>(m)  | NUMBER | TYPE     | BLOWS/0.3m | 20 40 60<br>I I I<br>SHEAR STRENGTH na<br>Cu, kPa re | 0 80<br>at V. + Q - ●<br>m V. ⊕ U - O | 10 <sup>-6</sup><br>WATER<br>Wp I | 10 <sup>-5</sup> 10 <sup>-4</sup> 10 <sup>-3</sup><br>CONTENT PERCENT | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATER<br>OBSERVATIONS |
|                                                                                             | -                           | CONTINUED FROM PREVIOUS PAGE                                                               | 0           |                        |        |          | -          | 50 100 15                                            | 0 200                                 | 20                                | 40 60 80                                                              |                            |                                                                 |
| - 10<br>-                                                                                   | F                           | (CL) sandy, SILTY CLAY, fine grained,<br>brown, wet, very soft (continued)                 |             |                        |        | 1 -      | -          |                                                      |                                       | +                                 | ++-                                                                   |                            |                                                                 |
|                                                                                             |                             | (CL) SILTY CLAY, low plasticity, some sand, fine, brown, cohesive, w>PL, soft to very soft |             | 488.12<br>10.36        | 002-14 | AS       |            |                                                      |                                       | c                                 |                                                                       | PP=0.5                     |                                                                 |
| -<br>-<br>- 11<br>-                                                                         |                             |                                                                                            |             | 487.21                 |        |          |            |                                                      |                                       |                                   |                                                                       | PP=1.(                     |                                                                 |
|                                                                                             |                             | (CI) SILTY CLAY, medium plastic,<br>brown, cohesive, w>PL, firm to stiff                   |             | 11.28                  | 002-15 | AS       |            |                                                      |                                       |                                   |                                                                       | PP=1.5                     |                                                                 |
| -<br>-<br>- 12<br>-                                                                         |                             | becomes any at converting take 12m                                                         |             |                        | 002-10 |          |            |                                                      |                                       |                                   |                                                                       |                            |                                                                 |
| -<br>-<br>-                                                                                 |                             | -becomes grey at approximately 12m                                                         |             |                        | 002-16 | AS       |            |                                                      |                                       |                                   |                                                                       | PP=1                       |                                                                 |
| -<br>- 13<br>-<br>-<br>-<br>-                                                               | 150mm Dia. Solid Stem Auger | (CH) CLAY, some silt, high plasticity,<br>grey, cohesive, w>PL, stiff                      |             | 485.38<br>13.11        | 002-17 | AS       |            |                                                      |                                       | ⊢∈                                | → <b></b> -1                                                          | PP=2<br>SG                 | VW25400<br>Slope Indicator<br>in Grout                          |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                             | (CL) SILTY CLAY, some gravel,<br>fine-coarse, grey, (TILL), cohesive,<br>w>PL, stiff       |             | <u>484.46</u><br>14.02 | 002-18 | AS       |            |                                                      |                                       | 0                                 |                                                                       | PP=1                       |                                                                 |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                             | END OF BOREHOLE = 16.8m                                                                    |             | <u>481.72</u><br>16.76 | 002-19 | AS       |            |                                                      |                                       | 0                                 |                                                                       | PP=2.6                     | VW25399                                                         |
| -<br>- 17<br>-                                                                              |                             | END OF BOREHOLE - 10.011                                                                   |             | 10.70                  |        |          |            |                                                      |                                       |                                   |                                                                       |                            |                                                                 |
|                                                                                             |                             |                                                                                            |             |                        |        |          |            |                                                      |                                       |                                   |                                                                       |                            |                                                                 |
| -<br>-<br>-<br>-<br>-<br>-<br>-                                                             |                             |                                                                                            |             |                        |        |          |            |                                                      |                                       |                                   |                                                                       |                            |                                                                 |
|                                                                                             |                             |                                                                                            |             |                        |        |          |            |                                                      |                                       |                                   |                                                                       |                            |                                                                 |
| -<br>-<br>-<br>-<br>-<br>-                                                                  |                             |                                                                                            |             |                        |        |          |            |                                                      |                                       |                                   |                                                                       |                            |                                                                 |
|                                                                                             |                             |                                                                                            |             |                        |        |          |            |                                                      |                                       |                                   |                                                                       |                            |                                                                 |
| - 20                                                                                        |                             |                                                                                            |             |                        |        |          |            |                                                      |                                       |                                   |                                                                       |                            | _                                                               |
| 2                                                                                           | EPTH<br>: 50                | SCALE                                                                                      | 1           |                        | I      | <u>1</u> | 1          | Golder                                               | tes                                   | <b>I</b>                          |                                                                       |                            | I<br>OGGED: LM<br>IECKED: LDN                                   |

|                                    | SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                     | BORING DATE: 07/26/13<br>DRILL RIG: CME<br>DRILLING CONTRACTOR: Boss Drilling<br>SAMPLES DYNAMIC PENETRATION Y HYDRAULIC CONDUCTIVITY,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | ATUM: NAD83                                                                      |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------|
| METRES<br>BORING METHOD            | Solic Profile                                                                                                                                                                                                                                                                                                                                                                                                                                    | Image: Stand Less         RESISTANCE, BLOWS/0.3m         k, cm/s           Image: Stand Less         RESISTANCE, BLOWS/0.3m         Water Content Percent           Image: Stand Less         RESISTANCE, BLOWS/0.3m         WATER CONTENT PERCENT           Image: Stand Less         RESISTANCE, BLOWS/0.3m         Water CONTENT PERCENT           Image: Stand Less         RESISTANCE, BLOWS/0.3m         WD - O           Image: Stand Less         RESISTANCE, BLOWS/0.3m         Water CONTENT PERCENT           Image: Stand Less         RESISTANCE, BLOWS/0.3m         WD - O         WP - OW           Image: Stand Less         Stand Less         Stand Less         WI           Image: Stand Less         Stand Less         Stand Less         WI           Image: Stand Less         Stand Less         Stand Less         WI           Image: | ADDITIONAL<br>LAB. TESTING | PIEZOMETER OR<br>STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATER<br>OBSERVATIONS |
| 0                                  | GROUND SURFACE<br>FILL, (CL) SILTY CLAY and SAND, well<br>graded, some gravel, fine to coarse<br>grained, black, w~PL, stiff to very stiff                                                                                                                                                                                                                                                                                                       | 460.34<br>0.00<br>003-1<br>AS<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | TOC=0.5mags                                                                      |
| 2                                  | (CL) SILTY CLAY, low plasticity, some<br>gravel, fine to coarse grained, brown,<br>trace iron staining, trace gypsum and<br>weathered gypsum, trace petrified wood,<br>trace coal, w~PL, stiff to very stiff<br>(GW) GRAVEL, dry<br>(CL) SILTY CLAY, low plasticity, some<br>gravel, fine to coarse grained, brown,<br>trace iron staining, trace gypsum and<br>weathered gypsum, trace petrified wood,<br>trace coal, w~PL, stiff to very stiff | 479.43     0.91     003-2     AS       478.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PP=2                       | Bentonite                                                                        |
| 9 C C F150mm Dia. Solid Stem Auger | (CH) CLAY, high plasticity, trace gravel,<br>fine to coarse grained, brown, trace iron<br>staining, some weathered gypsum,<br>some coal, w~PL, stiff to very stiff<br>(SM) SILTY SAND, brown, trace iron<br>staining, wet                                                                                                                                                                                                                        | 475.47     003-4     AS       475.47     003-5     AS       474.88     003-5     AS       474.88     003-6     AS       003-7     TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Sand                                                                             |
| 7                                  | (GW) GRAVEL, well graded, fine to coarse grained, brown, very wet                                                                                                                                                                                                                                                                                                                                                                                | A 2 4 7 3 0 3 4 7 3 0 3 8 AS O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 07/26/13 <u>√</u>                                                                |
| 9                                  | (CL) SILTY CLAY, some gravel, fine<br>grained, (TILL), w>PL, firm to stiff<br>END OF BOREHOLE = 9.1m                                                                                                                                                                                                                                                                                                                                             | A     471.50       I     8.84       003-9     AS       9.14     003-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | Screen                                                                           |

÷ ò

|        | 0                                                | SOIL PROFILE                                                                                                                                                                                                                                                                               |             |                                                | SAM    | 1PLE           | S            | DRILL RIG:<br>DRILLING                        |                  | ION   | Mobile A       | - | AULIC CO                                 | arch Ltd.   | , т |                            | PIEZOMETER (                                                                                                |
|--------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------|--------|----------------|--------------|-----------------------------------------------|------------------|-------|----------------|---|------------------------------------------|-------------|-----|----------------------------|-------------------------------------------------------------------------------------------------------------|
| METRES | BORING METHOD                                    | DESCRIPTION                                                                                                                                                                                                                                                                                | STRATA PLOT | ELEV.<br>DEPTH<br>(m)                          | NUMBER | TYPE           | BLOWS/0.3m   | RESISTANCI<br>20<br>I<br>SHEAR STR<br>Cu, kPa | 40<br>I<br>INGTH |       | Q - ●<br>U - O | w | k, cm/s<br>0 <sup>-6</sup> 10<br>ATER C0 | ONTENT PERC |     | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATE<br>OBSERVATION                                               |
| +      | ш                                                | GROUND SURFACE                                                                                                                                                                                                                                                                             | °,          | 491.74                                         |        |                |              | 50                                            | 100              | 150 2 | 00             | 2 | 0 4                                      | 0 60        | 80  |                            |                                                                                                             |
| 1      |                                                  | TOPSOIL, clayey, some fine-medium<br>grained sand, some fine gravel, some<br>organics, dark brown/black<br>(CL) SILTY CLAY, low plasticity, trace<br>fine grained sand, light brown, some rust<br>staining, some organics, trace<br>weathered gypsum, cohesive, w>PL,<br>very soft to soft |             | 0.00<br>491.43<br>0.30                         | 004-1  | AS<br>AS<br>DO | 6            |                                               |                  |       |                | 0 | 0                                        |             |     | МН                         | مواد به دوم و مواد و مواد و مواد و مواد<br>مواد و مواد و مواد و مواد و مواد و مواد و                        |
| 2<br>3 |                                                  |                                                                                                                                                                                                                                                                                            |             |                                                | 004-4  | DO             | 5            |                                               |                  |       |                |   | 0                                        |             |     |                            | 5. <b>4</b> . 35. |
| 4<br>5 | 150mm Dia. Solid Stem Auger<br>Continuous Flight | (CH) CLAY, high plasticity, some silt,<br>brown/black mottling, some rust staining,<br>cohesive, w>PL, stiff<br>(CI) SILTY CLAY, medium plastic,<br>brown, cohesive, w>PL, stiff                                                                                                           |             | <u>487.32</u><br>4.42<br><u>486.56</u><br>5.18 | 004-5  | DO<br>AS       | 11<br>7<br>6 | +                                             |                  |       |                |   | 0<br>0                                   |             | 1   | SG<br>PP=1.5               | Slope Indicator<br>in Grout                                                                                 |
| 7      |                                                  |                                                                                                                                                                                                                                                                                            |             |                                                | 004-8  | то             |              |                                               | +                |       |                |   | <u> </u>                                 | -           |     | DS<br>PP=2.5               |                                                                                                             |
| 9      |                                                  | (CL-ML) SILTY CLAY/CLAYEY SILT and<br>fine to medium grained sand, some<br>gravel, trace cobbles, grey, cohesive,<br>(TILL), w~PL, very stiff                                                                                                                                              |             | <u>483.05</u><br>8.69                          | 004-9  | TO             | 38<br>50     |                                               |                  | +     |                | 0 | 0                                        |             |     | PP=3.5                     | VW26020<br>08/19/13∑                                                                                        |
| 10     | _L                                               |                                                                                                                                                                                                                                                                                            | рШ.         | 1                                              | 004-11 | AS             | _            | +                                             |                  | +     |                |   |                                          |             | -+  |                            | e                                                                                                           |

| PR                                                                           | OJEC              | T: Cherry Lane Slope Remediation   | R           | ECO                   | RD       | OF    | B          | OREH                              | OLE:            | С                       | OS-1                        | 13-0    | )4      |           |                              |          | SI                         | HEET 2 OF 2                                 |                                                                             |
|------------------------------------------------------------------------------|-------------------|------------------------------------|-------------|-----------------------|----------|-------|------------|-----------------------------------|-----------------|-------------------------|-----------------------------|---------|---------|-----------|------------------------------|----------|----------------------------|---------------------------------------------|-----------------------------------------------------------------------------|
| LO                                                                           | CATIC             | DN: N 5775605.0 E 386050.6         |             |                       |          |       |            | BORING D<br>DRILL RIG<br>DRILLING | M4CT            |                         | Mohile A                    | ugers a | nd Rese | arch I to | I.                           |          | D                          | ATUM: NAD83                                 |                                                                             |
| <u> </u>                                                                     |                   | SOIL PROFILE                       |             |                       | SAN      | /PLE: |            |                                   |                 |                         |                             |         |         | ONDUCT    |                              |          |                            | DIEZOMETER                                  |                                                                             |
| SALE                                                                         | THOI              |                                    | 1 E         |                       |          | 1     |            | DYNAMIC PI<br>RESISTANC           |                 |                         | Υ.                          |         | k, cm/s |           |                              |          | LING                       | PIEZOMETER<br>STANDPIR                      | Έ                                                                           |
| DEPTH SCALE<br>METRES                                                        | BORING METHOD     | DESCRIPTION                        | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER   | түре  | BLOWS/0.3m | 20<br>SHEAR STR<br>Cu, kPa<br>50  | ENGTH r         | ⊥<br>at V. +<br>em V. ⊕ | B0<br>Q - ●<br>V - ○<br>200 | w<br>w  | ATER C  |           | 0 <sup>-4</sup> 10<br>PERCEN | NT<br>WI | ADDITIONAL<br>LAB. TESTING | INSTALLATI<br>AND<br>GROUNDWA<br>OBSERVATIO | TER                                                                         |
| - 10                                                                         |                   | CONTINUED FROM PREVIOUS PAGE       |             |                       |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            |                                             |                                                                             |
|                                                                              | Continuous Flight | (CL-ML) SILTY CLAY/CLAYEY SILT and |             | 480.71                |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            | Slope Indicator<br>in Grout                 | 1948-1948-1948-1948<br>1948-1948-1948-1 <b>95</b><br>1941-1-1-1-1-1         |
| - 11<br>                                                                     |                   | END OF BOREHOLE = 11.02m           |             | 11.02                 |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            |                                             |                                                                             |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                   |                                    |             |                       |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            |                                             |                                                                             |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               |                   |                                    |             |                       |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            |                                             |                                                                             |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               |                   |                                    |             |                       |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            |                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br> |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          |                   |                                    |             |                       |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            |                                             |                                                                             |
| - 17<br>- 17<br>                                                             |                   |                                    |             |                       |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            |                                             |                                                                             |
| - 18<br>- 18<br>                                                             |                   |                                    |             |                       |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            |                                             |                                                                             |
| - 19<br>                                                                     |                   |                                    |             |                       |          |       |            |                                   |                 |                         |                             |         |         |           |                              |          |                            |                                             |                                                                             |
| DE                                                                           |                   | I                                  | 1           | <u> </u>              | <u> </u> | 1     |            | Ø                                 | Golde<br>ssocia | r                       | <u> </u>                    | I       |         | <u> </u>  | <u> </u>                     |          |                            | DGGED: LM<br>ECKED: LDN                     |                                                                             |

|             | 0                 | SOIL PROFILE                                                                                         |             |                       | SAN    | /IPLE | S          | DRILLING CONTR<br>DYNAMIC PENETRA<br>RESISTANCE, BLOV |                            | Mobile A                        | -      | AULIC CON | h Ltd.<br>DUCTIVITY,                                                            | т                          | PIEZOMETER C                                                  |
|-------------|-------------------|------------------------------------------------------------------------------------------------------|-------------|-----------------------|--------|-------|------------|-------------------------------------------------------|----------------------------|---------------------------------|--------|-----------|---------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------|
| MEIKES      | BORING METHOD     | DESCRIPTION                                                                                          | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | TYPE  | BLOWS/0.3m | CRESISTANCE, BLOW                                     | 60<br>nat V. +<br>rem V. € | 80<br>- Q - ●<br>Ə U - O<br>200 | w<br>w |           | 10 <sup>-4</sup> 10 <sup>-3</sup><br>TENT PERCENT<br>O <sup>W</sup> WI<br>60 80 | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATE<br>OBSERVATION |
| 0           |                   | GROUND SURFACE<br>(SM) SILTY SAND, fine grained, light<br>brown, trace organics, non-cohesive,       |             | 494.48                | 005-1  | AS    |            |                                                       |                            |                                 | 0      |           |                                                                                 | мн                         |                                                               |
| 1           |                   | moist, loose                                                                                         |             |                       | 005-2  | DO    | 12         |                                                       |                            |                                 | 0      |           |                                                                                 |                            |                                                               |
| 2           |                   |                                                                                                      |             |                       | 005-3  | DO    | 19         |                                                       |                            |                                 | 0      |           |                                                                                 |                            |                                                               |
| G A Auder A | Continuous Flight | (SC) CLAYEY SAND, fine grained, light<br>brown with black and white seams,<br>cohesive, dry, compact |             | 490.82<br>3.66        | 005-4  | DO    | 15         |                                                       |                            |                                 | он     |           |                                                                                 |                            | Slope Indicator<br>in Grout                                   |
|             | Con               | (CI) SILTY CLAY, sand seams, brown, w~PL                                                             |             | 488.99<br>5.49        | 005-5  | то    |            | +                                                     |                            |                                 |        | Θ         | -                                                                               | PP=3.                      | 75                                                            |
| 6           |                   | (SM) SILTY SAND, some clay, light                                                                    |             | 487.77                | 005-6  | то    |            |                                                       |                            | +                               | 0      |           |                                                                                 | PP>4                       | .5                                                            |
| 7           |                   | brown, cohesive, dry-moist, compact                                                                  |             | 486.86                | 005-7  | то    |            |                                                       |                            |                                 | 0      |           |                                                                                 |                            | VW25926                                                       |
| 8           |                   | (CI) SILTY CLAY, medium plastic, trace<br>sand, brown, cohesive, w~PL                                |             | 7.62                  | 005-8  | то    |            |                                                       |                            |                                 |        | ⊢⊖⊣       |                                                                                 | МН                         |                                                               |
| 9           |                   |                                                                                                      |             | 485.34                | 005-9  | то    |            |                                                       |                            |                                 |        | 0         |                                                                                 | SG                         |                                                               |
|             |                   | (ML) SANDY, CLAYEY SILT, fine<br>grained, brown, moist, compact                                      |             | 9.14                  | 005-10 | -     |            |                                                       |                            |                                 |        | ю         |                                                                                 | МН                         |                                                               |

| PR                       | OJEC                                             | CT: Cherry Lane Slope Remediation                                                               | R           | ECO                   | RD     | OF    | E          | OREHOLE: COS-13                                                                        | 3-005                                                                                                        | S                          | HEET 2 OF 2                                        |
|--------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------|-----------------------|--------|-------|------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------|
| LO                       | CATI                                             | ON: N 5775637.7 E 386047.6                                                                      |             |                       |        |       |            | Boring date: 08/20/13<br>Drill Rig: M10                                                |                                                                                                              | D                          | ATUM: NAD83                                        |
|                          |                                                  |                                                                                                 |             |                       |        |       |            | DRILLING CONTRACTOR: Mobile Aug                                                        |                                                                                                              |                            |                                                    |
| ALE                      | гнор                                             | SOIL PROFILE                                                                                    |             | 1                     | SAN    | IPLES |            | RESISTANCE, BLOWS/0.3m                                                                 | HYDRAULIC CONDUCTIVITY,<br>k, cm/s                                                                           | AL<br>NG                   | PIEZOMETER OR<br>STANDPIPE                         |
| DEPTH SCALE<br>METRES    | BORING METHOD                                    | DESCRIPTION                                                                                     | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | түре  | BLOWS/0.3m | 20 40 60 80<br>SHEAR STRENGTH nat V. + Q. ●<br>Cu, kPa rem V. ⊕ U. ○<br>50 100 150 200 | 10 <sup>6</sup> 10 <sup>5</sup> 10 <sup>4</sup> 10 <sup>3</sup> ⊥           WATER CONTENT PERCENT         Wp | ADDITIONAL<br>LAB. TESTING | INSTALLATION<br>AND<br>GROUNDWATER<br>OBSERVATIONS |
| - 10                     | $\vdash$                                         | <u>CONTINUED FROM PREVIOUS PAGE</u><br>(ML) SANDY, CLAYEY SILT, fine                            |             | <u>+</u>              |        | +-    | _          |                                                                                        | + +                                                                                                          | .                          |                                                    |
| -                        |                                                  | grained, brown, moist, compact<br>(continued)                                                   |             | 483.81                | 005-11 | то    |            |                                                                                        | 0                                                                                                            | мн                         |                                                    |
| -<br>-<br>- 11<br>-      |                                                  | (CI) SILTY CLAY, medium plastic, fine<br>grained, grey and brown laminated,<br>w~PL, very stiff |             | 10.67                 | 005-12 | то    |            |                                                                                        | н                                                                                                            | мн                         | 40                                                 |
| -                        |                                                  |                                                                                                 |             |                       | 005-13 | то    |            |                                                                                        | ⊢ <del>o</del> I                                                                                             | DS                         |                                                    |
| -<br>- 12<br>-           | m Auger<br>ht                                    |                                                                                                 |             | 482.14<br>12.34       | 005-14 | то    |            |                                                                                        |                                                                                                              |                            |                                                    |
| -                        | 150mm Dia. Solid Stem Auger<br>Continuous Flight | <ul> <li>(CI) SILTY CLAY, medium plastic, some<br/>sand, grey, w&gt;PL, (TILL)</li> </ul>       |             | 12.34                 |        |       |            |                                                                                        |                                                                                                              |                            | Slope Indicator                                    |
| - 13<br>-<br>-<br>-      | 150mn                                            |                                                                                                 |             |                       |        |       |            |                                                                                        |                                                                                                              |                            |                                                    |
| -<br>-<br>-<br>- 14      |                                                  |                                                                                                 |             |                       | 005-15 |       | 64         |                                                                                        | 0                                                                                                            |                            | 2 3 3 4<br>                                        |
|                          |                                                  |                                                                                                 |             |                       |        |       |            |                                                                                        |                                                                                                              |                            |                                                    |
| -<br>- 15<br>-<br>-      |                                                  | END OF BOREHOLE = 15.32m                                                                        |             | 479.16                |        |       |            |                                                                                        |                                                                                                              |                            | VW25401                                            |
| -                        |                                                  | END OF BOREHOLE - 15.3211                                                                       |             | 10.02                 |        |       |            |                                                                                        |                                                                                                              |                            |                                                    |
| - 16<br>-<br>-<br>-<br>- |                                                  |                                                                                                 |             |                       |        |       |            |                                                                                        |                                                                                                              |                            |                                                    |
| -<br>-<br>-<br>-<br>- 17 |                                                  |                                                                                                 |             |                       |        |       |            |                                                                                        |                                                                                                              |                            |                                                    |
| -                        |                                                  |                                                                                                 |             |                       |        |       |            |                                                                                        |                                                                                                              |                            |                                                    |
| -<br>-<br>- 18<br>-<br>- |                                                  |                                                                                                 |             |                       |        |       |            |                                                                                        |                                                                                                              |                            | -<br><br><br>                                      |
|                          |                                                  |                                                                                                 |             |                       |        |       |            |                                                                                        |                                                                                                              |                            |                                                    |
| - 19<br>- 19<br>         |                                                  |                                                                                                 |             |                       |        |       |            |                                                                                        |                                                                                                              |                            |                                                    |
| -<br>-<br>-<br>- 20      |                                                  |                                                                                                 |             |                       |        |       |            |                                                                                        |                                                                                                              |                            |                                                    |
| DE<br>1 :                |                                                  | SCALE                                                                                           |             |                       |        |       |            | Golder                                                                                 |                                                                                                              |                            | )<br>DGGED: LM<br>IECKED: LDN                      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | DATUM: NAD83                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| UNDERCEPTION       SAMPLES       DYNAMIC PENETRATION<br>RESISTANCE, BLOWS/0.3m       HYDRAULIC COND<br>k, cm/s         UNDERCEPTION       UNDERCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCTIVITY, I<br>10 <sup>4</sup> 10 <sup>3</sup> I<br>ENT PERCENT<br>D <sup>W</sup> WI | PIEZOMETER OR<br>STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATER<br>OBSERVATIONS |
| U     O     O     O     RESISTANCE, BLOWS/0.3m     k, cm/s       U     0     0     0     0     0     0     0     10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 <sup>4</sup> 10 <sup>3</sup> ↓ W<br>ENT PERCENT<br><del>D</del><br>W WI           | PIEZOMETER OR<br>STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATER<br>OBSERVATIONS |
| 0     GROUND SURFACE     494.77       FILL (CL) SILTY CLAY, low plasticity, sandy, some organics, black and brown, cohesive, w <pl< td="">     494.46       0.00     0.00       1     FILL (CL) SILTY CLAY, low neadium plastic, trace sand, brown, some white staining, cohesive, w<pl, soft="" stiff<="" td="" to="" very="">       2     (CH) CLAY, high plasticity, brown, some iron staining, cohesive, w<pl, soft="" stiff<="" td="" to="" very="">       2     (CH) CLAY, high plasticity, brown, some iron staining, cohesive, w<pl, stiff<="" td="" very=""></pl,></pl,></pl,></pl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      | GROUNDWATER<br>OBSERVATIONS                                                      |
| 0     GROUND SURFACE     494.77     0.00     0.00       FILL (CL) SILTY CLAY, low plasticity, sandy, some organics, black and brown, cohesive, w <pl< td="">     0.00     494.46     006-1       (CI-CL) SILTY CLAY, low to medium plastic, trace sand, brown, some white staining, some iron staining, cohesive, w<pl, soft="" stiff<="" td="" to="" very="">     0.00     494.46     0.00       (CI-CL) SILTY CLAY, low to medium plastic, trace sand, brown, some white staining, cohesive, w<pl, soft="" stiff<="" td="" to="" very="">     0.00-2     AS     0       (CH) CLAY, high plasticity, brown, some iron staining, cohesive, w     492.94     0.06-3     AS     0       (CH) CLAY, high plasticity, brown, some iron staining, cohesive, w     1.83     006-3     AS     0</pl,></pl,></pl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                  |
| 1       FILL (CL) SILTY CLAY, low plasticity, sandy, some organics, black and brown, cohesive, w <pl< td="">       0.00       494.46       006-1       AS         1       (CI-CL) SILTY CLAY, low to medium plastic, trace sand, brown, some white staining, cohesive, w&lt;-PL, very soft to stiff</pl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                    |                                                                                  |
| C-C-CL) SILTY CLAY, low to medium<br>plastic, trace sand, brown, some white<br>staining, some iron staining, cohesive,<br>w~PL, very soft to stiff<br>(CH) CLAY, high plasticity, brown, some<br>iron staining, cohesive, w~PL, very stiff<br>(CH) CLAY, high plasticity, brown, some<br>iron staining, cohesive, w~PL, very stiff<br>(CH) CLAY, high plasticity, brown, some<br>iron staining, cohesive, w~PL, very stiff<br>(CH) CLAY, high plasticity, brown, some<br>iron staining, cohesive, w~PL, very stiff<br>(CH) CLAY, high plasticity, brown, some<br>iron staining, cohesive, w~PL, very stiff<br>(CH) CLAY, high plasticity, brown, some<br>iron staining, cohesive, w~PL, very stiff<br>(CH) CLAY, high plasticity, brown, some<br>iron staining, cohesive, w~PL, very stiff<br>(CH) CLAY, high plasticity, brown, some<br>iron staining, cohesive, w~PL, very stiff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                      |                                                                                  |
| (CH) CLAY, high plasticity, brown, some<br>iron staining, cohesive, w~PL, very stiff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                                                                                  |
| Comparison of the second       |                                                                                      |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                  |
| -some white staining and gypsum<br>crystals below 3.4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                  |
| the solution of the solution o |                                                                                      | Slope Indicator                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                  |
| AS O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                                                                                  |
| (CI) SILTY CLAY, medium plasticity,<br>trace sand, cohesive, w>PL, firm to stiff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      | MH MH                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                  |
| CONTINUED NEXT PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + -                                                                                  | 1                                                                                |
| DEPTH SCALE<br>1:50 CORGOLDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |                                                                                  |

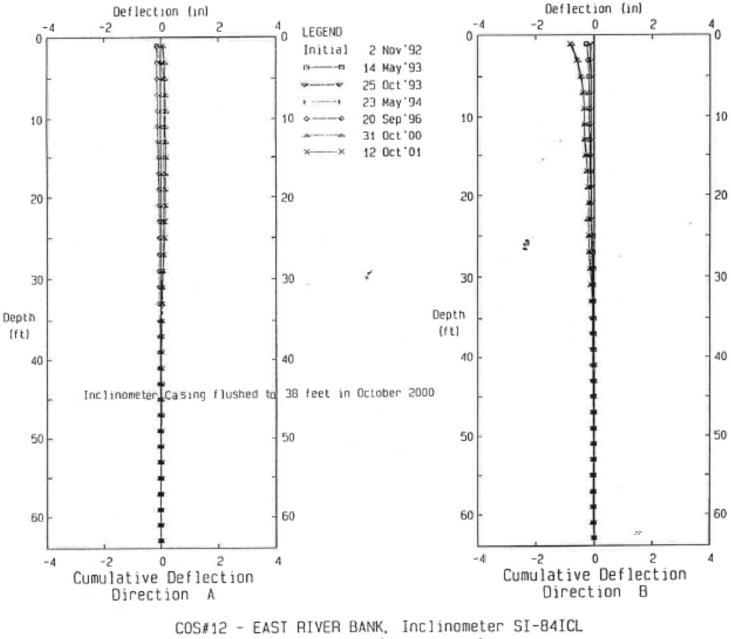
SK\_SOIL 11-1362-0057-5100 BOREHOLES.GPJ GAL-SASK.GDT 05/05/14

| PRO                   | JEC                  | T: Cherry Lane Slope Remediation                                                                                                                     | R           | ECO                       | RD     | OF          | = E        | BORE                         | НС     | DLE:          | C                         | OS-′            | 13-00    | 06       |           |                  | Sł                         | IEET 2 OF 2             |
|-----------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------|--------|-------------|------------|------------------------------|--------|---------------|---------------------------|-----------------|----------|----------|-----------|------------------|----------------------------|-------------------------|
| LOC                   | ATIC                 | DN: N 5775572.7 E 385959.2                                                                                                                           |             |                           |        |             |            | Boring<br>Drill F<br>Drillin | rig: M | M10           |                           | Vohile A        | uners ar | nd Rese  | arch I td |                  | D/                         | ATUM: NAD83             |
|                       | 0                    | SOIL PROFILE                                                                                                                                         |             |                           | SAN    | <b>NPLE</b> | s          | DYNAMI                       | C PEN  | ETRATIO       | ON                        |                 | -        | AULIC CO |           | т                |                            | PIEZOMETER OF           |
| MEIKES                | BORING METHOD        |                                                                                                                                                      | 0T          |                           |        |             | 1          | RESISTA<br>20                |        |               |                           | ю <sup>``</sup> |          | k, cm/s  |           | <sub>D-3</sub> ⊥ | ADDITIONAL<br>LAB. TESTING | STANDPIPE               |
| H<br>H<br>H<br>H<br>H | МGN                  | DESCRIPTION                                                                                                                                          | STRATA PLOT | ELEV.                     | NUMBER | TYPE        | BLOWS/0.3m | SHEAR S<br>Cu, kPa           |        | ⊥<br>NGTH r   | ⊥<br>nat V. +<br>rem V. ⊕ | Q - ●           |          | ATER CO  |           | NT               | DDITIC                     | AND<br>GROUNDWATEF      |
|                       | BORI                 |                                                                                                                                                      | STRA        | DEPTH<br>(m)              | R      | -           | BLOV       | 50 Cu, KFa                   | 1      |               |                           | 0-0             | <br>2    | 0 4      |           |                  | LAI                        | OBSERVATIONS            |
| 10                    |                      | CONTINUED FROM PREVIOUS PAGE                                                                                                                         |             |                           | L      |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
|                       |                      | (CI) SILTY CLAY, medium plasticity,<br>trace sand, cohesive, w>PL, firm to stiff<br>(continued)                                                      |             | 484.25                    |        | AS          |            |                              |        |               |                           |                 |          | 0        |           |                  |                            | VW26018                 |
| 11                    |                      | (CL) SILTY CLAY, low plasticity, some<br>fine gravel and sand, trace coarse<br>gravel, grey, (TILL), cohesive, w~PL, stif                            |             | 10.52                     |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
|                       |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            | Slope Indicator         |
| 2                     | Stem Auger<br>Flight |                                                                                                                                                      |             |                           | 006-12 | AS          |            |                              |        |               |                           |                 | 0        |          |           |                  |                            | ्य<br>व<br>हेर्द्       |
|                       | Continuous Flight    | (CL) SILTY CLAY, low plasticity, some                                                                                                                |             | 482.57<br>482.42<br>12.34 |        | AS          |            |                              |        |               |                           |                 | 0        |          |           |                  | МН                         | <mark>08/21/13</mark> ∑ |
| 3                     | JUCI                 | fine gravel and sand, trace coarse gravel, grey, (TILL), cohesive, w~PL, stif                                                                        |             | 481.66                    |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            | 8 9 N 9                 |
|                       |                      | (SM) SILTY SAND, some fine grained<br>gravel, grey, non-cohesive, wet<br>(CL) SILTY CLAY, low plasticity, some<br>fine gravel and sand, trace coarse |             | 13.11<br>481.36<br>13.41  |        | AS          |            |                              |        |               |                           |                 | 0        |          |           |                  |                            | VW25398                 |
| 4                     |                      | gravel, grey, (TILL), cohesive, w~PL, stif                                                                                                           |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
| -                     |                      | END OF BOREHOLE = 14.33m                                                                                                                             |             | 480.44<br>14.33           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
| 15                    |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
|                       |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
| 16                    |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
|                       |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
| 17                    |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
|                       |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
| 18                    |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
|                       |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
| 19                    |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
|                       |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
| 20                    |                      |                                                                                                                                                      |             |                           |        |             |            |                              |        |               |                           |                 |          |          |           |                  |                            |                         |
|                       |                      | SCALE                                                                                                                                                |             |                           |        |             |            | Â                            | G      | olde<br>socia | r                         |                 |          |          |           |                  |                            | DGGED: LM               |
| : 5                   | 0                    |                                                                                                                                                      |             |                           |        |             |            | V                            | As     | socia         | ites                      |                 |          |          |           |                  | CH                         | ECKED: LDN              |


|                       | PROJECT: Cherry Lane Slope Remediation       RECORD OF BOREHOLE: COS-13-007       SHEET 1 OF 1         LOCATION: N 5775573.5 E 385959.1       BORING DATE: 08/21/13<br>DRILL RIG: M10<br>DRILLING CONTRACTOR: Mobile Augers and Research Ltd.       DATUM: NAD83 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                      |        |             |            |                     |                                                                 |  |                                                    |   |      |                    |  |                            |                                                                 |    |               |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------|--------|-------------|------------|---------------------|-----------------------------------------------------------------|--|----------------------------------------------------|---|------|--------------------|--|----------------------------|-----------------------------------------------------------------|----|---------------|
| ш                     | g                                                                                                                                                                                                                                                                | SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                      | SAM    | <b>NPLE</b> | s          | DYNAMIC<br>RESISTAI |                                                                 |  | 0.3m                                               | ì | HYDR | AULIC C<br>k, cm/s |  | TIVITY,                    | T                                                               | .0 | PIEZOMETER OR |
| DEPTH SCALE<br>METRES | BORING METHOD                                                                                                                                                                                                                                                    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STRATA PLOT | ELEV.<br>DEPTH<br>(m)                                                | NUMBER | TYPE        | BLOWS/0.3m | 20                  | 40 60 80<br>NGTH nat V. + Q - ●<br>rem V. ⊕ U - ○<br>00 150 200 |  | 10 <sup>-6</sup> 10 <sup>-5</sup> 10 <sup>-4</sup> |   |      | r PERCE            |  | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION<br>AND<br>GROUNDWATER<br>OBSERVATIONS |    |               |
|                       | 150mm Dia. Solid Stem Auger<br>Continuous Flight                                                                                                                                                                                                                 | GROUND SURFACE<br>FILL (CL) SILTY CLAY, low plasticity,<br>sandy, some organics, black and brown,<br>w <pl<br>(CI-CL) SILTY CLAY, low to medium<br/>plasticity, trace sand, brown, some white<br/>staining, some iron staining, cohesive,<br/>w-PL, very soft to stiff<br/>(CH) CLAY, high plasticity, brown, some<br/>iron staining, cohesive, w-PL, very stiff<br/>with some soft spots<br/>-some white staining and gypsum<br/>crystals below 3.4m<br/>END OF BOREHOLE = 5.59m</pl<br> |             | 494.80<br>0.00<br>494.50<br>0.30<br>492.97<br>1.83<br>489.21<br>5.59 |        |             |            | 50                  |                                                                 |  |                                                    |   |      |                    |  |                            |                                                                 |    | Bentonite     |
|                       | DEPTH SCALE     LOGGED: LM       1: 50     CHECKED: LDN                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                      |        |             |            |                     |                                                                 |  |                                                    |   |      |                    |  |                            |                                                                 |    |               |

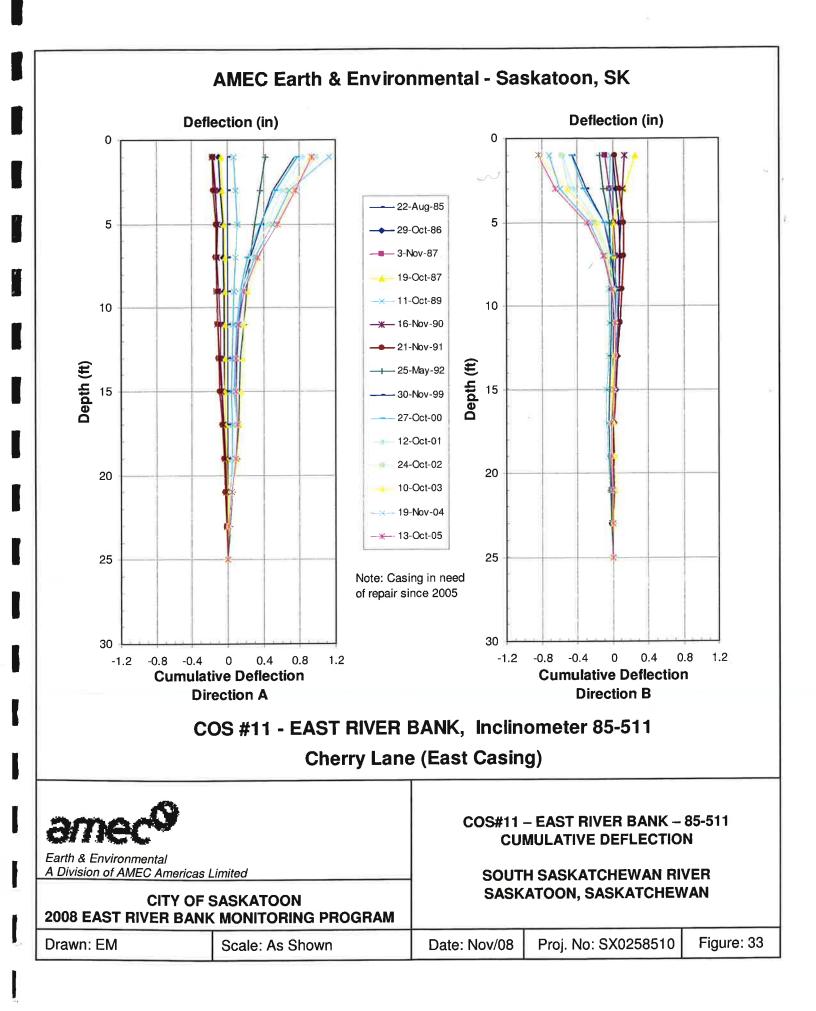


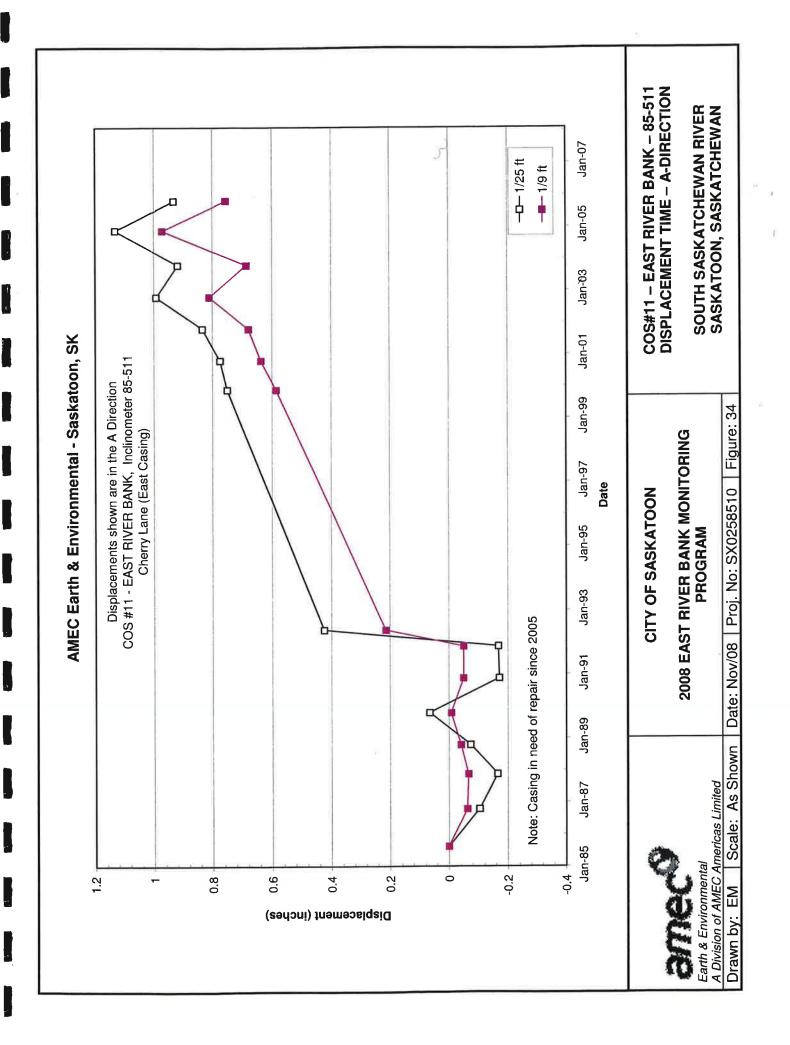



**Monitoring Data** 





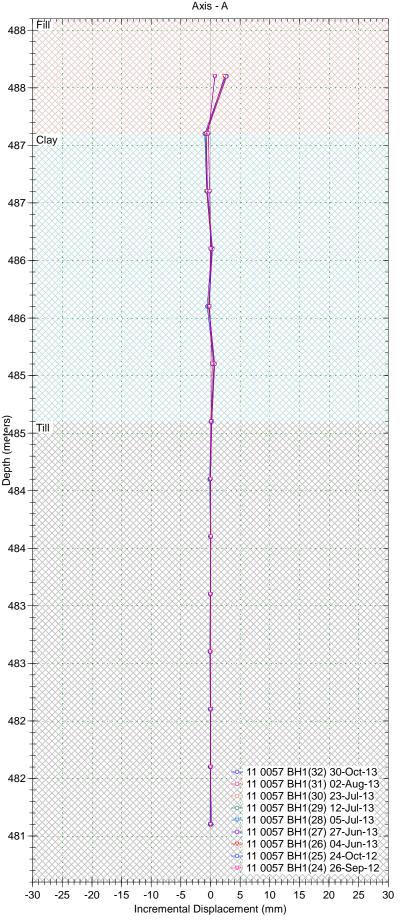

## F.1. SLOPE INCLINOMETER PLOTS

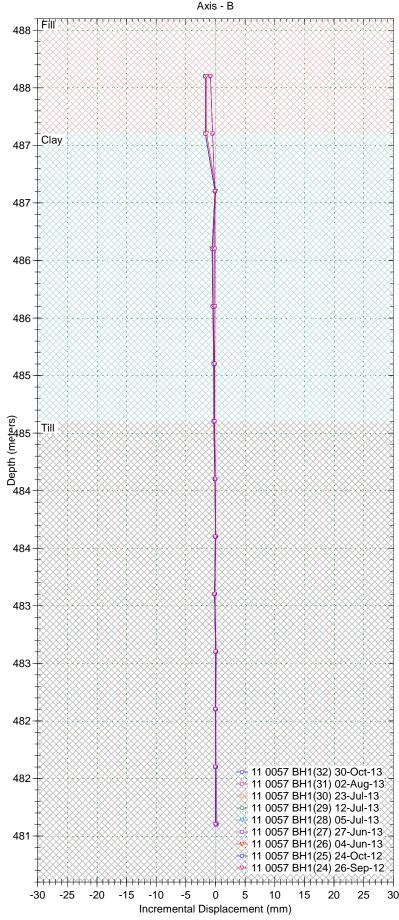




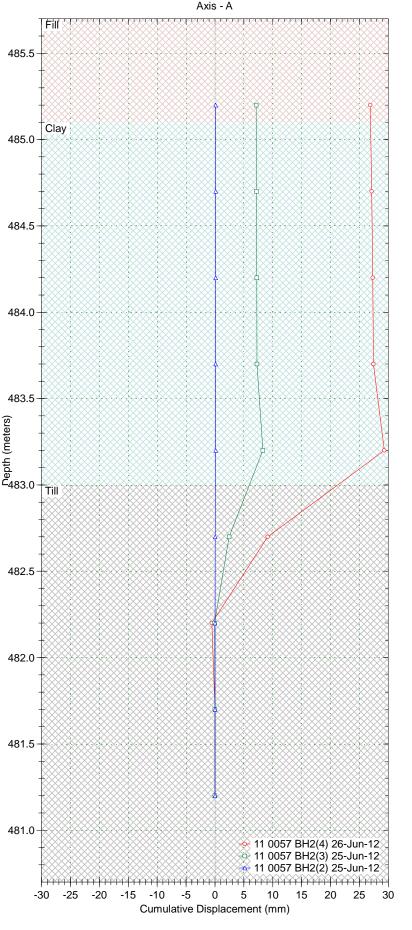

AGRA Earth & Environmental Limited - Saskatoon, SK

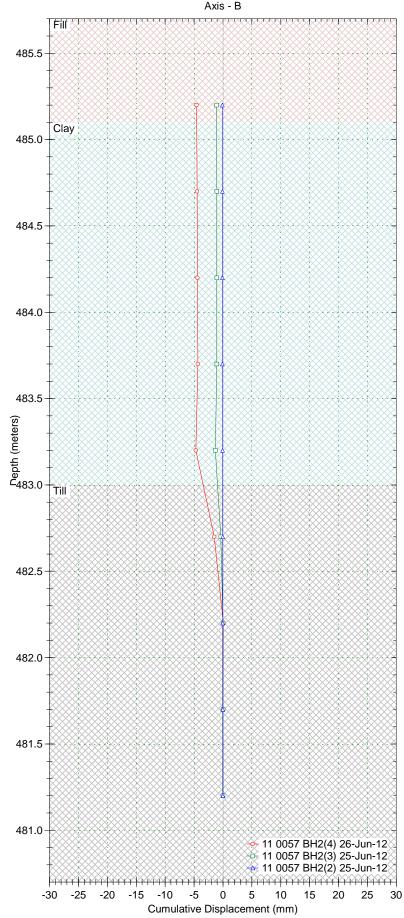
Cherry Lane (West Casing)



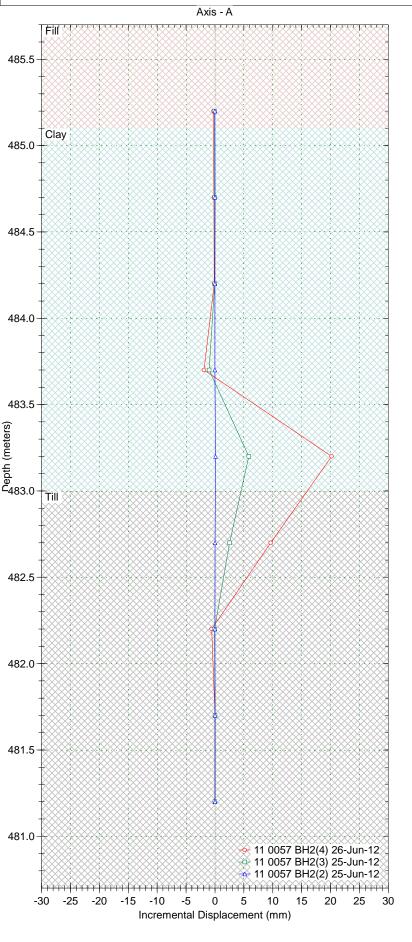



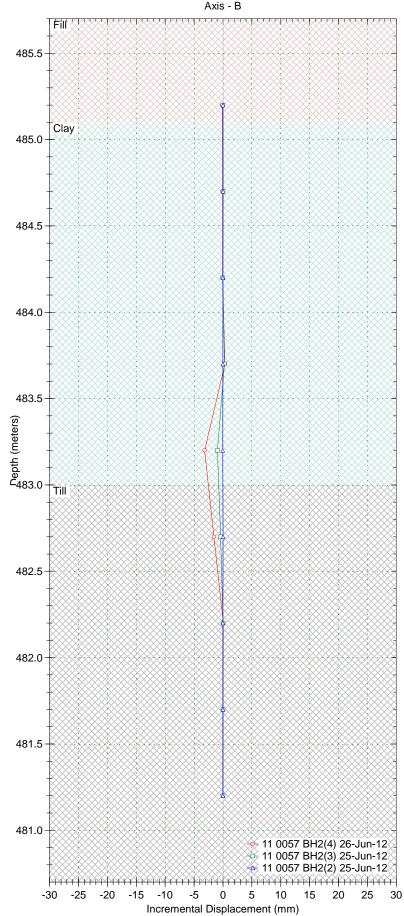

Borehole : BH1 Project : 11-1362-0057 Cherry Lane Location : Lane - 241 11th St E Northing : 5775616.8 Easting : 386010.5 Collar : Spiral Correction : N/A Collar Elevation : 488.1 meters Borehole Total Depth : 7.0 meters A+ Groove Azimuth : Base Reading : 2012 Jun 25 08:55 Applied Azimuth : 0.0 degrees



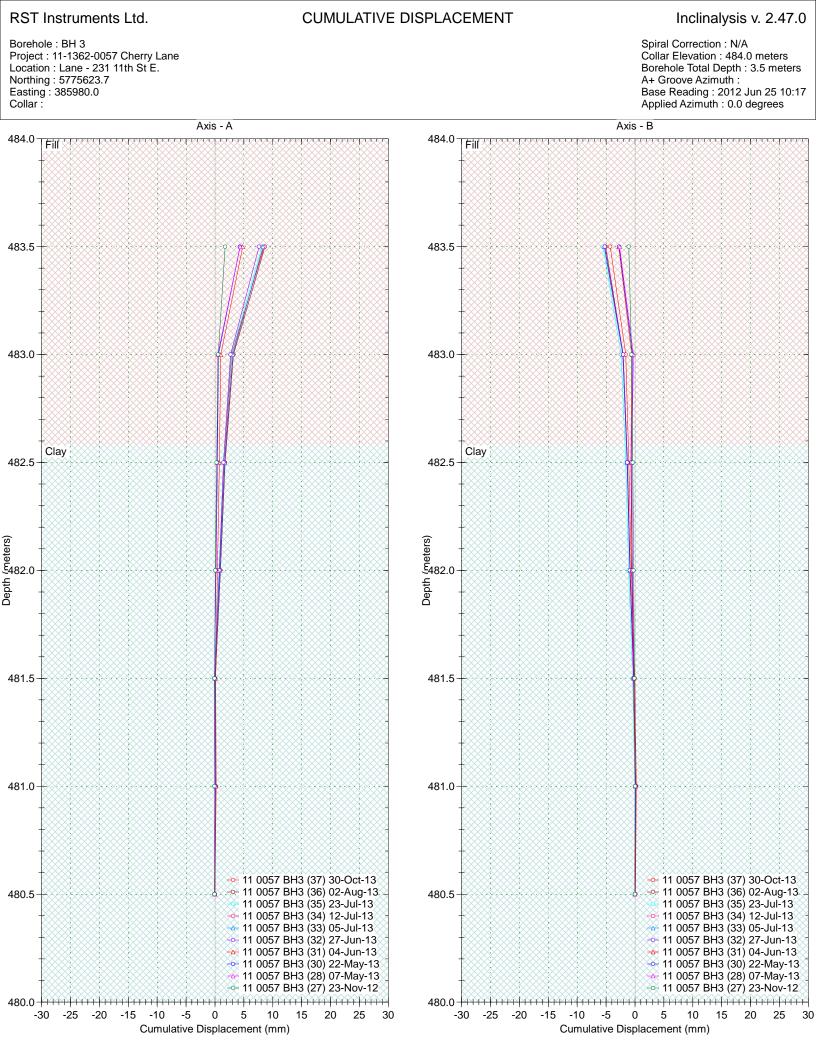


Borehole : BH1 Project : 11-1362-0057 Cherry Lane Location : Lane - 241 11th St E Northing : 5775616.8 Easting : 386010.5 Collar : Spiral Correction : N/A Collar Elevation : 488.1 meters Borehole Total Depth : 7.0 meters A+ Groove Azimuth : Base Reading : 2012 Jun 25 08:55 Applied Azimuth : 0.0 degrees

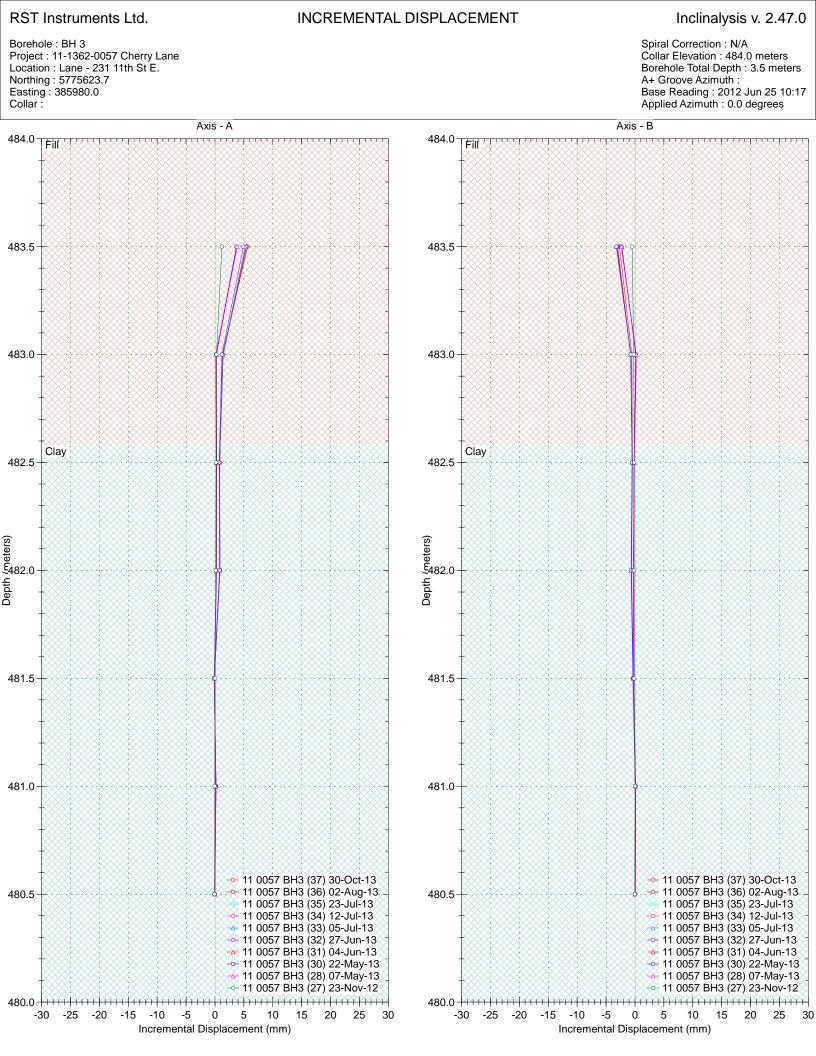






Borehole : BH 2 Project : 11-1362-0057 Cherry Lane Location : Lane - 233 11th St E. Northing : 5775623.7 Easting : 385980.0 Collar : Spiral Correction : N/A Collar Elevation : 485.7 meters Borehole Total Depth : 4.5 meters A+ Groove Azimuth : Base Reading : 2012 Jun 25 09:39 Applied Azimuth : 0.0 degrees







Borehole : BH 2 Project : 11-1362-0057 Cherry Lane Location : Lane - 233 11th St E. Northing : 5775623.7 Easting : 385980.0 Collar : Spiral Correction : N/A Collar Elevation : 485.7 meters Borehole Total Depth : 4.5 meters A+ Groove Azimuth : Base Reading : 2012 Jun 25 09:39 Applied Azimuth : 0.0 degrees

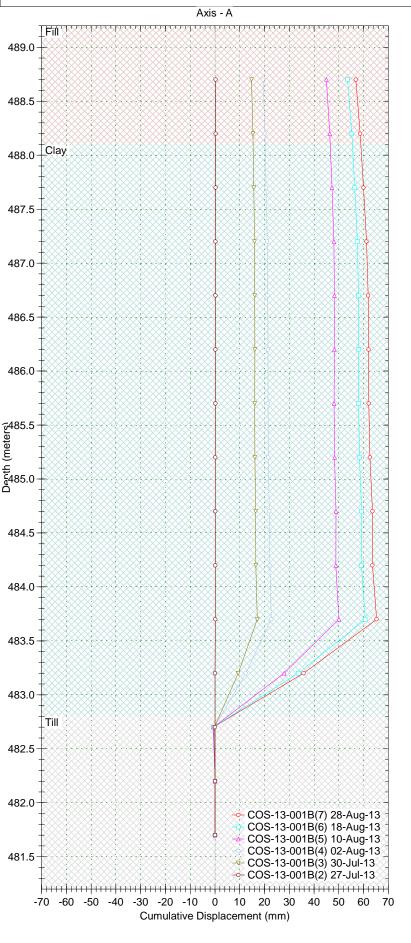


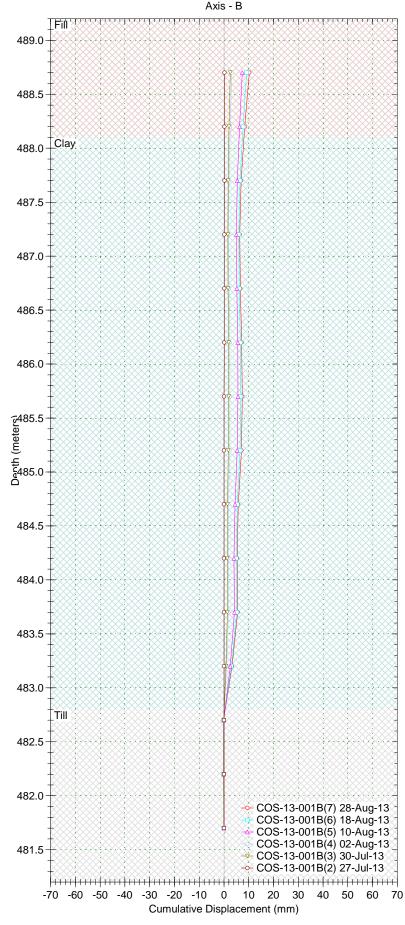


| RST li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nstruments Ltd.                                                                                                 | TIME PLOT<br>Displacement vs. Time | Inclinalysis v. 2.47.0                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Easting :<br>Collar :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e : BH 2<br>11-1362-0057 Cherry Lane<br>: Lane - 233 11th St E.<br>: 5775623.7<br>385980.0<br>ev : 485.7 meters |                                    | Spiral Correction : N/A<br>Movement Depth : 2.0 - 3.5 meters<br>Borehole Total Depth : 4.5 meters<br>A+ Groove Azimuth :<br>Latest Reading : 2012 Jun 26 09:02<br>Initial Reading : 2012 Jun 25 09:39<br>Applied Azimuth : 0.0 degrees |
| 30.0 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | Time Plot : 2.0 - 3.5 meters       |                                                                                                                                                                                                                                        |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                    | -                                                                                                                                                                                                                                      |
| 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ••••••                                                                                                          |                                    | ······                                                                                                                                                                                                                                 |
| 27.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| 25.5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| 24.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                    | -                                                                                                                                                                                                                                      |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                           |                                    |                                                                                                                                                                                                                                        |
| 21.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·····                                                                                                           |                                    | ·····-                                                                                                                                                                                                                                 |
| 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| 18.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                    | -                                                                                                                                                                                                                                      |
| ε <sup>16.5</sup> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ······                                                                                                          |                                    |                                                                                                                                                                                                                                        |
| 16.5 + (mm) 15.0 + (mm) 15.0 + (mm) 13.5 + (mm) 12.0 + |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| in 13.5 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| 8<br>₩ 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| - 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                                    | -                                                                                                                                                                                                                                      |
| Displacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ······                                                                                                          |                                    |                                                                                                                                                                                                                                        |
| 9.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| ≝ <sub>7.5</sub> ∔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| 6.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                    | -                                                                                                                                                                                                                                      |
| 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| 3.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| 1.5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                    |                                                                                                                                                                                                                                        |
| 0.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | 0                                  | -                                                                                                                                                                                                                                      |
| -1.5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ······································                                                                          |                                    |                                                                                                                                                                                                                                        |
| -3.0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·····                                                                                                           |                                    |                                                                                                                                                                                                                                        |
| -4.5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                                    | Axis A                                                                                                                                                                                                                                 |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                    | - <u>∽</u> Resultant -                                                                                                                                                                                                                 |
| -6.0⊥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06/25/12                                                                                                        | 06/25/12                           | 06/26/12                                                                                                                                                                                                                               |

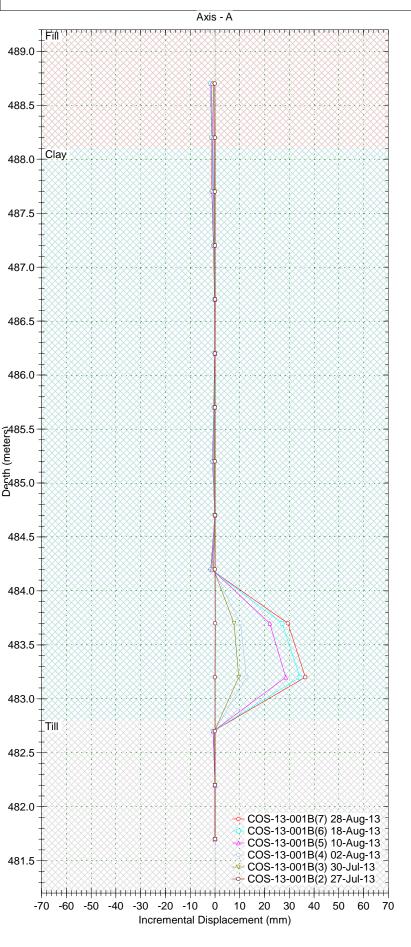


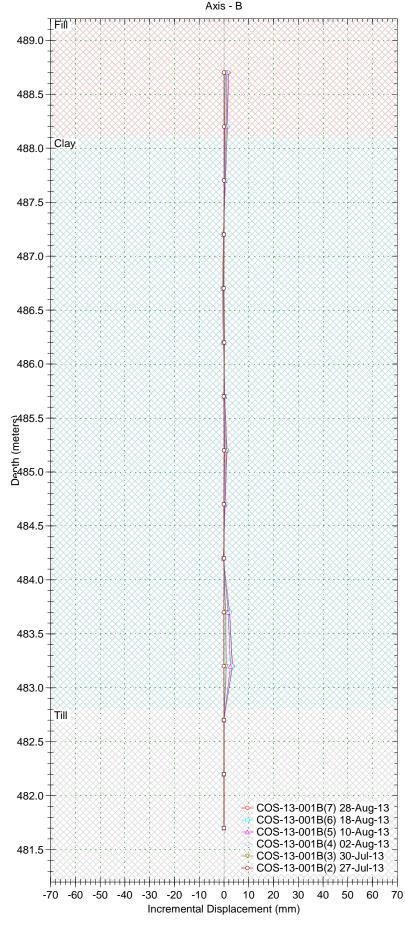


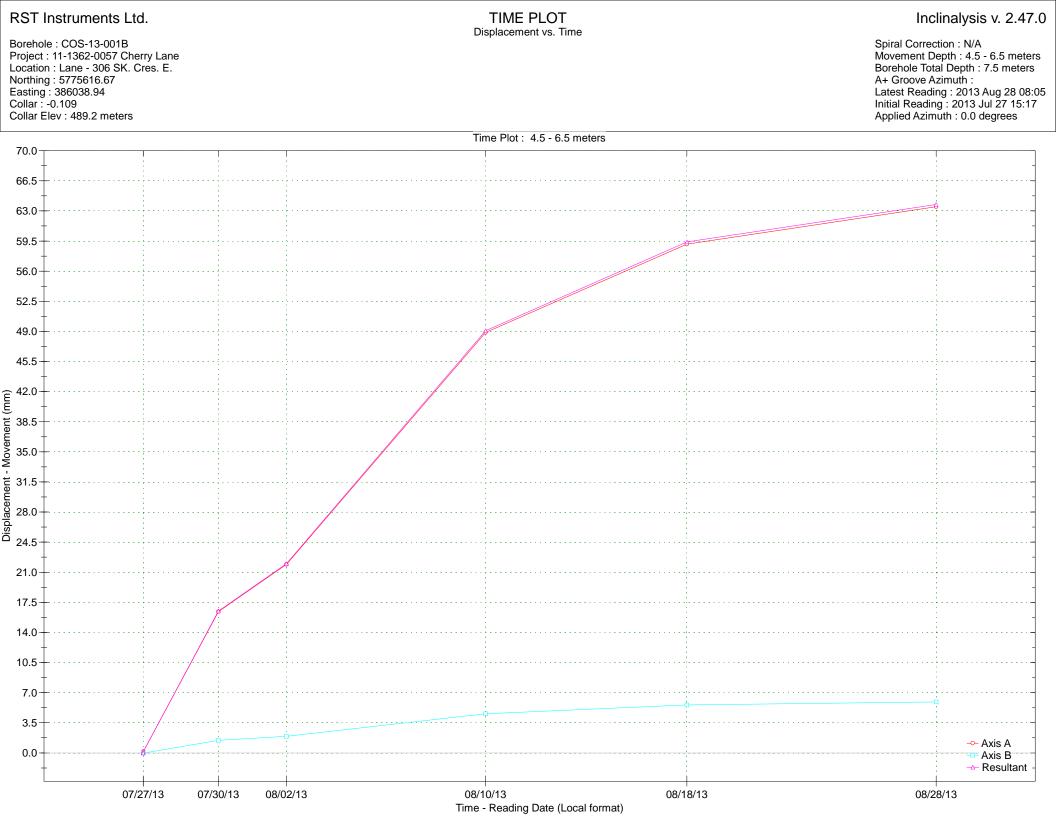

| Boreho<br>Project<br>Locatio<br>Northin<br>Easting<br>Collar : | Instruments Ltd.<br>le : BH 3<br>: 11-1362-0057 Cherry Lane<br>n : Lane - 231 11th St E.<br>g : 5775623.7<br>g : 385980.0<br>Elev : 484.0 meters |             | TIME PLOT<br>Displacement vs. Time |                                              |                              |                                                                                                                 |      |   |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|----------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|------|---|
|                                                                |                                                                                                                                                  |             | Time Plot: 0.5 - 1.5 meters        |                                              |                              |                                                                                                                 |      |   |
| 9.8-                                                           |                                                                                                                                                  |             | 1                                  |                                              | [                            | 1 1 1                                                                                                           |      |   |
| 3.0                                                            |                                                                                                                                                  |             | :                                  |                                              | ÷                            |                                                                                                                 |      |   |
| 9.0-                                                           | <br>                                                                                                                                             | ·           | :                                  |                                              |                              |                                                                                                                 |      |   |
|                                                                |                                                                                                                                                  |             |                                    |                                              |                              | <u>~~</u>                                                                                                       | -0-0 |   |
| 8.3-                                                           |                                                                                                                                                  |             |                                    |                                              |                              | <i>.</i>                                                                                                        |      |   |
| -                                                              | -                                                                                                                                                |             |                                    |                                              |                              | /                                                                                                               | ç    | ) |
| 7.5-                                                           |                                                                                                                                                  |             | <u>;</u>                           |                                              | · · <del>;</del> · · · · · / | 90                                                                                                              | -0   |   |
|                                                                | -                                                                                                                                                |             |                                    |                                              |                              |                                                                                                                 |      |   |
| 6.8-                                                           |                                                                                                                                                  | ···;·····   |                                    | in en sin sin sin sin sin sin sin sin sin si | / /                          | /                                                                                                               |      |   |
| 6.0-                                                           |                                                                                                                                                  |             |                                    | <u>.</u>                                     |                              |                                                                                                                 |      |   |
| 0.0                                                            | _                                                                                                                                                |             |                                    |                                              |                              |                                                                                                                 |      |   |
| 5.3-                                                           | L                                                                                                                                                |             | }                                  |                                              | / /                          |                                                                                                                 |      |   |
| -                                                              | -                                                                                                                                                |             |                                    | <u> </u>                                     |                              |                                                                                                                 |      |   |
| 4.5-                                                           |                                                                                                                                                  |             |                                    |                                              |                              |                                                                                                                 |      |   |
| <u> </u>                                                       |                                                                                                                                                  | 1<br>1<br>1 |                                    | 0-0                                          |                              |                                                                                                                 |      |   |
| Ê 3.8-                                                         |                                                                                                                                                  |             |                                    |                                              |                              |                                                                                                                 |      |   |
|                                                                |                                                                                                                                                  |             |                                    |                                              |                              |                                                                                                                 |      |   |
| ē 3.0-                                                         |                                                                                                                                                  |             |                                    |                                              |                              |                                                                                                                 |      |   |
| ° 2.3-                                                         |                                                                                                                                                  |             |                                    | ļļ.                                          |                              |                                                                                                                 |      |   |
| (mm) 1.5-                                                      |                                                                                                                                                  |             |                                    |                                              |                              |                                                                                                                 |      |   |
| ta 1.5-                                                        |                                                                                                                                                  |             |                                    |                                              |                              |                                                                                                                 |      |   |
| <b>C</b>                                                       |                                                                                                                                                  |             |                                    |                                              |                              | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |      |   |


#### Inclinalysis v. 2.47.0

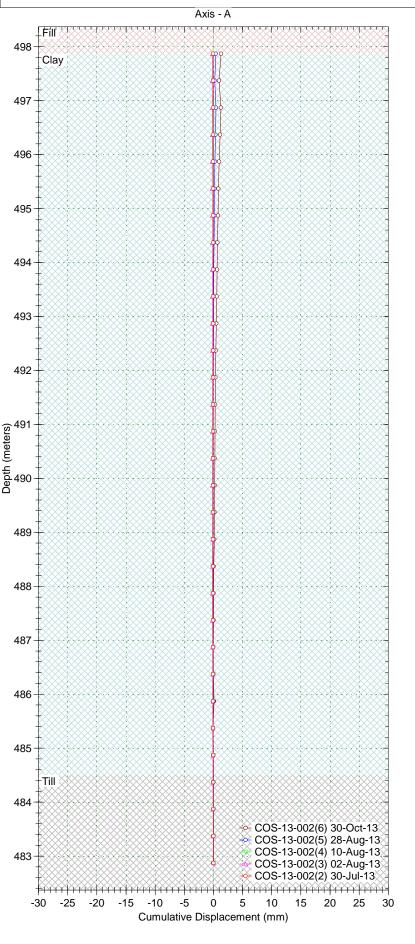
Spiral Correction : N/A Movement Depth : 0.5 - 1.5 meters Borehole Total Depth : 3.5 meters A+ Groove Azimuth : Latest Reading : 2013 Oct 30 10:49 Initial Reading : 2012 Jun 25 10:17 Applied Azimuth : 0.0 degrees

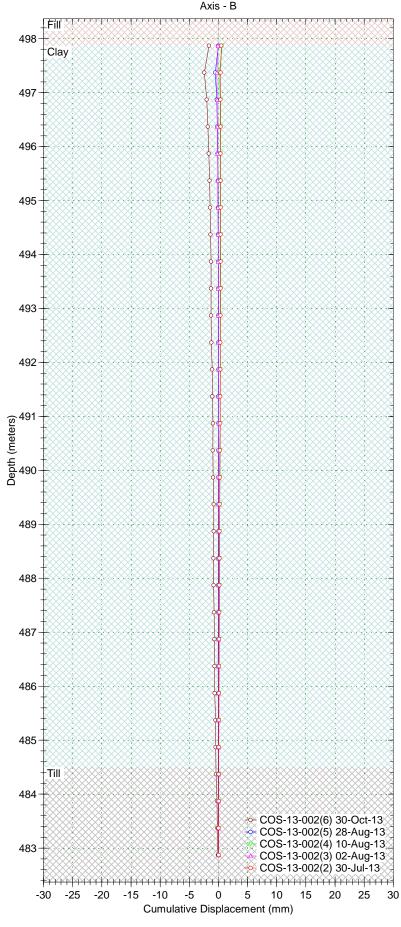

| +          |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
|------------|---------------------------------------|---------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 8.3        |                                       |                                                         | н н<br>н н                            | <u> </u>                                                                                                                                                                                                      | ~~•<br>                               |
| 0.5        |                                       |                                                         |                                       | Š i                                                                                                                                                                                                           |                                       |
| 7.5        |                                       |                                                         |                                       |                                                                                                                                                                                                               | ¢                                     |
| 7.5        |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| 6.8        |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| 0.0        |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| 6.0+       |                                       |                                                         |                                       | ·;·/././.;·;··                                                                                                                                                                                                |                                       |
| _          |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| 5.3        | ·····                                 | ···· }                                                  | · · · · · · · · · · · · · · · · · · · | · ; /· ; ; ; ; ; ; ;                                                                                                                                                                                          |                                       |
| +          |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| 4.5        |                                       |                                                         |                                       |                                                                                                                                                                                                               | ·····                                 |
| +          |                                       |                                                         | <u> </u>                              |                                                                                                                                                                                                               |                                       |
| 3.8        |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| · +        |                                       |                                                         | : :                                   |                                                                                                                                                                                                               |                                       |
| 3.0+       |                                       |                                                         |                                       |                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · |
| +          |                                       |                                                         |                                       | I         I         I         I         I         I           I         I         I         I         I         I         I           I         I         I         I         I         I         I           |                                       |
| 3.8<br>    | · · · · · · · · · · · · · · · · · · · |                                                         |                                       |                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · |
|            |                                       |                                                         |                                       | I         I         I         I         I         I           I         I         I         I         I         I         I           I         I         I         I         I         I         I         I |                                       |
| 1.5+       |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
|            |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| 1.5<br>0.8 |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
|            |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| 0.0        |                                       |                                                         | : :                                   |                                                                                                                                                                                                               |                                       |
| -0.8       |                                       |                                                         | 1 1                                   |                                                                                                                                                                                                               |                                       |
| -0.8       |                                       |                                                         |                                       | I         I         I         I         I           I         I         I         I         I         I           I         I         I         I         I         I                                         |                                       |
| -1.5       |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| 1.0        | i i i i i i i i i i i i i i i i i i i |                                                         | : :<br>: :                            |                                                                                                                                                                                                               |                                       |
| -2.3       |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
|            |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| -3.0+      |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| +          |                                       |                                                         | : :                                   |                                                                                                                                                                                                               |                                       |
| -3.8       | ·····                                 |                                                         | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                               | <u> </u>                              |
| -          |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
| -4.5       |                                       |                                                         | · · · ·                               |                                                                                                                                                                                                               |                                       |
| +          |                                       |                                                         |                                       |                                                                                                                                                                                                               | - <u>-</u> - Axic A                   |
| -5.3+      |                                       |                                                         |                                       |                                                                                                                                                                                                               | -⊶ Axis A<br>-⊶ Axis B                |
| +          |                                       |                                                         |                                       |                                                                                                                                                                                                               | Resultant                             |
| -6.0       |                                       |                                                         |                                       |                                                                                                                                                                                                               |                                       |
|            | 06/25/12 09/26/12                     | 10/24/12 11/23/12<br>Time - Reading Date (Local format) | 05/07/13 06/0                         | 04/13 07/05/13 08/02/13                                                                                                                                                                                       | 10/30/13                              |


Borehole : COS-13-001B Project : 11-1362-0057 Cherry Lane Location : Lane - 306 SK. Cres. E. Northing : 5775616.67 Easting : 386038.94 Collar : -0.109 Spiral Correction : N/A Collar Elevation : 489.2 meters Borehole Total Depth : 7.5 meters A+ Groove Azimuth : Base Reading : 2013 Jul 27 15:17 Applied Azimuth : 0.0 degrees





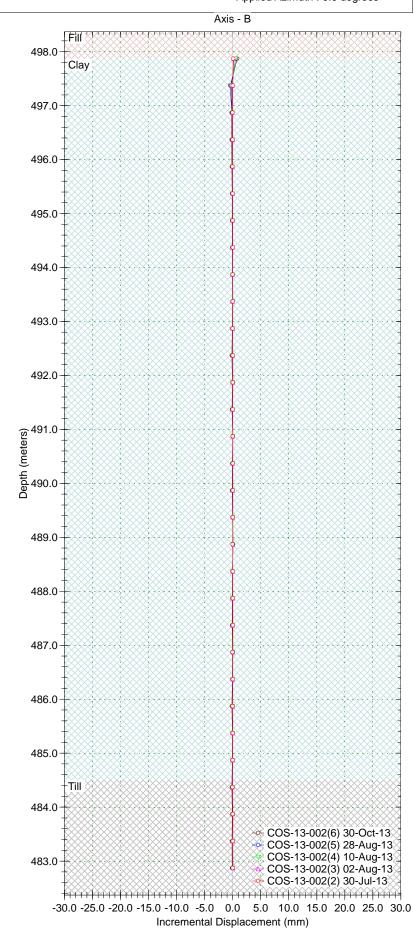


Borehole : COS-13-001B Project : 11-1362-0057 Cherry Lane Location : Lane - 306 SK. Cres. E. Northing : 5775616.67 Easting : 386038.94 Collar : -0.109 Spiral Correction : N/A Collar Elevation : 489.2 meters Borehole Total Depth : 7.5 meters A+ Groove Azimuth : Base Reading : 2013 Jul 27 15:17 Applied Azimuth : 0.0 degrees



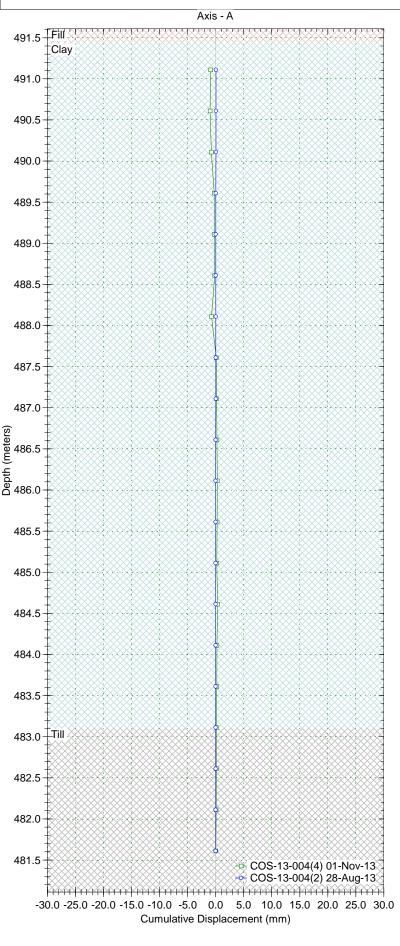


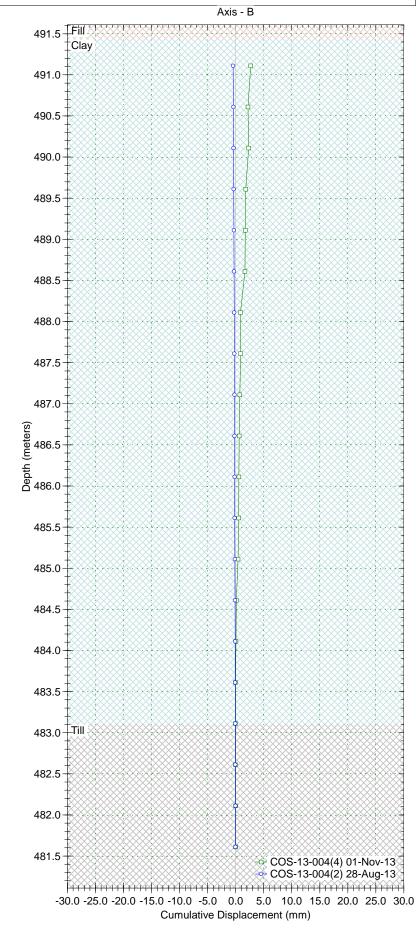



Borehole : COS-13-002 Project : 11-1362-0057 Cherry Lane Location : 307 11th St. E. (Front) Northing : 5775567.41 Easting : 386043.54 Collar : -0.113 Spiral Correction : N/A Collar Elevation : 498.4 meters Borehole Total Depth : 15.5 meters A+ Groove Azimuth : Base Reading : 2013 Jul 30 16:18 Applied Azimuth : 0.0 degrees





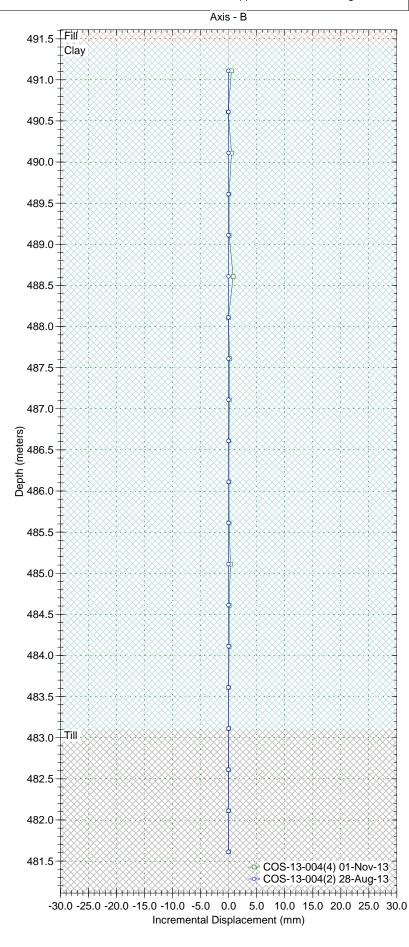


Borehole : COS-13-002 Project : 11-1362-0057 Cherry Lane Location : 307 11th St. E. (Front) Northing : 5775567.41 Easting : 386043.54 Collar : -0.113 Spiral Correction : N/A Collar Elevation : 498.4 meters Borehole Total Depth : 15.5 meters A+ Groove Azimuth : Base Reading : 2013 Jul 30 16:18 Applied Azimuth : 0.0 degrees


жĸ Fill 498.0 Clay 497.0 496.0 495.0 494.0 493.0 492.0 0.166th (meters) 0.066th (meters) 489.0 488.0 487.0 486.0 485.0 Till 484.0 COS-13-002(6) 30-Oct-13 COS-13-002(5) 28-Aug-13 COS-13-002(4) 10-Aug-13 483.0 COS-13-002(3) 02-Aug-13 COS-13-002(2) 30-Jul-13 ╈┅╍╗╍╍╗┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 Incremental Displacement (mm)

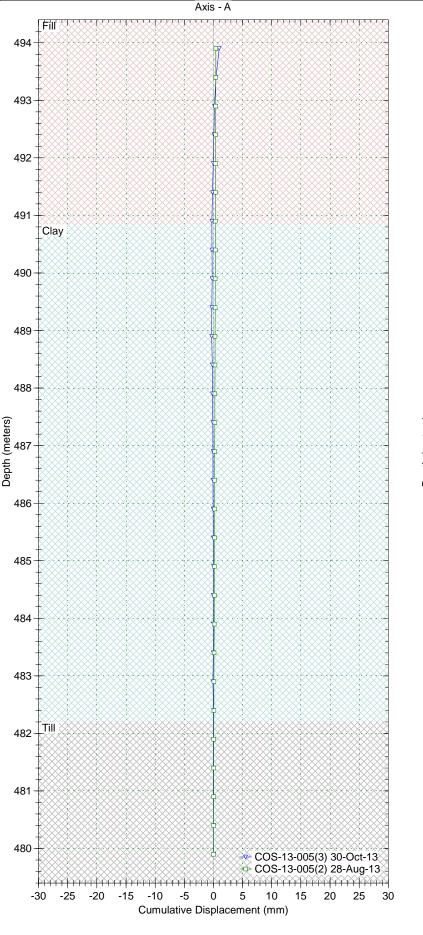
Axis - A

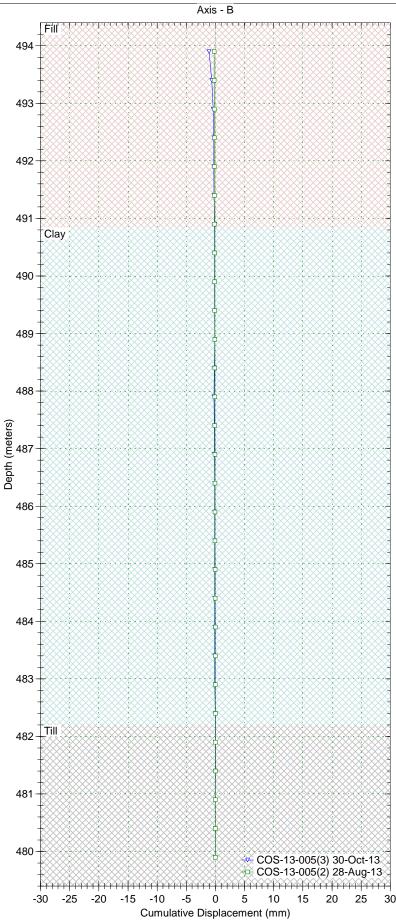


Borehole : COS-13-004 Project : 11-1362-0057 Cherry Lane Location : 307 11th. St. E. (back) Northing : 5775604.97 Easting : 386050.63 Collar : -0.677 Spiral Correction : N/A Collar Elevation : 491.6 meters Borehole Total Depth : 10.0 meters A+ Groove Azimuth : Base Reading : 2013 Aug 28 08:30 Applied Azimuth : 0.0 degrees

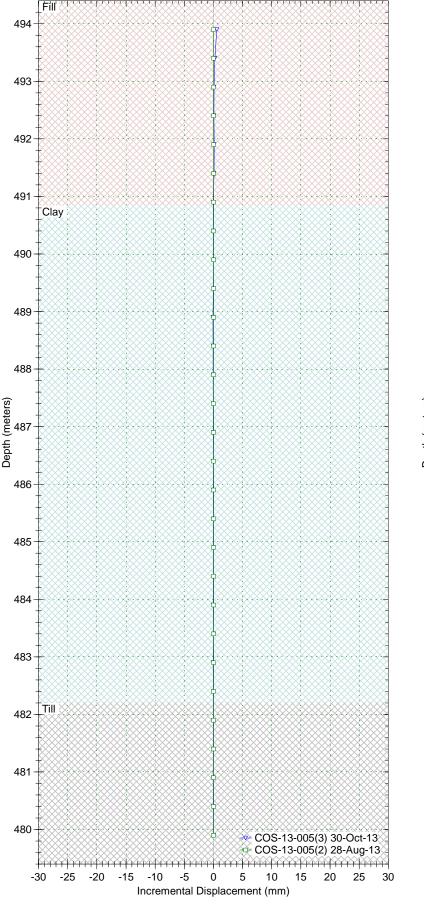




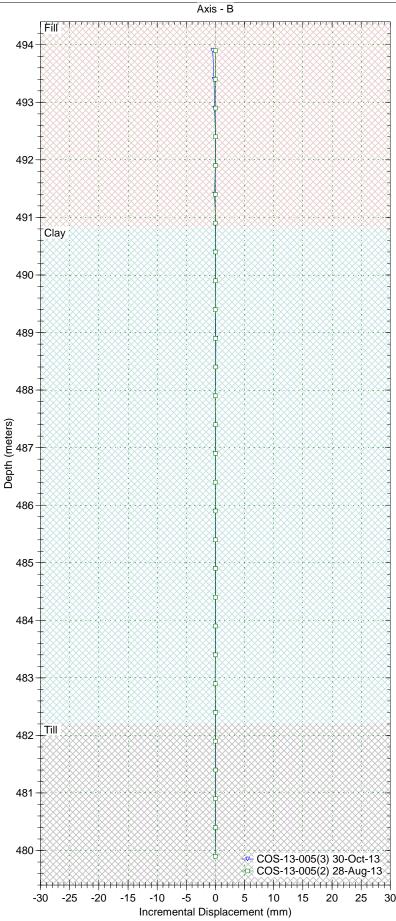


Borehole : COS-13-004 Project : 11-1362-0057 Cherry Lane Location : 307 11th. St. E. (back) Northing : 5775604.97 Easting : 386050.63 Collar : -0.677 Spiral Correction : N/A Collar Elevation : 491.6 meters Borehole Total Depth : 10.0 meters A+ Groove Azimuth : Base Reading : 2013 Aug 28 08:30 Applied Azimuth : 0.0 degrees


491.5 Fill Clay 491.0 490.5 490.0 489.5 489.0 488.5 488.0 487.5 487.0 485.5 485.0 484.5 484.0 483.5 483.0 Till 482.5 482.0 481.5 COS-13-004(4) 01-Nov-13 Freedometric freedo -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 Incremental Displacement (mm)

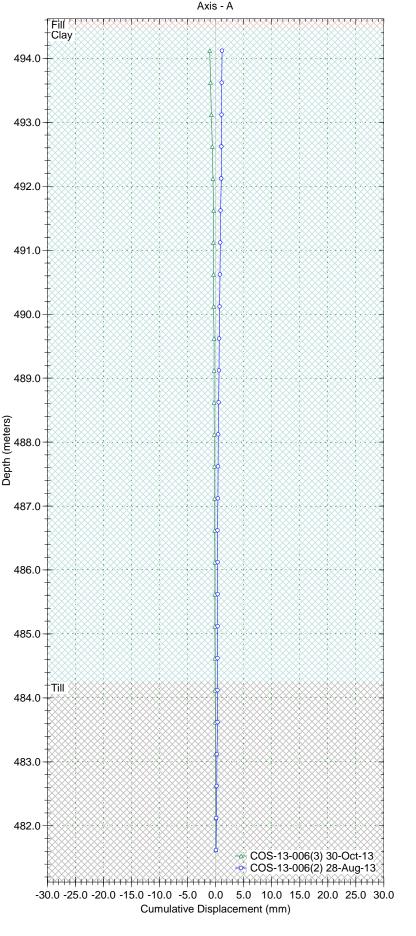
Axis - A

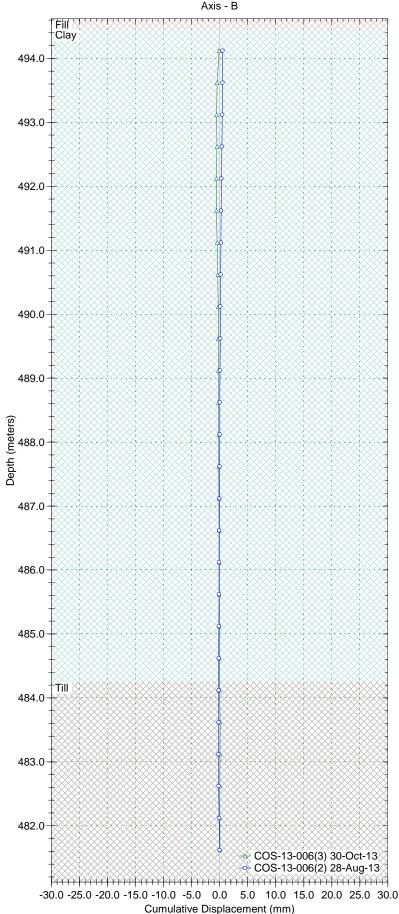



Borehole : COS-13-005 Project : 11-1362-0057 Cherry Lane Location : 316 Sask. Cres. E. Northing : 5775631.299 Easting : 386078.8467 Collar : -0.1 Spiral Correction : N/A Collar Elevation : 494.4 meters Borehole Total Depth : 14.5 meters A+ Groove Azimuth : Base Reading : 2013 Aug 28 09:11 Applied Azimuth : 0.0 degrees

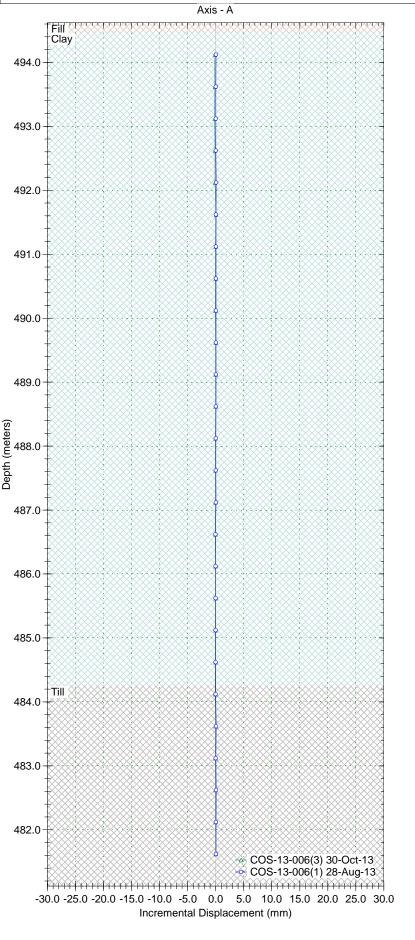


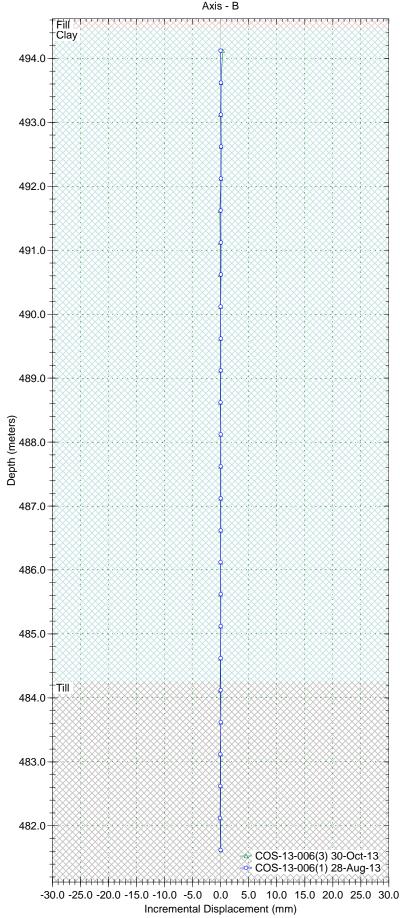




Borehole : COS-13-005 Project : 11-1362-0057 Cherry Lane Location : 316 Sask. Cres. E. Northing : 5775631.299 Easting : 386078.8467 Collar : -0.1 Spiral Correction : N/A Collar Elevation : 494.4 meters Borehole Total Depth : 14.5 meters A+ Groove Azimuth : Base Reading : 2013 Aug 28 09:11 Applied Azimuth : 0.0 degrees




Axis - A





Borehole : COS-13-006 Project : 11-1362-0057 Cherry Lane Location : 231 11th St. E. Northing : 5775572.72 Easting : 385959.21 Collar : -0.147 Spiral Correction : N/A Collar Elevation : 494.6 meters Borehole Total Depth : 13.0 meters A+ Groove Azimuth : Base Reading : 2013 Aug 28 13:13 Applied Azimuth : 0.0 degrees





Borehole : COS-13-006 Project : 11-1362-0057 Cherry Lane Location : 231 11th St. E. Northing : 5775572.72 Easting : 385959.21 Collar : -0.147 Spiral Correction : N/A Collar Elevation : 494.6 meters Borehole Total Depth : 13.0 meters A+ Groove Azimuth : Base Reading : 2013 Aug 28 13:13 Applied Azimuth : 0.0 degrees







# F.2. TELL-TALE CRACK MONITORS PHOTOS



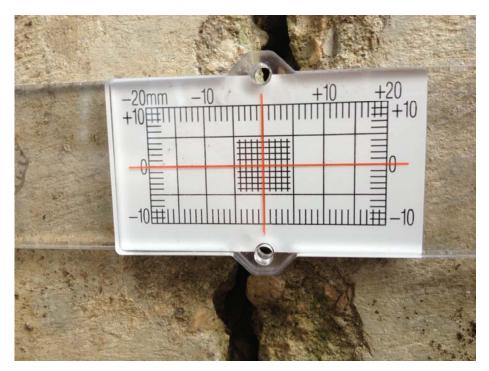



Photo F.1: Crack Meter Located on the Retaining Wall Behind 306 Sask. Cres. E. (CM1) (Aug 12, 2013)



Photo F.2: Crack Meter Located on the Retaining Wall Behind 306 Sask. Cres. E. (CM1) (Sept 18, 2013)




Photo F.3: Crack Meter Located on the East Face of the Retaining Wall Between 230 & 306 Sask. Cres. E. (CM2) (Aug 12, 2013)



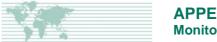

Photo F.4: Crack Meter Located on the East Face of the Retaining Wall Between 230 & 306 Sask. Cres. E. (CM2) (Sept 18, 2013)



Photo F.5: Crack Meter Located on the West Face of the Retaining Wall Between 230 & 306 Sask. Cres. E. (CM3) (Aug 12, 2013)



Photo F.6: Crack Meter Located on the West Face of the Retaining Wall Between 230 & 306 Sask. Cres. E. (CM3) (Sept 18, 2013)



# F.3. SETTLEMENT POINT DATA





| Deint ID | Description                            |           | Elevation (masl | )         | Settleme  | ent (mm)  |
|----------|----------------------------------------|-----------|-----------------|-----------|-----------|-----------|
| Point ID | Description                            | 29-Aug-13 | 18-Sep-13       | 28-Nov-13 | 18-Sep-13 | 28-Nov-13 |
| PT03     | BM2 - Sask. Cres./sidewalk             | 480.12    | 480.12          | 480.12    | -2.15     | -5.98     |
| PT04     | 306 Sask. Cres. (NE corner)            | 479.95    | 479.95          | 479.95    | -0.50     | -3.17     |
| PT05     | 306 Sask. Cres. (NW corner)            | 479.52    | 479.52          | 479.52    | -0.35     | -3.27     |
| PT06     | 230 Sask. Cres. (NE corner)            | 479.60    | 479.60          | 479.60    | -0.60     | -4.26     |
| PT07     | 230 Sask. Cres. (E side)               | 479.71    | 479.71          | 479.71    | -1.24     | -4.33     |
| PT08     | 306 Sask. Cres. (SW corner)            | 481.70    | 481.70          | 481.69    | -1.47     | -5.71     |
| PT09     | 306 Sask. Cres. (SE corner)            | 482.40    | 482.39          | 482.39    | -1.01     | -3.99     |
| PT10     | 230 Sask. Cres. (SE corner)            | 487.62    | 487.62          | 487.62    | -0.38     | -3.99     |
| PT11     | 230 Sask. Cres. (SW corner)            | 487.85    | 487.85          | 487.85    | -0.22     | -2.77     |
| PT12     | 311/313 - 11th St. (NW corner)         | 494.82    | 494.82          | 494.82    | 0.07      | -0.55     |
| PT13     | 311/313 - 11th St. (drive-way)         | 495.48    | 495.48          | 495.48    | -0.36     | -1.47     |
| PT14     | BM3 - Apt. 328 Sask. Cres. (SW corner) | 496.41    | 496.41          | 496.41    | 0.00      | 0.00      |
| PT15     | Apt. 328 Sask. Cres. (NW corner)       | 494.56    | 494.56          | 494.56    | 0.03      | 0.20      |
| PT16     | 311/313 - 11th St. (SE corner)         | 499.14    | 499.14          | 499.14    | -1.62     | -0.56     |
| PT17     | 311/313 - 11th St. (SW corner)         | 499.19    | 499.19          | 499.19    | -1.85     | -1.19     |
| PT18     | 309 - 11th St. (NW corner)             | 496.60    | 496.60          | 496.60    | -0.63     | -0.19     |
| PT19     | 307 - 11th St. (back deck)             | 496.72    | 496.72          | 496.72    | -0.46     | 0.53      |
| PT20     | 305 - 11th St. (NE corner)             | 497.06    | 497.06          | 497.06    | -0.50     | -0.54     |
| PT21     | 305 - 11th St. (SE corner)             | 498.84    | 498.84          | 498.84    | -0.31     | 4.00      |
| PT22     | 303 - 11th St. (SW corner)             | 498.28    | 498.28          | 498.28    | 1.38      | 0.02      |
| PT23     | 233/235 - 11th St. (drive-way)         | 497.13    | 497.13          | 497.12    | -0.61     | -3.80     |
| PT24     | 233/235 - 11th St. (NW corner)         | 492.74    | 492.74          | 492.74    | 0.01      | -1.86     |
| PT25     | 233/235 - 11th St. (N side)            | 492.80    | 492.80          | 492.80    | 1.48      | -0.43     |
| PT26     | 237/239 - 11th St. (NW side)           | 494.85    | 494.85          | 494.85    | 0.74      | -1.21     |
| PT27     | 237/239 - 11th St. (NE side)           | 494.89    | 494.89          | 494.89    | 1.90      | 0.71      |
| PT28     | 241 - 11th St. (NW corner)             | 495.83    | 495.84          | 495.83    | 1.87      | 1.44      |
| PT29     | 237/239 - 11th St. (E side)            | 497.83    | 497.84          | 497.84    | 1.47      | 0.76      |
| PT30     | 241 - 11th St. (NE corner)             | 495.41    | 495.41          | 495.41    | 2.14      | 0.53      |
| PT31     | 303 - 11th St. (NE corner)             | 494.42    | 494.42          | 494.42    | 1.77      | 1.08      |

# **Cherry Lane - Settlement Point Data**





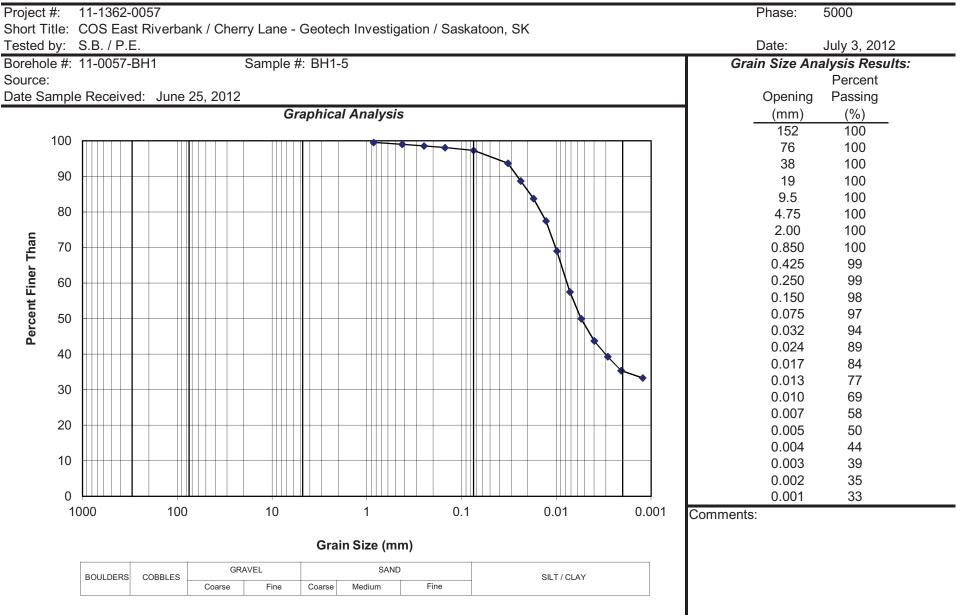
**Laboratory Test Results** 





# **GENERAL TESTING RESULTS**

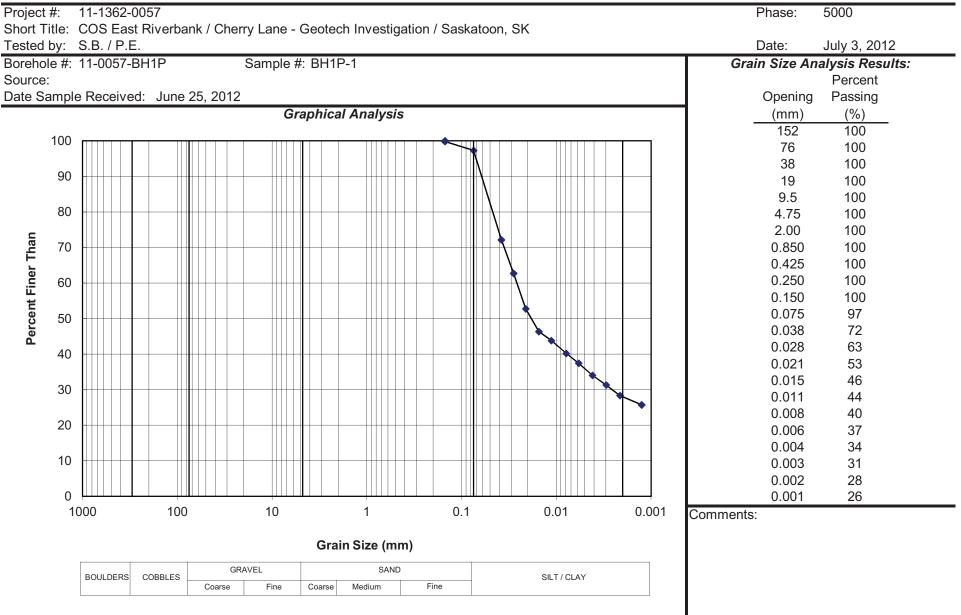
Project #: 11-1362-0057


Phase : 5000 Short Title: COS East Riverbank / Cherry Lane - Geotech Investigation / Saskatoon, SK Tested by: S.H. Date: July 4, 2012

Sample Identification Laboratory Test Results Pocket Penetrometer (kPa) Type ASTM Group Content (%) Group Plastic Limit Passing Dry Density # Liquid Limit Lab Vane (kPa) # <u>Е</u> Borehole Plasticity Index Sample ; Sample . (Kg/m<sup>3</sup>) Depth Water Index Index % Pas #200 SHT ( 11-0057-BH1 BH1-1 0.61-0.91 36.2 AS 11-0057-BH1 BH1-2 1.22-1.52 AS 37.0 11-0057-BH1 BH1-3 2.13-2.44 AS 33.9 20 39 19 11-0057-BH1 2.44-2.74 BH1-4 AS 36.1 11-0057-BH1 BH1-5 3.35-3.66 AS 36.3 22 62 40 11-0057-BH1 3.96-4.27 14.5 BH1-6 AS 11-0057-BH1 4.88-5.18 BH1-7 AS 15.7 11-0057-BH1 **BH1-8** 6.40-6.71 AS 8.3 11-0057-BH1P 1371 BH1P-1 1.52-2.13 TO 34.6 21 43 22 11-0057-BH1P BH1P-2 31.1 2.44-3.05 TO 11-0057-BH1P BH1P-3 3.05 35.0 29 1405 ΤO 21 50 11-0057-BH2 BH2-1 0.91-1.22 AS 33.0 11-0057-BH2 BH2-2 1.22-1.52 AS 31.8 24 55 31 11-0057-BH2 BH2-3 1.83-2.13 AS 31.7 11-0057-BH2 BH2-4 2.44-2.74 25 AS 30.448 23 11-0057-BH2 BH2-5 3.35-3.66 AS 12.9 12 18 6 11-0057-BH2 BH2-6 3.66-3.96 AS 9.1 11-0057-BH2 BH2-7 4.57-4.88 AS 14.9 1.52-2.13 11-0057-BH2P BH2P-1 TO 34.9 11-0057-BH2P 1415 BH2P-2 2.44 TO 34.5 27 72 45 11-0057-BH2P BH2P-3 2.74-3.35 10.9 TO 11-0057-BH3 BH3-1 0.61-0.91 AS 22.2 11-0057-BH3 14 BH3-2 1.22-1.52 AS 24.3 17 31 11-0057-BH3 BH3-3 1.83-2.13 AS 28.4 18 28 10 11-0057-BH3 BH3-4 2.44-3.05 AS 15.9 11-0057-BH3 3.66-3.96 BH3-5 AS 13.6



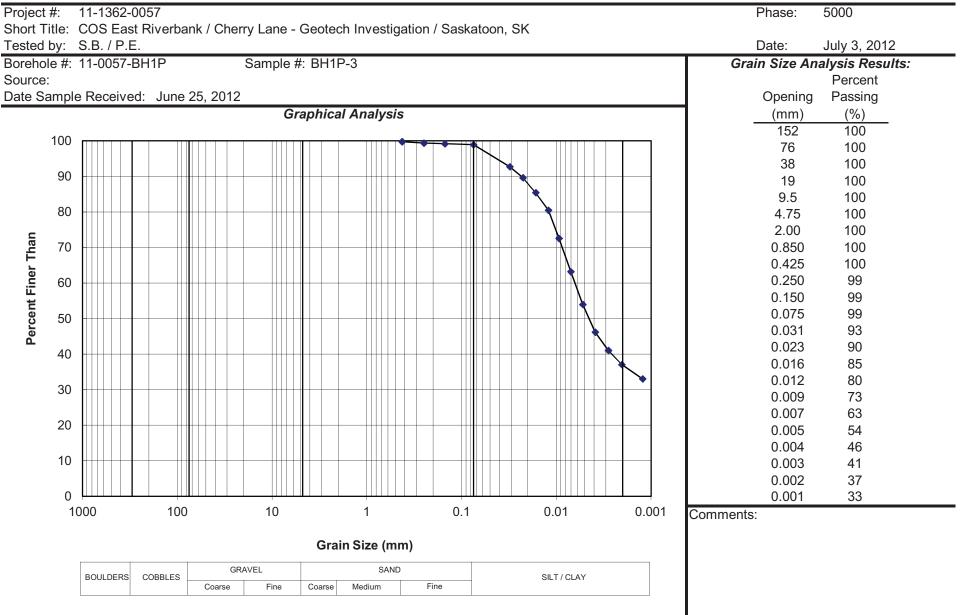


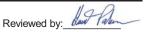

(Mechanical & Hydrometer)





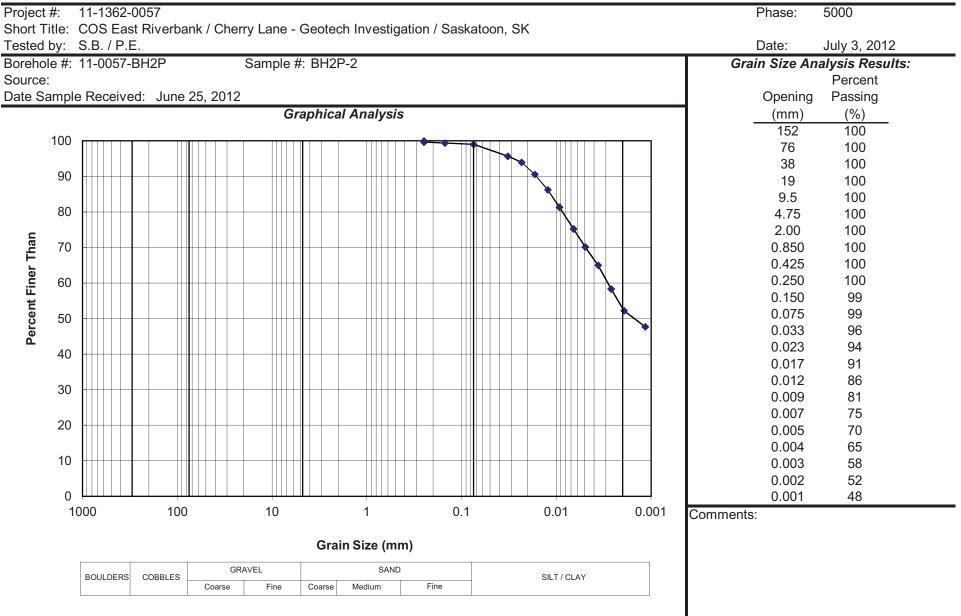



(Mechanical & Hydrometer)





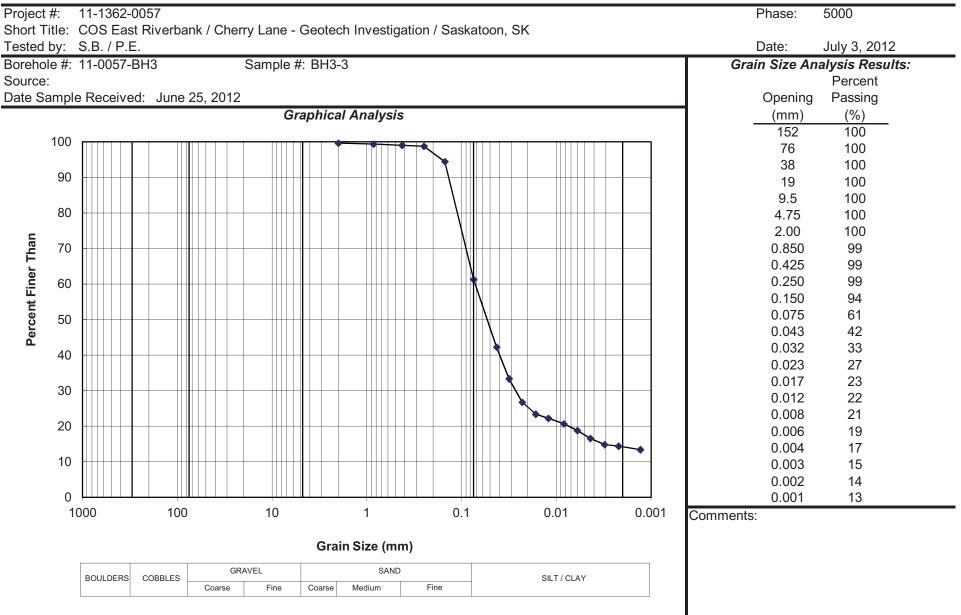




(Mechanical & Hydrometer)







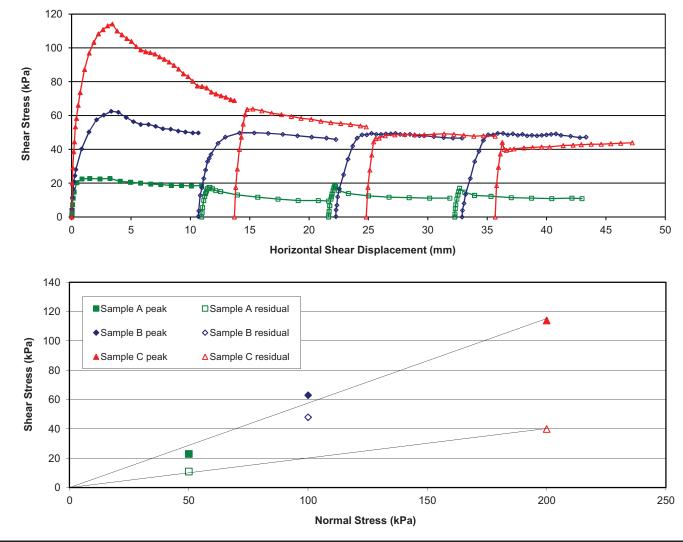

(Mechanical & Hydrometer)







(Mechanical & Hydrometer)






# Golder

# CONSOLIDATED DRAINED DIRECT SHEAR TEST-SUMMARY

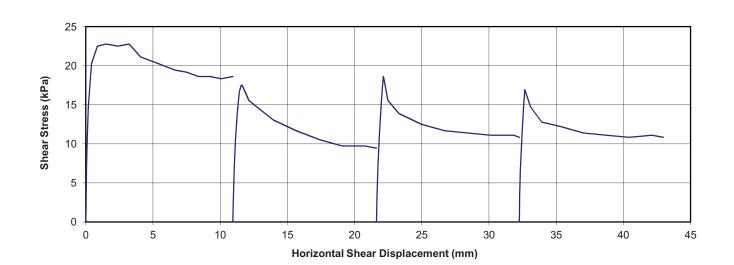
| Project #: 11-1362-0057                      |                   |            |              | Phase: | 5000          |
|----------------------------------------------|-------------------|------------|--------------|--------|---------------|
| Short Title: COS East Riverbank / Cherry Lar | ne - Geotech Inve | estigation | / Saskatoon, | SK     |               |
| Tested By: D.B.                              |                   | -          |              | Date:  | July 24, 2012 |
|                                              | Normal            | Shea       | r Stress     |        |               |
| Sample                                       | Stress            | Peak       | Residual     |        |               |
|                                              | (kPa)             | (kPa)      | (kPa)        |        |               |
|                                              | 50                | 23         | 11           |        |               |
| 11-0057-BH1P BH1P-3                          | 100               | 63         | 48           |        |               |
|                                              | 200               | 114        | 40           |        |               |
|                                              |                   | Peak       | Residual     |        |               |
| Friction a                                   | ngle (degrees):   | 30.0       | 11.4         |        |               |
| с                                            | ohesion (kPa):    | 0          | 0            |        |               |
|                                              |                   |            |              |        |               |

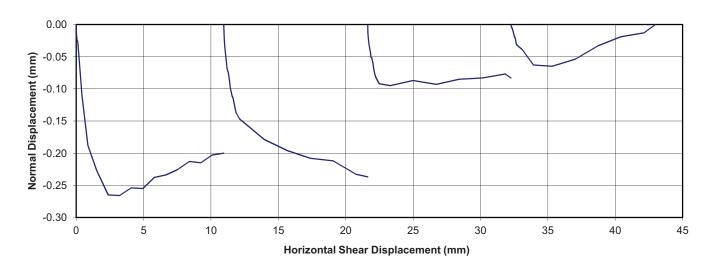


Comments:






Final Water Content:


42.7

%

# CONSOLIDATED DRAINED DIRECT SHEAR TEST

| Tested By:     D.B.     Date:     July       Sample:     11-0057-BH1P     BH1P-3 |          |
|----------------------------------------------------------------------------------|----------|
| Sample: 11-0057-BH1P BH1P-3                                                      |          |
| Sample: 11-0057-BH1P BH1P-3                                                      |          |
|                                                                                  | 24, 2012 |
|                                                                                  |          |
|                                                                                  |          |
| <i>Effective Stress:</i> 50 kPa Peak Shear Stress: 23 kPa                        |          |
| Residual Shear Stress 11 kPa                                                     |          |
| Sample Data: Comments:                                                           |          |
| Sample Length: 60.0 mm                                                           |          |
| Initial Height: 20.0 mm                                                          |          |
| Initial Water Content: 33.7 %                                                    |          |
| Initial Dry Density: 1372 kg/m <sup>3</sup>                                      |          |









60.0

20.0

34.4

1416

34.2

mm

mm

kg/m<sup>3</sup>

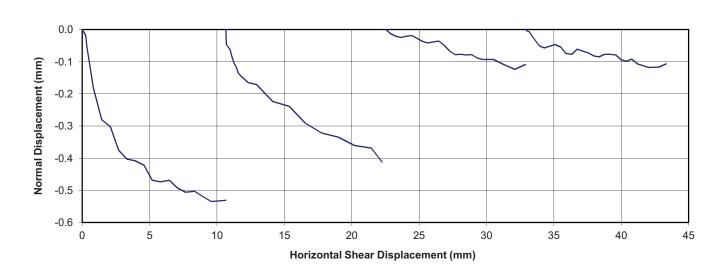
%

%

Sample Length:

Initial Water Content:

Final Water Content:


Initial Dry Density:

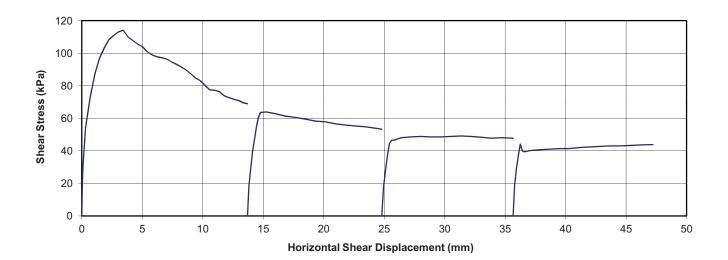
Initial Height:

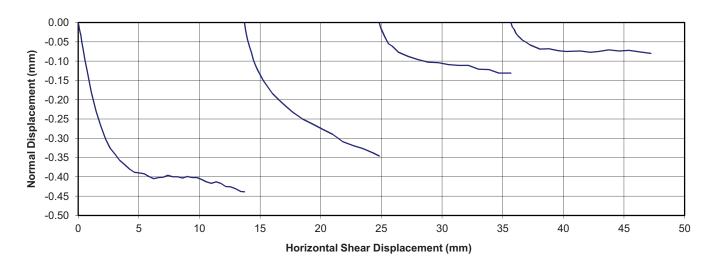
# CONSOLIDATED DRAINED DIRECT SHEAR TEST

| Project #: 11-1362-00<br>Short Title: COS East |          | Cherry La | ne - Geotech Investigation / Saska | Phase:<br>itoon. SK | 5000          |
|------------------------------------------------|----------|-----------|------------------------------------|---------------------|---------------|
| Tested By: D.B.                                |          | <b>,</b>  |                                    | Date:               | July 24, 2012 |
| Sample: 11-0057-B                              | H1P BH1P | -3        |                                    |                     |               |
| Effective Stress:                              | 100      | kPa       | Peak Shear Stress:                 | 63                  | kPa           |
|                                                |          |           | <b>Residual Shear Stress</b>       | 48                  | kPa           |
| Sample Data:                                   |          |           | Comments:                          |                     |               |

|                    | 70 - |          |          |     |                      |      |     |     |        |
|--------------------|------|----------|----------|-----|----------------------|------|-----|-----|--------|
|                    | 60 - | $\frown$ | <u> </u> |     |                      |      |     |     |        |
| (Pa)               | 50 - | _/       | <u> </u> |     |                      |      |     |     | $\sim$ |
| Shear Stress (kPa) | 40 - | /        |          |     |                      |      |     |     |        |
| ar Str             | 30 - | /        |          |     |                      |      |     |     |        |
| She                | 20 - |          |          |     |                      |      |     |     |        |
|                    | 10 - |          |          |     |                      |      |     |     |        |
|                    | 0 -  |          | - 4      |     |                      |      |     |     |        |
|                    | (    | ) {      | 5 1      | 0 1 | 0 2<br>hear Displace | 5 30 | U 3 | 5 4 | 0 45   |





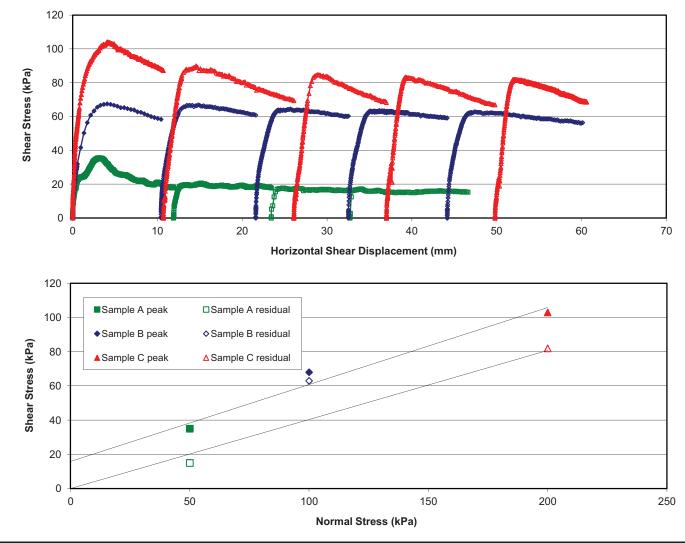




# CONSOLIDATED DRAINED DIRECT SHEAR TEST

| Project #:   | 11-1362-0057                                                         | Phase: | 5000          |
|--------------|----------------------------------------------------------------------|--------|---------------|
| Short Title: | COS East Riverbank / Cherry Lane - Geotech Investigation / Saskatoor | i, SK  |               |
| Tested By:   | D.B.                                                                 | Date:  | July 24, 2012 |
| Sample:      | 11-0057-BH1P BH1P-3                                                  |        |               |

| Effective Stress:                                                                                          | 200                          | kPa                                | Peak Shear Stress:<br>Residual Shear Stress | 114<br>40 | kPa<br>kPa |
|------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|---------------------------------------------|-----------|------------|
| <i>Sample Data:</i><br>Sample Length:<br>Initial Height:<br>Initial Water Content:<br>Initial Dry Density: | 60.0<br>20.0<br>33.2<br>1386 | mm<br>mm<br>%<br>kg/m <sup>3</sup> | Comments:                                   |           |            |
| Final Water Content:                                                                                       | 35.8                         | %                                  |                                             |           |            |








# Golder

# CONSOLIDATED DRAINED DIRECT SHEAR TEST-SUMMARY

| Project #: 11-1362-0057                     |                    |            |              | Phase: | 5000          |
|---------------------------------------------|--------------------|------------|--------------|--------|---------------|
| Short Title: COS East Riverbank / Cherry La | ane - Geotech Inve | estigation | / Saskatoon, | SK     |               |
| Tested By: D.B.                             |                    | -          |              | Date:  | July 12, 2012 |
|                                             | Normal             | Shea       | r Stress     |        |               |
| Sample                                      | Stress             | Peak       | Residual     |        |               |
|                                             | (kPa)              | (kPa)      | (kPa)        |        |               |
|                                             | 50                 | 35         | 15           |        |               |
| 11-0057-BH2P BH2P-2                         | 100                | 68         | 63           |        |               |
|                                             | 200                | 103        | 82           |        |               |
|                                             |                    | Peak       | Residual     |        |               |
| Friction a                                  | angle (degrees):   | 23.7       | 22.0         |        |               |
|                                             | cohesion (kPa):    | 18         | 0            |        |               |



Comments:





20.0

34.8

1346

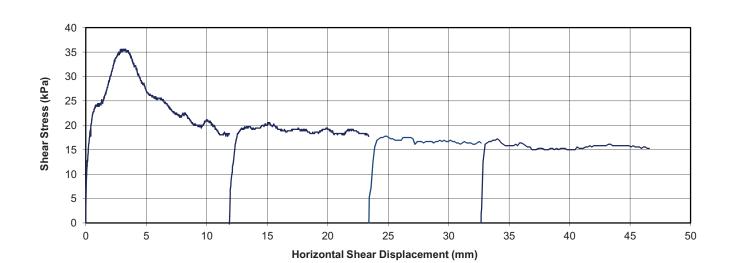
40.3

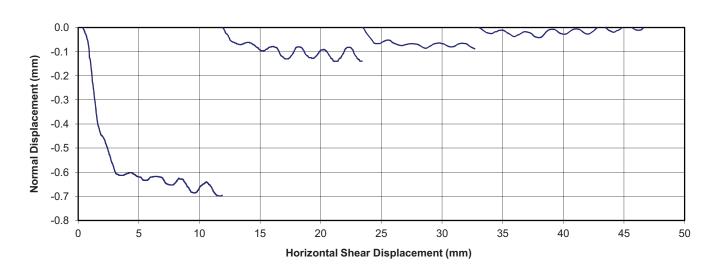
mm

% kg/m<sup>3</sup>

%

Initial Height:


Initial Water Content:


Final Water Content:

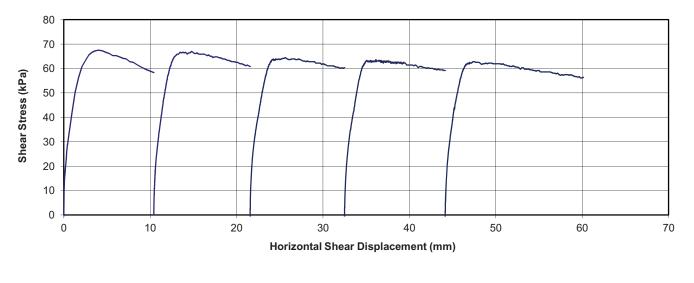
Initial Dry Density:

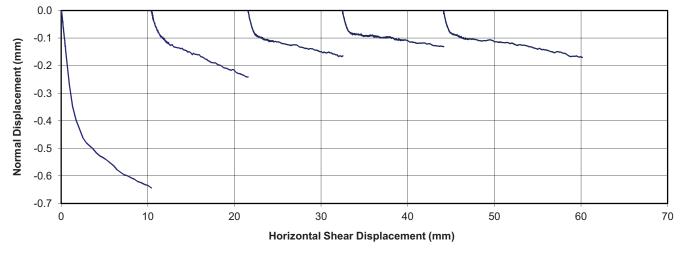
# CONSOLIDATED DRAINED DIRECT SHEAR TEST

| Project #: 11-1362-0              | 057         |             |                                             | Phase:   | 5000          |
|-----------------------------------|-------------|-------------|---------------------------------------------|----------|---------------|
| Short Title: COS East             | Riverbank / | / Cherry La | ne - Geotech Investigation / Saskat         | toon, SK |               |
| Tested By: D.B.                   |             |             |                                             | Date:    | July 12, 2012 |
| Sample: 11-0057-B                 | H2P BH2P    | 2-2         |                                             |          |               |
|                                   |             |             |                                             |          |               |
| •                                 |             |             |                                             |          |               |
| Effective Stress:                 | 50          | kPa         | Peak Shear Stress:                          | 35       | kPa           |
| Effective Stress:                 | 50          | kPa         | Peak Shear Stress:<br>Residual Shear Stress | 35<br>15 | kPa<br>kPa    |
| Effective Stress:<br>Sample Data: | 50          | kPa         |                                             |          |               |







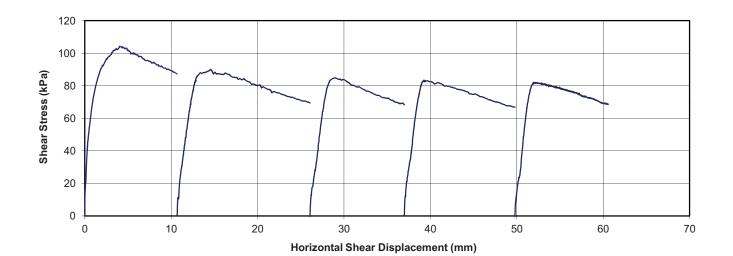

# CONSOLIDATED DRAINED DIRECT SHEAR TEST

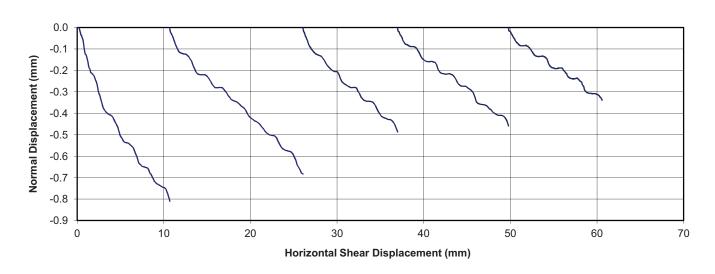
| Project #: 11-1362-00<br>Short Title: COS Fast |          | Cherryla | ne - Geotech Investigation / Saska | Phase:<br>atoon SK | 5000          |
|------------------------------------------------|----------|----------|------------------------------------|--------------------|---------------|
| Tested By: D.B.                                |          |          |                                    | Date:              | July 12, 2012 |
| Sample: 11-0057-B                              | H2P BH2P | -2       |                                    |                    |               |
| Effective Stress:                              | 100      | kPa      | Peak Shear Stress:                 | 68                 | kPa           |
|                                                |          |          | Residual Shear Stress              | 63                 | kPa           |
| Sample Data:                                   |          |          | Comments:                          |                    |               |

| Sample Length:<br>Initial Height:<br>Initial Water Content:<br>Initial Dry Density: | 60.0<br>20.0<br>36.6<br>1336 | mm<br>mm<br>%<br>kg/m <sup>3</sup> |
|-------------------------------------------------------------------------------------|------------------------------|------------------------------------|
| Final Water Content:                                                                | 38.3                         | %                                  |
|                                                                                     |                              |                                    |








# CONSOLIDATED DRAINED DIRECT SHEAR TEST

| Project #:   | 11-1362-0057                                                         | Phase: | 5000          |
|--------------|----------------------------------------------------------------------|--------|---------------|
| Short Title: | COS East Riverbank / Cherry Lane - Geotech Investigation / Saskatoon | , SK   |               |
| Tested By:   | D.B.                                                                 | Date:  | July 12, 2012 |
| Sample:      | 11-0057-BH2P BH2P-2                                                  |        |               |

| Effective Stress:      | 200  | kPa               | Peak Shear Stress:    | 103 | kPa<br>kPa |
|------------------------|------|-------------------|-----------------------|-----|------------|
| Samula Data:           |      |                   | Residual Shear Stress | 82  | kPa        |
| Sample Data:           |      |                   | Comments:             |     |            |
| Sample Length:         | 60.0 | mm                |                       |     |            |
| Initial Height:        | 20.0 | mm                |                       |     |            |
| Initial Water Content: | 34.4 | %                 |                       |     |            |
| Initial Dry Density:   | 1359 | kg/m <sup>3</sup> |                       |     |            |
| Final Water Content:   | 36.3 | %                 |                       |     |            |
|                        |      |                   |                       |     |            |
|                        |      |                   |                       |     |            |









Project #: 11-1362-0057Phase: 5100Short Title: COS East Riverbank / Cherry Lane - Geotech Investigation / Saskatoon, SKTested by: S.E. / J.F. / S.J.B.Date: August 15, 2013

| Sample Identification                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |                                                                                 | Laboratory Test Results                                                                                                                                      |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------------|-------------------|---------------------|---------------------|-------------------------------------|---------------------------------|-------------------|
| Borehole #                                                                                                                                                                                                                                                                                         | Sample #                                                                                                                                                                                             | Depth (m)                                                                                                                                                                                                                                                                                   | Sample Type                                                                     | Water<br>Content (%)                                                                                                                                         | Plastic Limit | Liquid Limit | Plasticity<br>Index | % Passing<br>#200 | ASTM Group<br>Index | Specific<br>Gravity | Dry Density<br>(Kg/m <sup>3</sup> ) | Pocket<br>Penetrometer<br>(kPa) | Lab Vane<br>(kPa) |
| COS-13-001<br>COS-13-001<br>COS-13-001<br>COS-13-001<br>COS-13-001<br>COS-13-001<br>COS-13-001<br>COS-13-001<br>COS-13-001<br>COS-13-001<br>COS-13-001B                                                                                                                                            | 001-1<br>001-2<br>001-3<br>001-4<br>001-5<br>001-6<br>001-7<br>001-8<br>001-9<br>001-10<br>001B-1                                                                                                    | 0.61-0.91<br>1.22-1.52<br>2.44-2.74<br>3.66-3.96<br>4.27-4.57<br>4.88-5.18<br>5.79-6.10<br>6.71-7.01<br>7.92-8.23<br>8.53-8.84<br>5.18-5.87                                                                                                                                                 | AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>TO                        | 27.9<br>37.4<br>37.5<br>34.7<br>36.0<br>33.9<br>37.6<br>12.1<br>14.8<br>9.7<br>35.0                                                                          | 18            | 56           | 38                  |                   |                     | 2.63                |                                     |                                 |                   |
| COS-13-001B<br>COS-13-001B                                                                                                                                                                                                                                                                         | 001B-2<br>001B-3                                                                                                                                                                                     | 5.87-6.55<br>6.55-7.24                                                                                                                                                                                                                                                                      | TO<br>TO                                                                        | 32.1<br>11.0                                                                                                                                                 | 11            | 23           | 12                  |                   |                     |                     | 2057                                |                                 |                   |
| COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002<br>COS-13-002 | 002-1<br>002-2<br>002-3<br>002-4<br>002-5<br>002-6<br>002-7<br>002-8<br>002-9<br>002-10<br>002-11<br>002-12<br>002-13<br>002-13<br>002-14<br>002-15<br>002-16<br>002-17<br>002-18<br>002-19<br>003-1 | $\begin{array}{c} 0.00-0.15\\ 0.15-0.30\\ 0.30-0.61\\ 0.91-1.22\\ 1.52-1.83\\ 2.44-2.74\\ 3.35-3.66\\ 4.27-4.57\\ 5.49-5.79\\ 6.71-7.01\\ 7.62-7.92\\ 8.53-8.84\\ 9.75-10.06\\ 10.36-10.67\\ 11.58-11.89\\ 12.19-12.50\\ 13.11-13.41\\ 14.33-14.63\\ 16.15-16.46\\ 0.46-0.61\\ \end{array}$ | AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>AS<br>A | 15.3<br>14.0<br>14.2<br>25.9<br>23.1<br>30.1<br>31.3<br>32.2<br>30.7<br>32.1<br>33.0<br>30.2<br>27.8<br>32.5<br>30.8<br>33.7<br>32.7<br>15.4<br>12.0<br>18.4 | 21            | 69           | 48                  |                   |                     | 2.63                |                                     |                                 |                   |
| COS-13-003<br>COS-13-003<br>COS-13-003<br>COS-13-003                                                                                                                                                                                                                                               | 003-1<br>003-2<br>003-3<br>003-4                                                                                                                                                                     | 0.91-1.22<br>2.13-2.44<br>3.96-4.27                                                                                                                                                                                                                                                         | AS<br>AS<br>AS<br>AS                                                            | 26.3<br>20.7<br>25.8                                                                                                                                         |               |              |                     |                   |                     |                     |                                     |                                 |                   |



Project #: 11-1362-0057Phase: 5100Short Title: COS East Riverbank / Cherry Lane - Geotech Investigation / Saskatoon, SKTested by: S.E. / J.F. / S.J.B.Date: August 15, 2013

Sample Identification Laboratory Test Results Pocket Penetrometer (kPa) ASTM Group Index Sample Type (%) Plastic Limit Dry Density # Liquid Limit % Passing #200 Lab Vane (kPa) Depth (m) # Borehole Plasticity Index Water Content ( Specific Gravity  $(Kg/m^3)$ COS-13-003 003-5 4.88-5.03 AS 32.3 19 57 38 COS-13-003 003-6 5.49-5.79 AS 24.0 COS-13-003 003-7 5.79-6.48 TO 24.2 COS-13-003 003-8 7.32-7.62 AS 14.5 COS-13-003 003-9 8.84-9.14 AS 17.7

|              | Jang | Palun   |  |
|--------------|------|---------|--|
| Reviewed by: | Com  | 1.00000 |  |



Project #: 11-1362-0057Phase: 510Short Title: COS East Riverbank / Cherry Lane - Geotech Investigation / Saskatoon, SKTested by: S.E. / W.C.Date: Septe

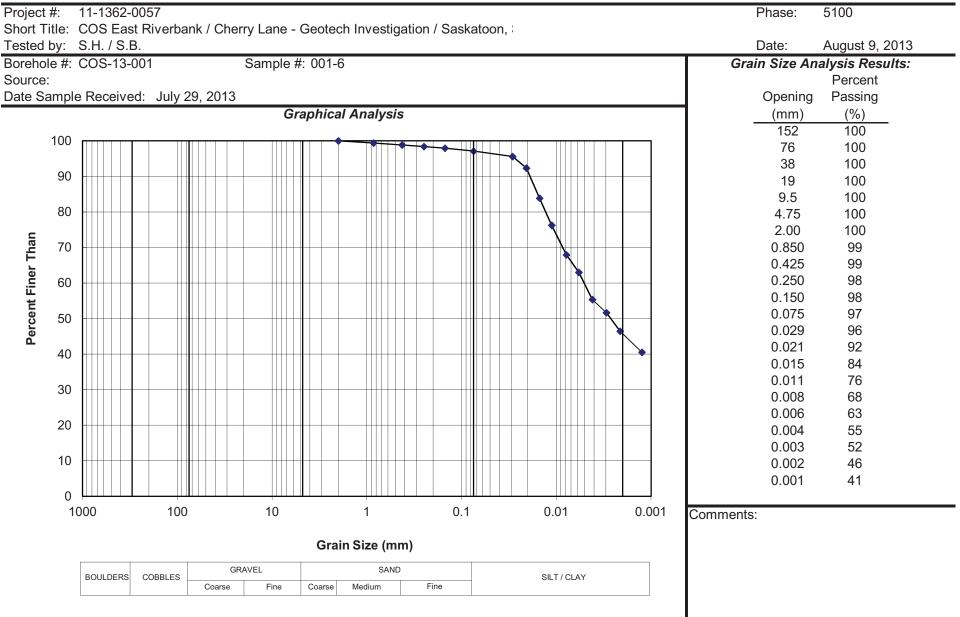
Phase: 5100 / 4000 skatoon, SK Date: September 6, 2013

| Sample Identification |          |             |             |                      | Laboratory Test Results |              |                     |                   |                     |                     |                                     |                                 |                   |  |
|-----------------------|----------|-------------|-------------|----------------------|-------------------------|--------------|---------------------|-------------------|---------------------|---------------------|-------------------------------------|---------------------------------|-------------------|--|
| Borehole #            | Sample # | Depth (m)   | Sample Type | Water<br>Content (%) | Plastic Limit           | Liquid Limit | Plasticity<br>Index | % Passing<br>#200 | ASTM Group<br>Index | Specific<br>Gravity | Dry Density<br>(Kg/m <sup>3</sup> ) | Pocket<br>Penetrometer<br>(kPa) | Lab Vane<br>(kPa) |  |
| COS-13-004            | 004-1    | 0.00-0.15   | AS          | 11.2                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-004            | 004-2    | 0.30-0.61   | AS          | 32.5                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-004            | 004-3    | 1.22-1.37   | DO          | 33.4                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-004            | 004-4    | 2.59-2.90   | DO          | 33.4                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-004            | 004-5    | 4.42-4.72   | DO          | 33.6                 | 24                      | 74           | 50                  |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-004            | 004-6    | 5.18-5.49   | AS          | 31.6                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-004            | 004-7    | 5.79-6.10   | ТО          | 30.1                 |                         |              |                     |                   |                     | 2.61                | 1699                                | 72                              | 80                |  |
| COS-13-004            | 004-8    | 7.01-7.62   | ТО          | 33.7                 | 21                      | 46           | 25                  |                   |                     |                     |                                     | 120                             | 99                |  |
| COS-13-004            | 004-9    | 8.53-9.14   | ТО          | 27.2                 |                         |              |                     |                   |                     |                     |                                     | 168                             | 188               |  |
| COS-13-004            | 004-10   | 9.30-9.60   | AS          | 10.2                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-004            | 004-11   | 9.75-10.06  | AS          | 10.8                 | 12                      | 19           | 7                   |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-1    | 0.00-0.30   | AS          | 8.9                  |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-2    | 1.07-1.22   | DO          | 8.2                  |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-3    | 2.59-2.74   | DO          | 7.5                  |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-4    | 4.11-4.27   | DO          | 11.5                 | 15                      | 35           | 20                  |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-5    | 5.33-5.94   | ТО          | 23.2                 | 20                      | 49           | 29                  |                   |                     |                     |                                     | 180                             | 91                |  |
| COS-13-005            | 005-6    | 6.10-6.71   | ТО          | 8.4                  |                         |              |                     |                   |                     |                     |                                     | >200                            | 203               |  |
| COS-13-005            | 005-7    | 6.86-7.47   | ТО          | 8.0                  |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-8    | 7.62-8.23   | ТО          | 29.5                 | 22                      | 38           | 16                  |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-9    | 8.38-8.99   | ТО          | 23.9                 |                         |              |                     |                   |                     | 2.59                | 1306                                |                                 |                   |  |
| COS-13-005            | 005-10   | 9.14-9.75   | ТО          | 28.2                 | 25                      | 32           | 7                   |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-11   | 9.91-10.52  | ТО          | 33.0                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-12   | 10.67-11.28 | ТО          | 28.7                 | 21                      | 33           | 12                  |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-13   | 11.43-12.04 | ТО          | 29.3                 | 19                      | 34           | 15                  |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-14   | 12.19-12.34 | ТО          | 29.4                 | 14                      | 40           | 26                  |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-005            | 005-15   | 13.72-14.02 | DO          | 9.0                  |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-1    | 0.15-0.30   | AS          | 17.2                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-2    | 1.07-1.22   | AS          | 28.7                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-3    | 1.83-1.98   | AS          | 25.3                 | 22                      | 65           | 43                  |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-4    | 2.29-2.44   | AS          | 24.6                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-5    | 2.90-3.05   | AS          | 30.6                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-6    | 4.72-4.88   | AS          | 29.6                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-7    | 5.33-5.49   | AS          | 29.1                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-8    | 6.25-6.40   | AS          | 34.0                 | 23                      | 72           | 49                  |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-9    | 7.62-7.77   | AS          | 33.8                 |                         |              |                     |                   |                     |                     |                                     |                                 |                   |  |
| COS-13-006            | 006-10   | 8.69-8.84   | AS          | 29.5                 | 13                      | 41           | 28                  |                   |                     |                     |                                     |                                 |                   |  |





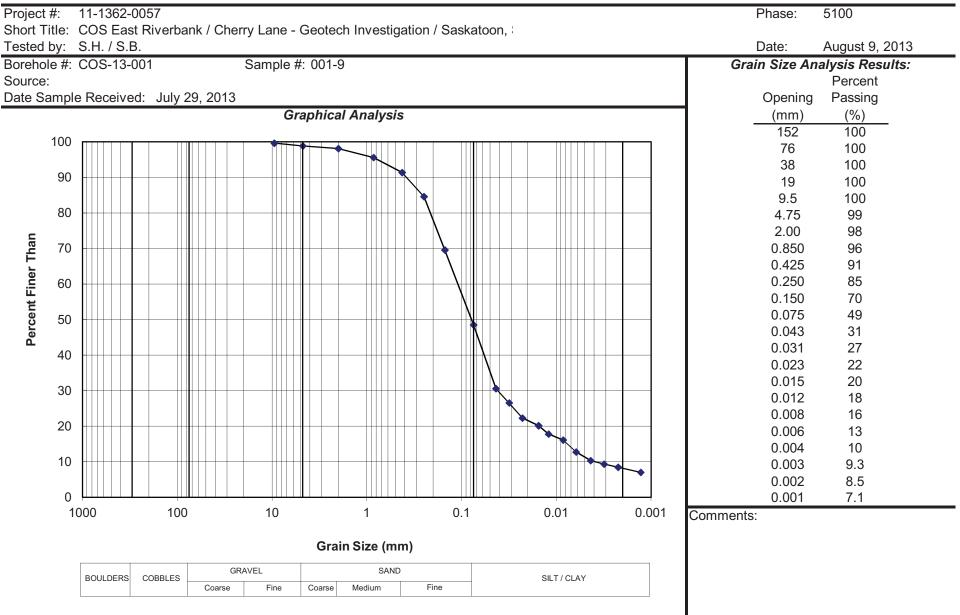
Project #: 11-1362-0057 Short Title: COS East Riverbank / Cherry Lane - Geotech Investigation / Saskatoon, SK Tested by: S.E. / W.C.


Phase: 5100 / 4000

Date: September 6, 2013

| Sample Identification                                |                                      |                                                          |                      |                              |               |              | Labo                | oratory           |                     | Results             | 5                                   |                                 |                   |
|------------------------------------------------------|--------------------------------------|----------------------------------------------------------|----------------------|------------------------------|---------------|--------------|---------------------|-------------------|---------------------|---------------------|-------------------------------------|---------------------------------|-------------------|
| Borehole #                                           | Sample #                             | Depth (m)                                                | Sample Type          | Water<br>Content (%)         | Plastic Limit | Liquid Limit | Plasticity<br>Index | % Passing<br>#200 | ASTM Group<br>Index | Specific<br>Gravity | Dry Density<br>(Kg/m <sup>3</sup> ) | Pocket<br>Penetrometer<br>(kPa) | Lab Vane<br>(kPa) |
| COS-13-006<br>COS-13-006<br>COS-13-006<br>COS-13-006 | 006-11<br>006-12<br>006-13<br>006-14 | 10.06-10.21<br>11.58-11.73<br>12.19-12.34<br>13.11-13.26 | AS<br>AS<br>AS<br>AS | 34.8<br>13.0<br>11.8<br>10.3 |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|                                                      |                                      |                                                          |                      |                              |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|                                                      |                                      |                                                          |                      |                              |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|                                                      |                                      |                                                          |                      |                              |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|                                                      |                                      |                                                          |                      |                              |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|                                                      |                                      |                                                          |                      |                              |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|                                                      |                                      |                                                          |                      |                              |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|                                                      |                                      |                                                          |                      |                              |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|                                                      |                                      |                                                          |                      |                              |               |              |                     |                   |                     |                     |                                     |                                 |                   |
|                                                      |                                      |                                                          |                      |                              |               |              |                     |                   |                     |                     |                                     |                                 |                   |

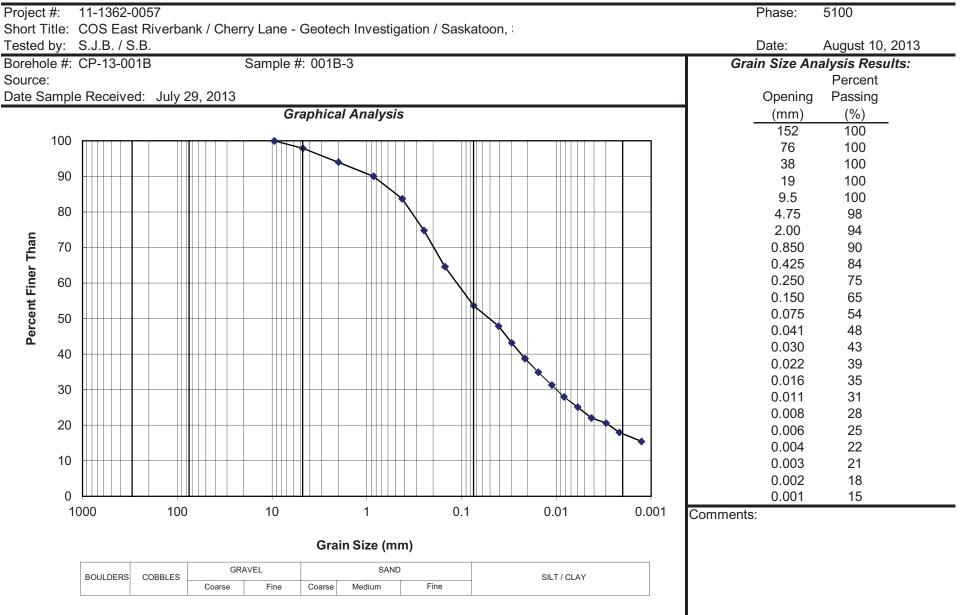



(Mechanical & Hydrometer)





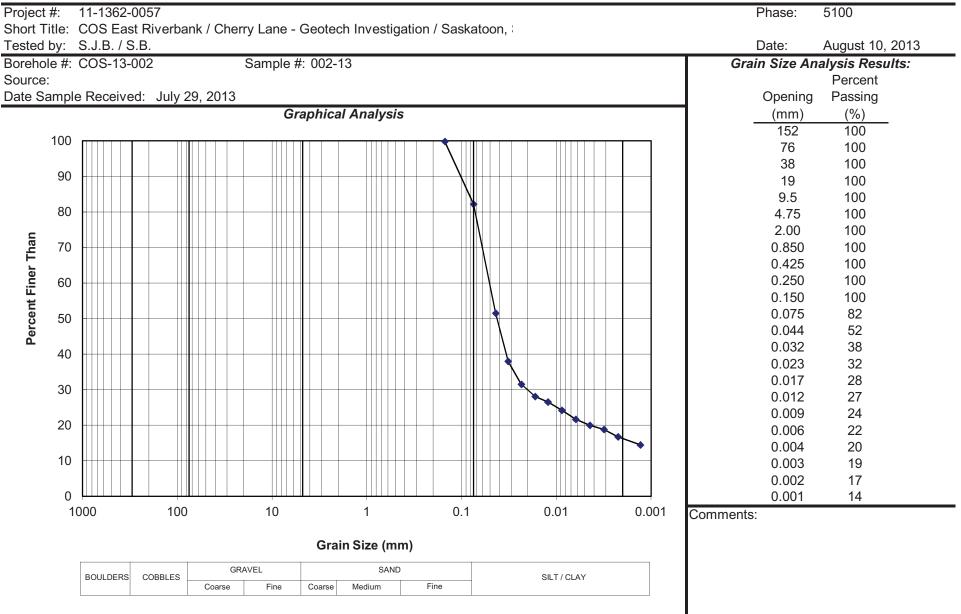



(Mechanical & Hydrometer)





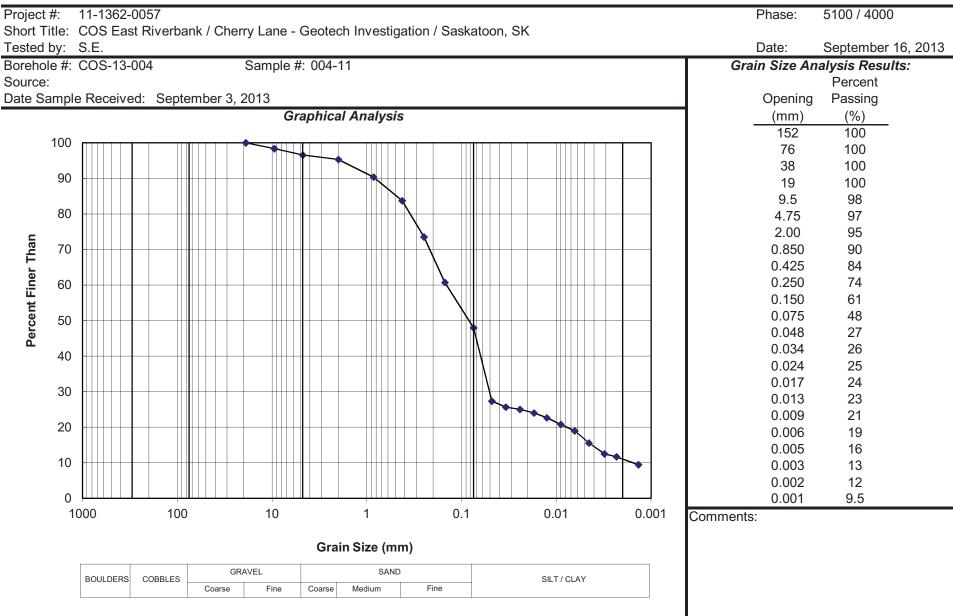



(Mechanical & Hydrometer)





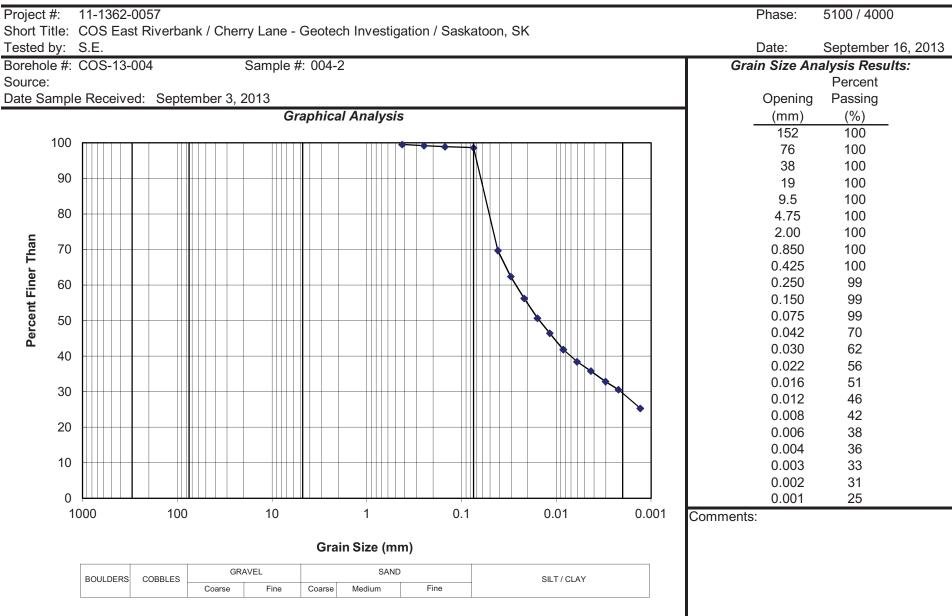


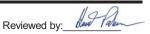

(Mechanical & Hydrometer)





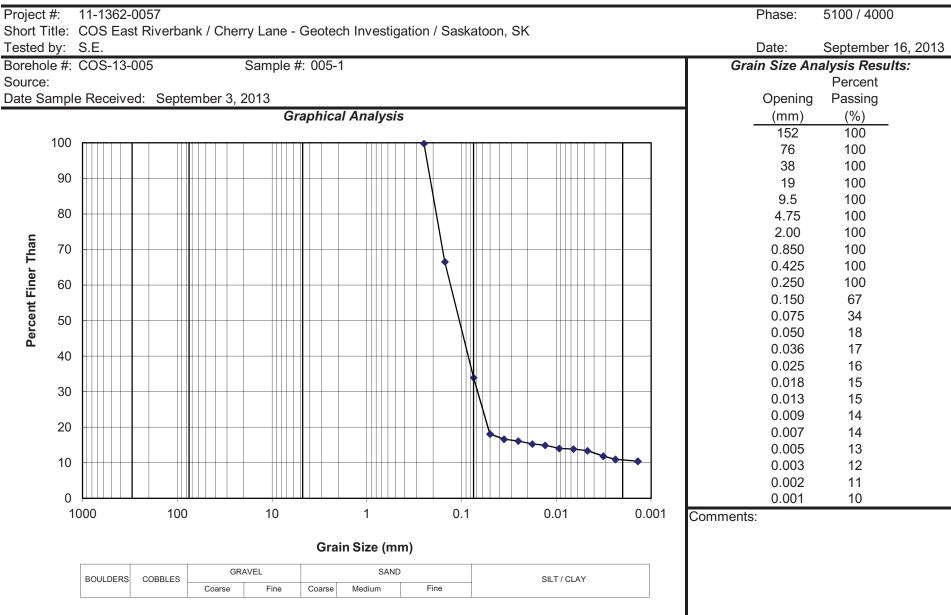



(Mechanical & Hydrometer)





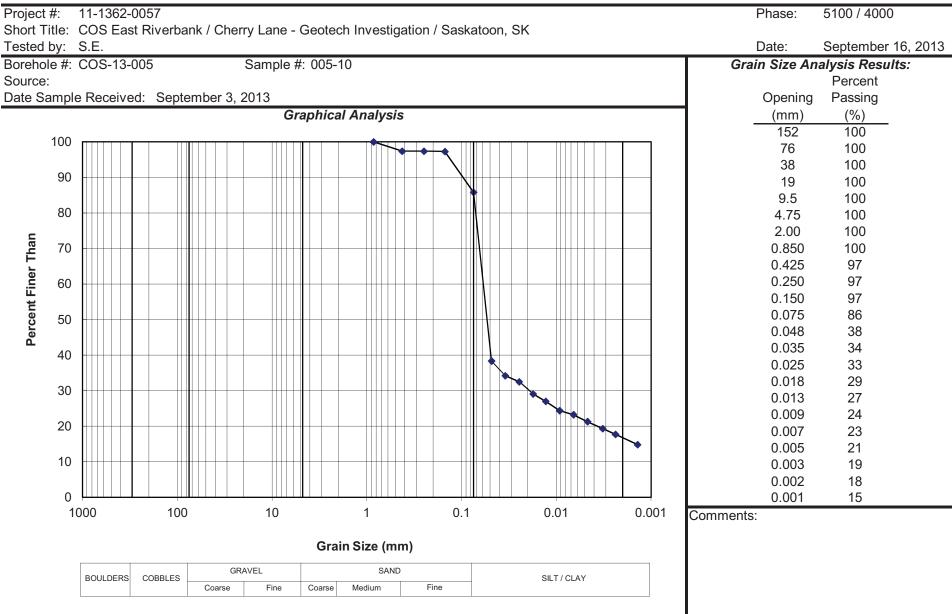


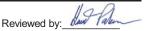


(Mechanical & Hydrometer)





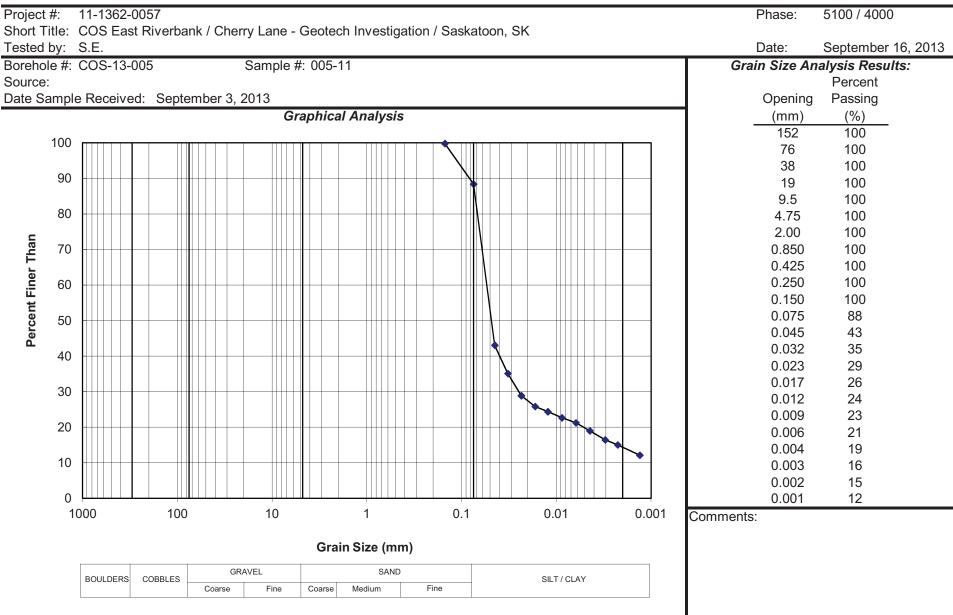



(Mechanical & Hydrometer)





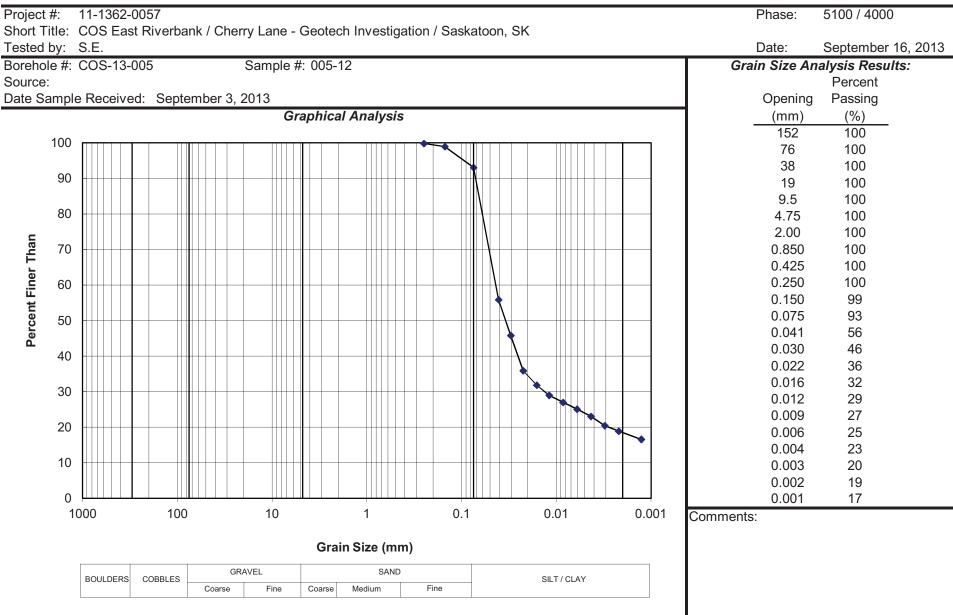




(Mechanical & Hydrometer)





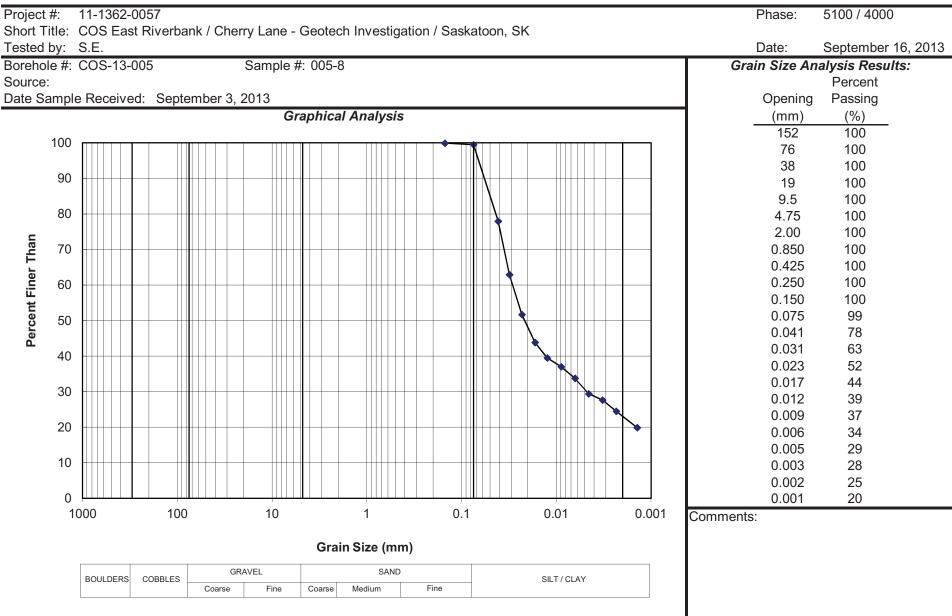



(Mechanical & Hydrometer)





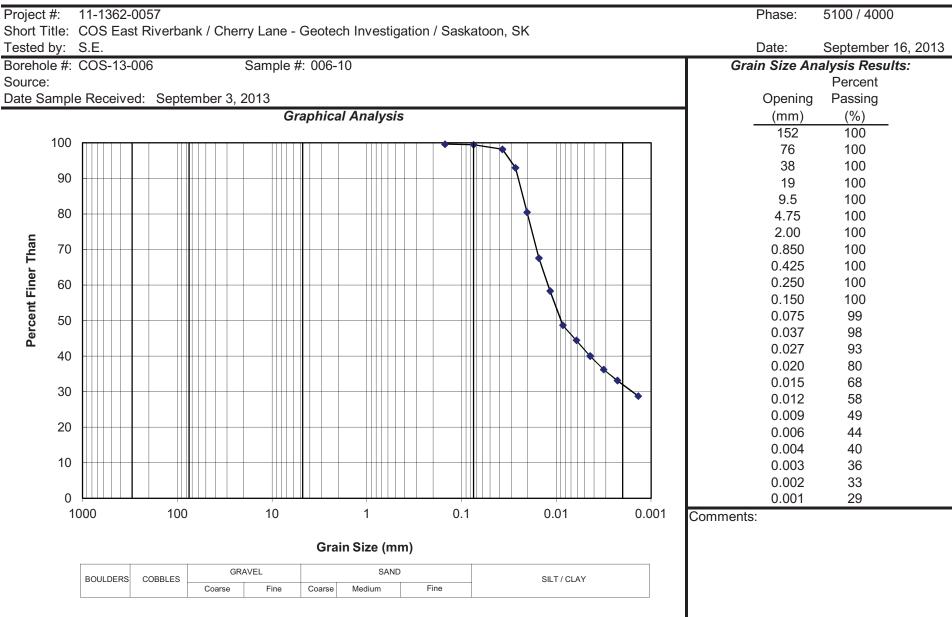



(Mechanical & Hydrometer)





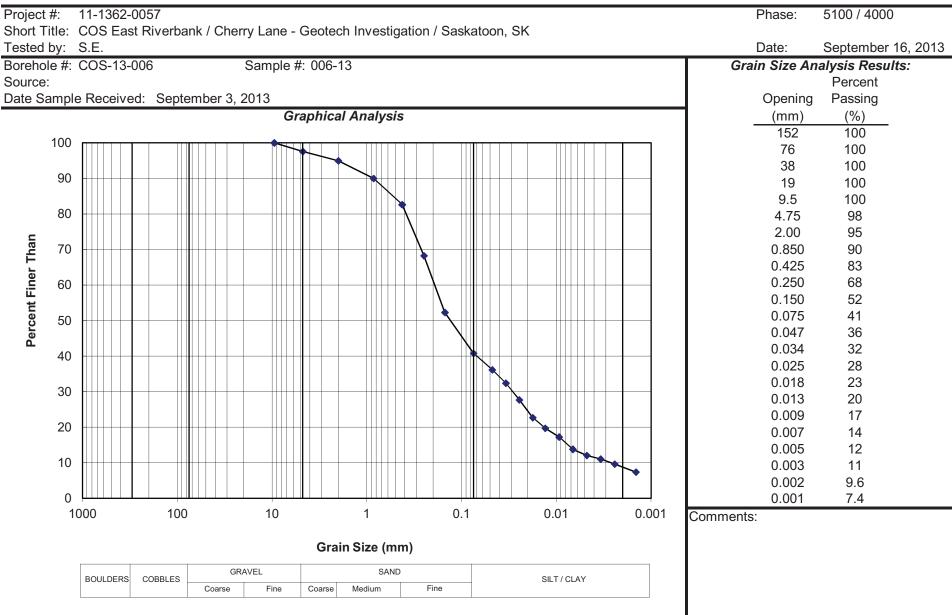



(Mechanical & Hydrometer)







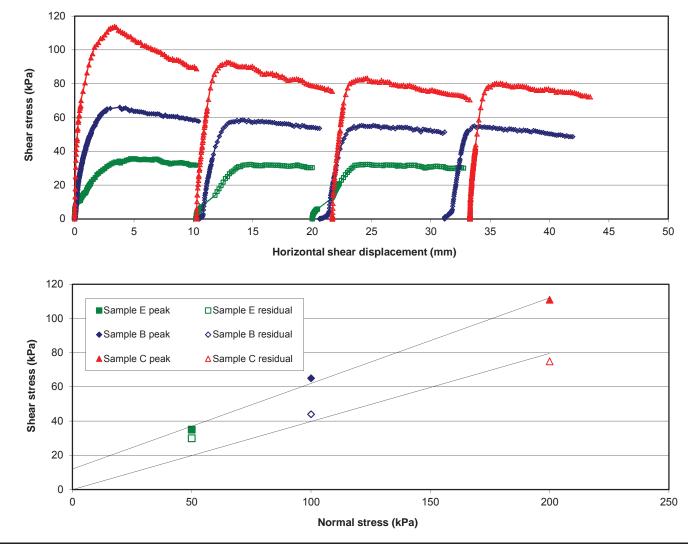

(Mechanical & Hydrometer)







(Mechanical & Hydrometer)

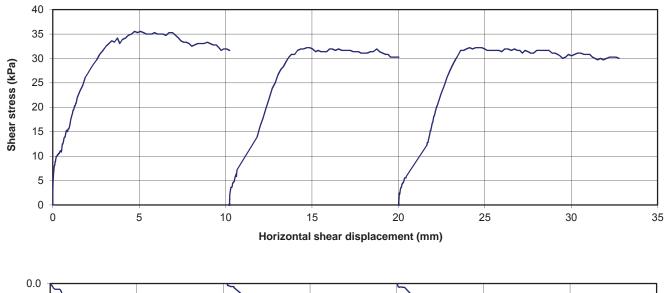


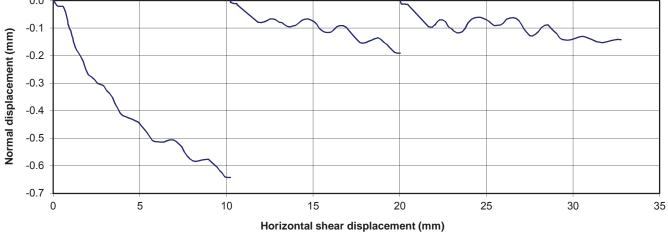



# Golder

#### CONSOLIDATED DRAINED DIRECT SHEAR TEST-SUMMARY

| Phase<br>Saskatoon, SK<br>Date:<br>r Stress<br>Residual | : 5100<br>August 29, 2013    |
|---------------------------------------------------------|------------------------------|
| Date:<br>r Stress                                       | August 29, 2013              |
| r Stress                                                | August 29, 2013              |
|                                                         |                              |
| Residual                                                |                              |
|                                                         |                              |
| (kPa)                                                   |                              |
| 30                                                      |                              |
| 44                                                      |                              |
| 75                                                      |                              |
| Residual                                                |                              |
| 21.7                                                    |                              |
| 0                                                       |                              |
|                                                         | 44<br>75<br>Residual<br>21.7 |



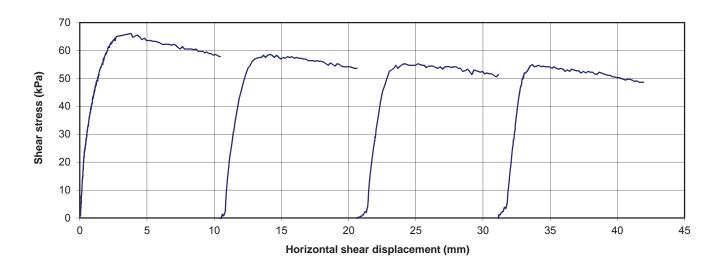


Comments:

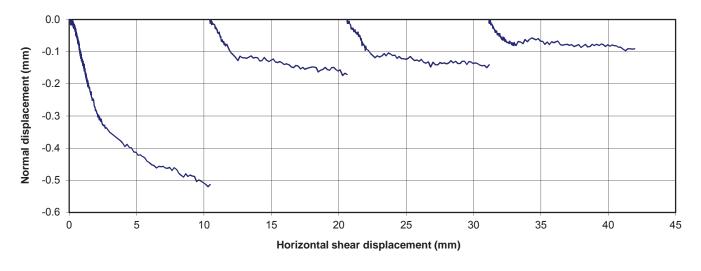




| Project #: 11-1362-00    | 57          |                   |                                  | Phase:   | 5100            |
|--------------------------|-------------|-------------------|----------------------------------|----------|-----------------|
| Short Title: COS East F  | Riverbank / | Cherry Lar        | ne - Geotech Investigation Saska | toon, SK |                 |
| Tested By: B.Y. / D.B.   |             | -                 | -                                | Date:    | August 29, 2013 |
| Sample: COS-13-00        | 1B 001B-1   | I (REDO#2         | 2)                               |          |                 |
| Effective Stress:        | 50          | kPa               | Peak Shear Stress:               | 35       | kPa             |
|                          |             |                   | Residual Shear Stress            | 30       | kPa             |
| Sample Data:             |             |                   | Comments:                        |          |                 |
| Sample Length:           | 60.0        | mm                |                                  |          |                 |
| nitial Height:           | 20.0        | mm                |                                  |          |                 |
| nitial Water Content:    | 35.4        | %                 |                                  |          |                 |
| nitial Dry Density:      | 1319        | kg/m <sup>3</sup> |                                  |          |                 |
| -<br>inal Water Content: | 42.6        | %                 |                                  |          |                 |



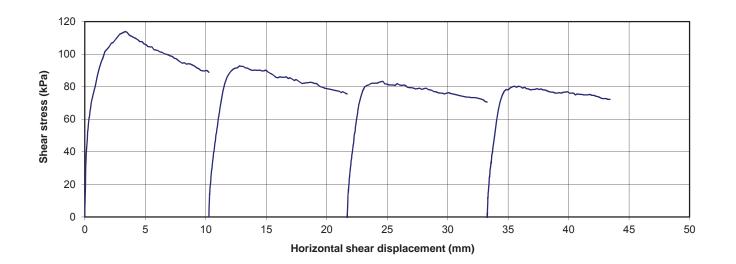


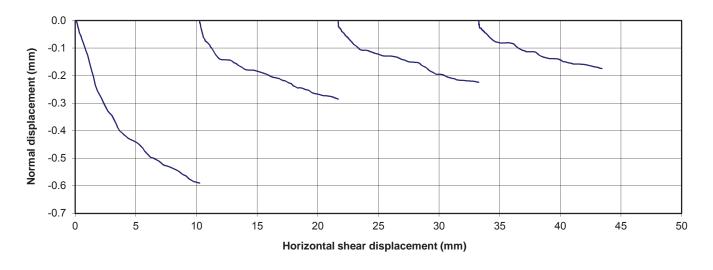




# Golder

# CONSOLIDATED DRAINED DIRECT SHEAR TEST

|                        | Riverbank / | Cherry Lar        | ne - Geotech Investigation Saska | toon, SK |                 |
|------------------------|-------------|-------------------|----------------------------------|----------|-----------------|
| Fested By: B.Y. / D.B. |             |                   |                                  | Date:    | August 29, 2013 |
| Sample: COS-13-00      | 1B 001B-1   |                   |                                  |          |                 |
| Effective Stress:      | 100         | kPa               | Peak Shear Stress:               | 65       | kPa             |
|                        | 100         | ia a              | Residual Shear Stress            | 44       | kPa             |
| Sample Data:           |             |                   | Comments:                        |          |                 |
| Sample Length:         | 60.0        | mm                |                                  |          |                 |
| nitial Height:         | 20.0        | mm                |                                  |          |                 |
| nitial Water Content:  | 35.0        | %                 |                                  |          |                 |
| nitial Dry Density:    | 1349        | kg/m <sup>3</sup> |                                  |          |                 |
| -inal Water Content:   | 40.5        | %                 |                                  |          |                 |

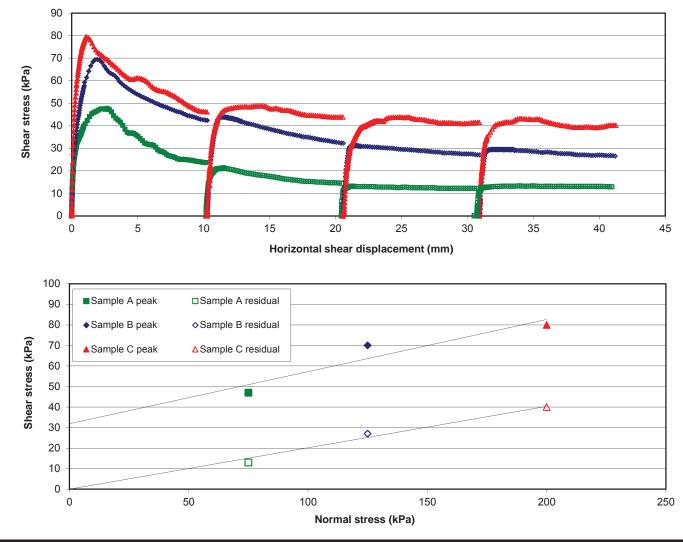







| Project #: 11-1362-00<br>Short Title: COS East F |              | Cherry Lar        | ne - Geotech Investigation Saska | Phase: | 5100            |
|--------------------------------------------------|--------------|-------------------|----------------------------------|--------|-----------------|
| Tested By: B.Y. / D.B.                           | (iverbuilt() | Cherry Eur        |                                  | Date:  | August 29, 2013 |
| Sample: COS-13-00                                | 1B 001B-1    | l                 |                                  |        |                 |
| Effective Stress:                                | 200          | kPa               | Peak Shear Stress:               | 111    | kPa             |
|                                                  |              |                   | Residual Shear Stress            | 75     | kPa             |
| Sample Data:                                     |              |                   | Comments:                        |        |                 |
| Sample Length:                                   | 60.0         | mm                |                                  |        |                 |
| Initial Height:                                  | 20.0         | mm                |                                  |        |                 |
| Initial Water Content:                           | 36.4         | %                 |                                  |        |                 |
| Initial Dry Density:                             | 1337         | kg/m <sup>3</sup> |                                  |        |                 |
| Final Water Content:                             | 35.0         | %                 |                                  |        |                 |

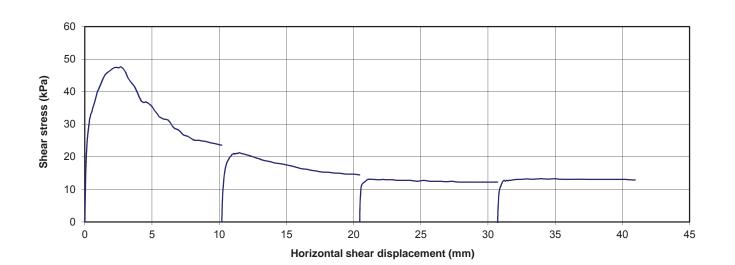


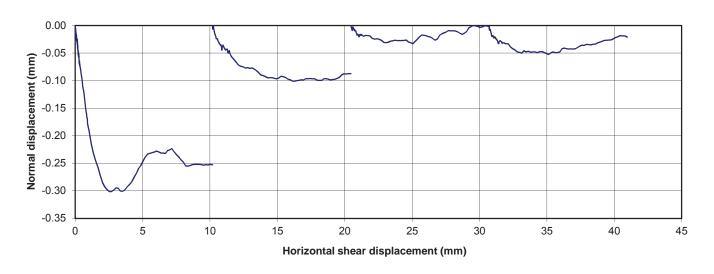







| Project #: 11-1362-0057                       |                 |            |              | Phase: | 5100 / 4000       |
|-----------------------------------------------|-----------------|------------|--------------|--------|-------------------|
| Short Title: COS East Riverbank / Cherry Lane | e - Geotech Inv | estigation | / Saskatoon, | SK     |                   |
| Tested By: B.Y. / D.B.                        |                 |            |              | Date:  | November 10, 2013 |
|                                               | Normal          | Shea       | r Stress     |        |                   |
| Sample                                        | Stress          | Peak       | Residual     |        |                   |
|                                               | (kPa)           | (kPa)      | (kPa)        |        |                   |
|                                               | 75              | 47         | 13           |        |                   |
| COS-13-004 004-8 7.01-7.62 m depth            | 125             | 70         | 27           |        |                   |
|                                               | 200             | 80         | 40           |        |                   |
|                                               |                 | Peak       | Residual     |        |                   |
| Friction ang                                  | gle (degrees):  | 14.2       | 11.4         |        |                   |
| co                                            | hesion (kPa):   | 32         | 0            |        |                   |
|                                               |                 |            |              |        |                   |

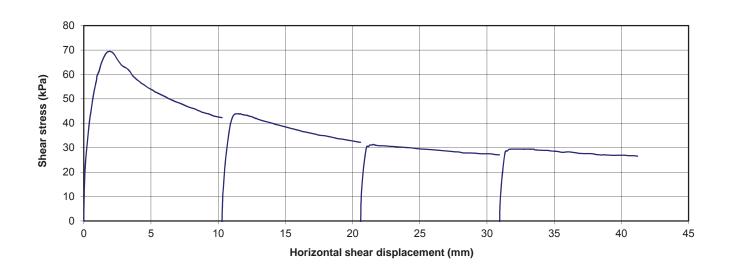




Comments:





|                         |             |                   |                                   |           | 5400 / 4000       |
|-------------------------|-------------|-------------------|-----------------------------------|-----------|-------------------|
| Project #: 11-1362-00   |             |                   |                                   | Phase:    | 5100 / 4000       |
| Short Title: COS East R | liverbank / | Cherry Lar        | ne - Geotech Investigation / Sask | atoon, SK |                   |
| Tested By: B.Y. / D.B.  |             |                   |                                   | Date:     | November 10, 2013 |
| Sample: COS-13-004      | 1 004-8 7   | .01-7.62 m        | depth                             |           |                   |
| ·                       |             |                   | •                                 |           |                   |
| Effective Stress:       | 75          | kPa               | Peak Shear Stress:                | 47        | kPa               |
|                         |             |                   | Residual Shear Stress             | 13        | kPa               |
| Sample Data:            |             |                   | Comments:                         |           |                   |
| Sample Length:          | 60.0        | mm                |                                   |           |                   |
| Initial Height:         | 20.0        | mm                |                                   |           |                   |
| Initial Water Content:  | 36.8        | %                 |                                   |           |                   |
| Initial Dry Density:    | 1329        | kg/m <sup>3</sup> |                                   |           |                   |
| , ,                     |             | 0                 |                                   |           |                   |
| Final Water Content:    | 43.6        | %                 |                                   |           |                   |

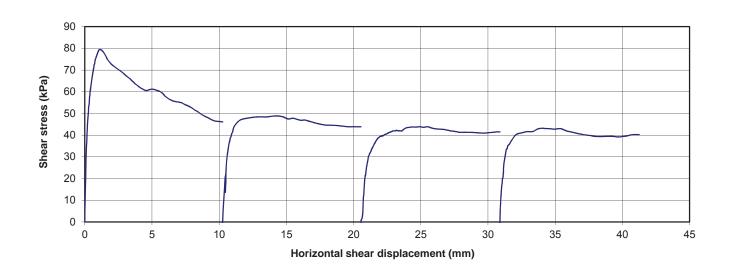


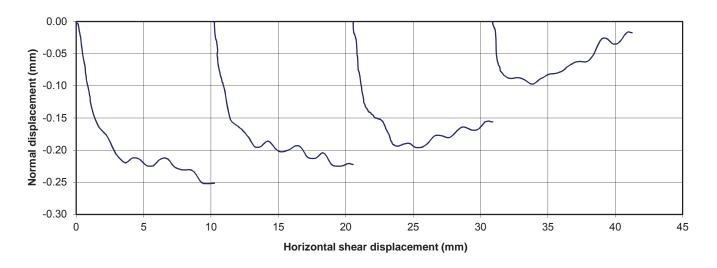







| Project #: 11-1362-005<br>Short Title: COS Fast R |           | Cherry I ar       | ne - Geotech Investigation / Sask | Phase:<br>atoon SK | 5100 / 4000       |
|---------------------------------------------------|-----------|-------------------|-----------------------------------|--------------------|-------------------|
| Fested By: B.Y. / D.B.                            |           | Chorry Ear        |                                   | Date:              | November 10, 2013 |
| Sample: COS-13-004                                | 1 004-8 7 | .01-7.62 m        | depth                             |                    |                   |
| Effective Stress:                                 | 125       | kPa               | Peak Shear Stress:                | 70                 | kPa               |
|                                                   |           |                   | Residual Shear Stress             | 27                 | kPa               |
| Sample Data:                                      |           |                   | Comments:                         |                    |                   |
| Sample Length:                                    | 60.0      | mm                |                                   |                    |                   |
| nitial Height:                                    | 20.0      | mm                |                                   |                    |                   |
| nitial Water Content:                             | 35.0      | %                 |                                   |                    |                   |
| nitial Dry Density:                               | 1368      | kg/m <sup>3</sup> |                                   |                    |                   |
|                                                   | 38.6      | %                 |                                   |                    |                   |

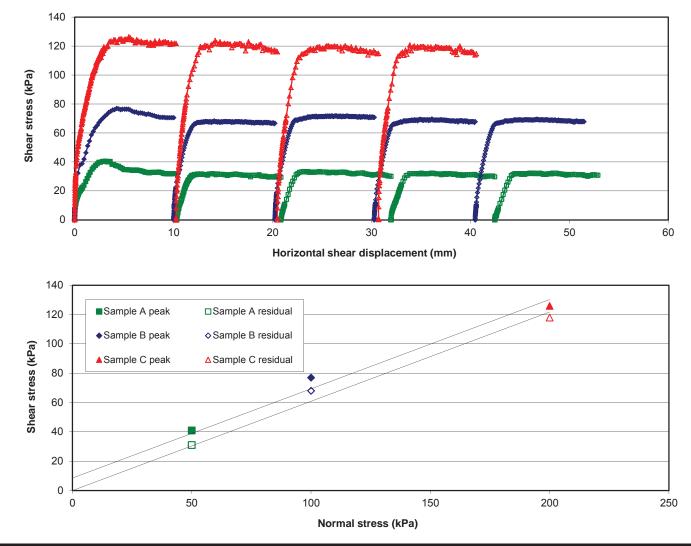







|                         |            |                   |                                   |           | = 1 0 0 / 1 0 0 0 |
|-------------------------|------------|-------------------|-----------------------------------|-----------|-------------------|
| Project #: 11-1362-008  |            |                   |                                   | Phase:    | 5100 / 4000       |
| 3hort Title: COS East R | iverbank / | Cherry Lar        | ne - Geotech Investigation / Sask | atoon, SK |                   |
| Fested By: B.Y. / D.B.  |            |                   |                                   | Date:     | November 10, 2013 |
| Sample: COS-13-004      | 004-8 7    | .01-7.62 m        | depth                             |           |                   |
| •                       |            |                   | ·                                 |           |                   |
| Effective Stress:       | 200        | kPa               | Peak Shear Stress:                | 80        | kPa               |
|                         |            |                   | <b>Residual Shear Stress</b>      | 40        | kPa               |
| Sample Data:            |            |                   | Comments:                         |           |                   |
| Sample Length:          | 60.0       | mm                |                                   |           |                   |
| nitial Height:          | 20.0       | mm                |                                   |           |                   |
| nitial Water Content:   | 36.8       | %                 |                                   |           |                   |
| nitial Dry Density:     | 1356       | kg/m <sup>3</sup> |                                   |           |                   |
| <b>yy</b>               |            | Ŭ                 |                                   |           |                   |
| Final Water Content:    | 39.0       | %                 |                                   |           |                   |

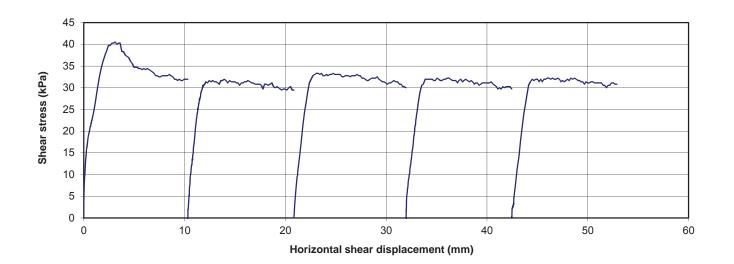


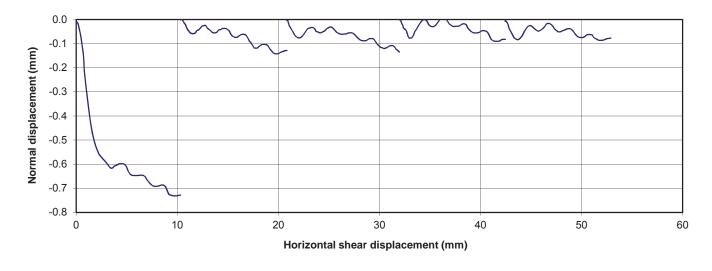






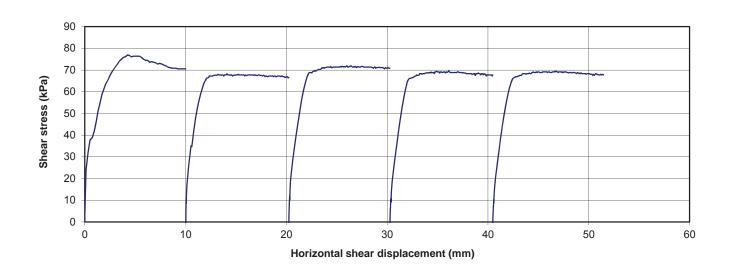

| Project #: 11-1362-0057                       |               |            |              | Phase: | 5100 / 4000      |
|-----------------------------------------------|---------------|------------|--------------|--------|------------------|
| Short Title: COS East Riverbank / Cherry Lane | - Geotech Inv | estigation | / Saskatoon, | SK     |                  |
| Tested By: B.Y. / D.B.                        |               |            |              | Date:  | October 22, 2013 |
|                                               | Normal        | Shea       | r Stress     |        |                  |
| Sample                                        | Stress        | Peak       | Residual     |        |                  |
|                                               | (kPa)         | (kPa)      | (kPa)        |        |                  |
|                                               | 50            | 41         | 31           |        |                  |
| COS-13-005 005-13 11.43-12.04 m depth         | 100           | 77         | 68           |        |                  |
|                                               | 200           | 126        | 118          |        |                  |
|                                               |               | Peak       | Residual     |        |                  |
| Friction angle                                | e (degrees):  | 31.3       | 31.3         |        |                  |
| coh                                           | esion (kPa):  | 9          | 0            |        |                  |

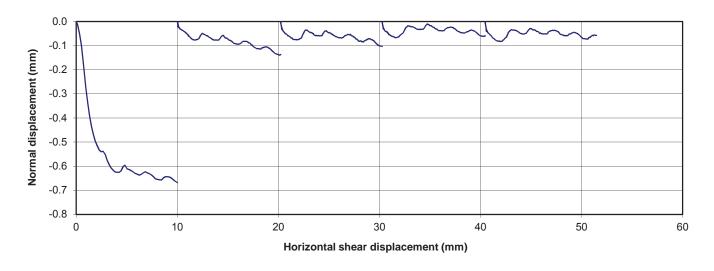




Comments:





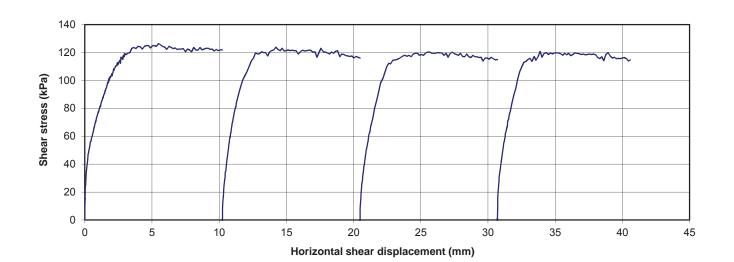

| hort Title: COS East D |            |                   |                                    | Phase:    | 5100 / 4000      |
|------------------------|------------|-------------------|------------------------------------|-----------|------------------|
| HUIT HUE. COS East R   | iverbank / | Cherry Lar        | ne - Geotech Investigation / Saska | atoon, SK |                  |
| ested By: B.Y. / D.B.  |            |                   |                                    | Date:     | October 22, 2013 |
| ample: COS-13-005      | 5 005-13   | 11.43-12.0        | 4 m depth                          |           |                  |
|                        |            |                   |                                    |           |                  |
| ffective Stress:       | 50         | kPa               | Peak Shear Stress:                 | 41        | kPa              |
|                        |            |                   | Residual Shear Stress              | 31        | kPa              |
| ample Data:            |            |                   | Comments:                          |           |                  |
| ample Length:          | 60.0       | mm                |                                    |           |                  |
| nitial Height:         | 20.0       | mm                |                                    |           |                  |
| nitial Water Content:  | 26.2       | %                 |                                    |           |                  |
| nitial Dry Density:    | 1512       | kg/m <sup>3</sup> |                                    |           |                  |
| inal Water Content:    | 30.9       | %                 |                                    |           |                  |

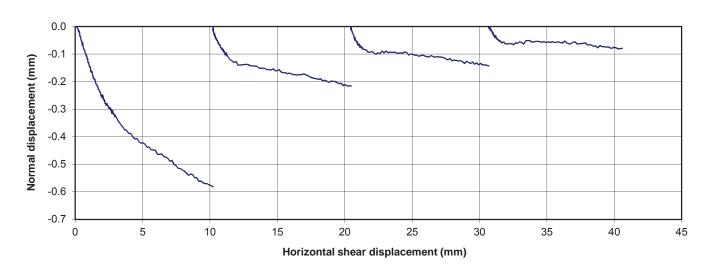







| Project #: 11-1362-005   | 7         |                   |                                   | Phase:    | 5100 / 4000      |
|--------------------------|-----------|-------------------|-----------------------------------|-----------|------------------|
| Short Title: COS East Ri | verbank / | Cherry La         | ne - Geotech Investigation / Sask | atoon, SK |                  |
| ested By: B.Y. / D.B.    |           | -                 | -                                 | Date:     | October 22, 2013 |
| Sample: COS-13-005       | 005-13    | 11.43-12.0        | 4 m depth                         |           |                  |
|                          |           |                   |                                   |           |                  |
| Effective Stress:        | 100       | kPa               | Peak Shear Stress:                | 77        | kPa              |
|                          |           |                   | Residual Shear Stress             | 68        | kPa              |
| Sample Data:             |           |                   | Comments:                         |           |                  |
| Sample Length:           | 60.0      | mm                |                                   |           |                  |
| nitial Height:           | 20.0      | mm                |                                   |           |                  |
| nitial Water Content:    | 27.2      | %                 |                                   |           |                  |
| nitial Dry Density:      | 1507      | kg/m <sup>3</sup> |                                   |           |                  |
| <b>yy</b>                |           | Ũ                 |                                   |           |                  |
| inal Water Content:      | 30.2      | %                 |                                   |           |                  |
|                          |           |                   |                                   |           |                  |








| Project #: 11-1362-00  |          | Cherry Lar        | ne - Geotech Investigation / Sask | Phase: | 5100 / 4000      |
|------------------------|----------|-------------------|-----------------------------------|--------|------------------|
| Tested By: B.Y. / D.B. |          | Oneny La          |                                   | Date:  | October 22, 2013 |
| Sample: COS-13-00      | 5 005-13 | 11.43-12.0        | 4 m depth                         |        |                  |
| Effective Stress:      | 200      | kPa               | Peak Shear Stress:                | 126    | kPa              |
|                        |          |                   | Residual Shear Stress             | 118    | kPa              |
| Sample Data:           |          |                   | Comments:                         |        |                  |
| Sample Length:         | 60.0     | mm                |                                   |        |                  |
| Initial Height:        | 20.0     | mm                |                                   |        |                  |
| Initial Water Content: | 26.4     | %                 |                                   |        |                  |
| Initial Dry Density:   | 1507     | kg/m <sup>3</sup> |                                   |        |                  |
| Final Water Content:   | 28.5     | %                 |                                   |        |                  |









# **APPENDIX H**

**Cost Estimates for Conceptual Remediation Options** 



| Conceptual |                           | Estimated    | Engineering | Monitoring | Contingency  | Estimated     | Estimate Assumption                    |                                             |
|------------|---------------------------|--------------|-------------|------------|--------------|---------------|----------------------------------------|---------------------------------------------|
| Option     | Description               | Cost         | (5-10%)     | (5%)       | (50%)        | Total Cost    | (Average Dimensions)                   | Estimate Basis                              |
| 1          | Do Nothing                |              |             |            |              |               |                                        |                                             |
| 2A         | Dewatering - 11th St      | \$ 1,760,000 | \$ 180,000  | \$ 90,000  | \$ 880,000   | \$ 2,910,000  | 150 m long x 10 m deep                 | COS 17th Street (2013) ~\$325K for drainag  |
| 2B         | Dewatering - Cherry Lane  | \$ 880,000   | \$ 90,000   | \$ 50,000  | \$ 440,000   | \$ 1,460,000  | 150 m long x 5 m deep                  | COS 17th Street (2013) ~\$325K for drainag  |
| 3          | Slope Re-grading w/       | \$ 4,000,000 | \$ 200,000  | \$ 200,000 | \$ 2,000,000 | \$ 6,400,000  | 135 m long x 40 m2                     | COS 17th Street (2013) ~\$880K for selectiv |
|            | drainage                  |              |             |            |              |               |                                        | excavation, 80 m long x 4 m deep x 15 m w   |
|            |                           |              |             |            |              |               |                                        | residential property                        |
| 4A         | Shear Zone Modification - | \$ 5,810,000 | \$ 300,000  | \$ 300,000 | \$ 2,905,000 | \$ 9,315,000  | 10 m long x 6 m deep x 4 m wide; 50 m  | CSM Slurry Wall ~\$250/m2 or \$2.5M/km (    |
|            | CSM w/ drainage           |              |             |            |              |               | long x 5 m deep x 13 m wide; 60 m long | bentonite, not including platform construc  |
|            |                           |              |             |            |              |               | x 7 m deep x 4 m wide                  | drainage systems and landscaping.           |
| 4B         | Shear Zone Modification - | \$ 6,520,000 | \$ 330,000  | \$ 330,000 | \$ 3,260,000 | \$ 10,440,000 | 10 m long x 6 m deep x 4 m wide; 50 m  | Cosmo Park (2009) ~\$2M for shear key co    |
|            | Shear Key w/drainage      |              |             |            |              |               | long x 5 m deep x 13 m wide; 60 m long | inflation. COS 17th Street (2013) ~\$500K f |
|            |                           |              |             |            |              |               | x 7 m deep x 4 m wide                  | shoring                                     |

hage trench and street repairs, 80 m long x 4 m deep hage trench and street repairs, 80 m long x 4 m deep stive site demolition, 2 drainage trenches, landscaping, n wide. Does not include purchase or demolition of

n (0.9 m wide trench), assume cement cost is 1.8:1 for ruction. COS 17th Street (2013) ~\$580K selective site demo,

construction, 150 m long x 5 m deep x 6 m wide, assume 7% K for 2 drainage systems. Assume \$1.35M for temporary

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa Australasia+ 61 3 8862 3500Europe+ 356 21 42 30 20

- + 27 11 254 4800
- + 86 21 6258 5522

- South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Ltd. 1721 8th Street East Saskatoon, Saskatchewan, Canada S7H 0T4 Canada T: +1 (306) 665 7989

