

PROJECT: Limited Phase II Environmental Site Assessment Caswell Transit Operations Site Saskatoon, Saskatchewan

PREPARED FOR: The City of Saskatoon

29 August 2014

File: 14-1544-2

CONFIDENTIAL

The City of Saskatoon Major Projects Division, Transportation and Utilities 202 Fourth Avenue North Saskatoon, SK S7K 0K1

Attention: Mr. Rob Tomiyama; Project Manager

Subject: Limited Phase II Environmental Site Assessment Caswell Transit Operations Site Saskatoon, Saskatchewan

Please find attached one (1) copy of our Limited Phase II Environmental Site Assessment report for the above mentioned property located in Saskatoon, Saskatchewan.

If you have any questions, concerns or further direction, please call the undersigned at (306) 244-1710.

Yours Sincerely, PINTER & Associates Ltd.

Lawrence Pinter, P.Eng. Senior Engineer

H:\Projects\1544 City of Saskatoon Civic Operations Centre\1544-2 Caswell Transit Site Phs II ESA\1544-2 Report\Drafts\1544-2 Cswll Ltd Ph II ESA\final-28Aug 14_ww_jc_tw_lp.docx

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT CASWELL TRANSIT OPERATIONS SITE SASKATOON, SASKATCHEWAN

Prepared For: THE CITY OF SASKATOON

Prepared By: PINTER & ASSOCIATES LTD.

> 29 August 2014 File: 14-1544-2

©2014 PINTER & Associates Ltd.

Executive Summary

The City of Saskatoon retained PINTER & Associates Ltd. (PINTER) to provide a Limited Phase II Environmental Site Assessment (ESA) on the City of Saskatoon Transit properties located at 301 24th Street West, 232 Avenue C North, 316 Avenue C North, and 321 Avenue C North (collectively referred to as the Subject Property) in the City of Saskatoon, Saskatchewan (SK).

The Limited Phase II ESA activities included drilling forty-two boreholes with sixteen of the boreholes completed as monitoring wells. Soil and groundwater samples were collected and submitted for laboratory analysis to establish current environmental conditions. The Limited Phase II ESA is designed to provide the best probability of detecting contaminants of concern if they exist. It does not delineate or map out (horizontally or vertically) the extent of the impact if detected.

Site geology was relatively consistent amongst the borehole locations and was generally comprised of inter-bedded layers of silt, sand, and clay overlaying clay till. Grain size analysis determined soils at the Subject Property governing groundwater flow to be coarse-grained.

Soil samples collected from boreholes located at 301 24th Street West and 232 Avenue C North submitted for laboratory analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), petroleum hydrocarbon (PHC) Fractions F1 to F4, and lead were below applicable guidelines.

Soil samples submitted from boreholes located at 321 Avenue C North for laboratory analysis contained concentrations of ethylbenzene, and PHC Fractions F1 to F4 that exceeded applicable Saskatchewan Ministry of Environment (SMOE) guidelines. A soil sample submitted from borehole 14-2 also contained concentrations of lead above applicable Canadian Council of Ministers of the Environment (CCME) guidelines.

Groundwater samples collected from monitoring well 14-23, located in the loading area of 321 Avenue C North, contained concentrations of PHC Fractions F1 and F2

above applicable Government of Canada guidelines. All other groundwater samples were below applicable guidelines.

Laboratory analysis of paint samples collected from surfaces in the building located at 321 Avenue C North confirmed the presence of lead-based paint.

Swab samples collected from surfaces within the building located at 301 24th Street West for diesel particulate analysis confirmed the presence of PHC Fractions F2 to F4.

A detailed Phase II is recommended to delineate and determine the extent of the soil and groundwater impacts on the property located at 321 Avenue C North.

		Table of Co	ontents
			Page
EXI	ECUTIV	E SUMMARY	Ι
TAI	BLE OF	CONTENTS	ш
1.0	INTR	RODUCTION	1
	1.1.	Scope of Work	2
	1.2.	Subject Property Description	3
		1.2.1. Zoning	3
		1.2.2. Surface Water and Topography	4
2.0	MET	HODOLOGY	5
	2.1.	Site Specific Health and Safety	5
	2.2.	Water Well Search	5
	2.3.	Borehole Advancement	5
	2.4.	Monitoring Well Installation	6
	2.5.	Soil Logging and Sampling Methodology	7
	2.6.	Survey Data	8
	2.7.	Groundwater Monitoring and Sampling	8
	2.8.	Lead Sampling	8
	2.9.	Diesel Particulate Sampling	8
	2.10.	Asbestos	9
	2.11.	Quality Assurance and Quality Control	9
	2.12.	Laboratory Analysis	10
		2.12.1. Applicable Regulatory Guidelines	10
		2.12.2. Soli 2.12.3. Groundwater	11
		2.12.4. Bulk Paint Samples	12
		2.12.5. Diesel Particulate Swabs	12
	2.13.	National Classification System for Contaminated Sites (NCSCS) Review	12
	2.14.	Ground Penetrating Radar	12
3.0	RESU	JLTS	13
	3.1.	Water Well Search	13
	3.2.	Site Stratigraphy	13
	3.3.	Laboratory Analytical Results – Soil	13
		3.3.1. Petroleum Hydrocarbons	13
		3.3.2. Lead	14
		3.3.3. Particle Size Analysis	14

	3.4.	Laboratory Analytical Results – Groundwater 3.4.1. Petroleum Hydrocarbons 3.4.2. Lead	15 15 15		
	3.5.	Groundwater Monitoring Results	15		
	3.6.	Laboratory Analytical Results – Lead in Paint	15		
	3.7.	Laboratory Analytical Results – Diesel Particulate	16		
	38	Ashestos	16		
	5.0.	3.8.1. 301.24 th Street West	16		
		3.8.2. 321 Avenue C North	16		
	3.9.	Ouality Assurance and Ouality Control	17		
		3.9.1. RPDs for Soil	17		
		3.9.2. RPDs for Groundwater	17		
		3.9.3. Certificate of Analysis (COA)			
		Qualifiers – Soil and Groundwater	17		
	3.10.	National Classification System for			
		Contaminated Sites (NCSCS) Review	17		
	3.11.	Ground Penetrating Radar	18		
		3.11.1. Parking Lot 232 Avenue C North	18		
		3.11.2. Parking Lot 301 24th Street West	18		
		3.11.3. Parking Lot 321 Avenue C North	18		
		3.11.4. Maintenance Garage 321 Avenue C			
		North	18		
4.0	DISC	USSION	19		
5.0	CON	CLUSIONS & RECOMMENDATIONS	21		
6.0	REFERENCES				
7.0	LIMI	TATIONS	24		
8.0	CLOS	SURE	25		

EMBEDDED TABLES

А	Summary of Current Land Use	3
В	Relative Percent Difference Reference Values	10
С	321 Avenue C North Soil Sample Exceedances	14

APPENDICES

- A. Figures
- B. Glossary of Terms and Abbreviations
- C. Selected Site Photographs
- D. Borehole Logs
- E. Tables
- F. Water Well Driller Records
- G. Laboratory Analytical Reports
- H. Site Monitoring Report
- I. Bersch & Associates Asbestos Reports
- J. NCSCS Score Sheet

1.0 INTRODUCTION

The City of Saskatoon (the City) retained PINTER & Associates Ltd. (PINTER) to provide a Limited Phase II Environmental Site Assessment (ESA) on the City of Saskatoon Transit properties located at 301 24th Street West, 232 Avenue C North, 316 Avenue C North, and 321 Avenue C North (collectively referred to as the Subject Property) in the city of Saskatoon, Saskatchewan (SK). Figure 1, Appendix A presents the location of the Subject Property.

Appendix B presents a Glossary of Terms and Abbreviations to aid in the interpretation of this report.

A Phase I ESA, completed by PINTER in April 2014, identified six (6) areas of potential environmental concern for the Subject Property:

- 1) The 301 24th Street West property is currently the City of Saskatoon Transit administration building and bus storage barn. A previously completed remediation report detailed that during the replacement of underground fuel storage tanks (USTs), hydrocarbon impacted soil was left in place beneath the northwest parking lot. This surficial hydrocarbon staining was also noted throughout the bus storage barn and adjacent to the exterior of the building, on Avenue D North. Diesel particulate staining was observed on the walls of the administration portion of the building and on the exposed fiberglass insulation and surfaces on the ceiling of the bus storage barns.
- 2) The property located at 232 Avenue C North is currently used for City of Saskatoon Transit staff parking. Sufficient information was not available to confirm or refute the presence of a UST on the 232 Avenue C North property.
- 3) The property located at 316 Avenue C North is currently used for the City of Saskatoon Transit staff parking. Oily substances and stains were noted on the City of Saskatoon Transit maintenance parking lot located west of this property. Impacts from the maintenance operation to the west could potentially migrate to the property via surface water flow. USTs were reported to have been operated at the City of Saskatoon maintenance site. Interview evidence also indicated that engine parts were placed in the former mechanic's pits of the original transit

building when it was demolished. A potential exists for subsurface environmental impacts migrating east (assumed direction of groundwater flow) to 316 Avenue C North.

- 4) The property located at 321 Avenue C North is currently used as a City of Saskatoon Transit maintenance building. Interview evidence and available historical information was unable to determine if all historical fuel and oil tanks and related impacts were removed from the property. Hydraulic hoists are currently located in the maintenance building. Figure 11, Appendix A presents a reference drawing of the two (2) types of hoists present on the property. Hydraulic hoists can leak hydraulic fluid into the ground; however the probability of this occurring cannot be determined with the information available. Interview evidence also indicated that engine parts were placed in the former mechanic's pits of the original transit building when it was demolished.
- 5) Due to the age of the building located at 321 Avenue C North, lead-based paint may have been used during the early construction and maintenance. Analysis of samples collected from the painted surfaces in the older portions of the building is required to confirm or refute the presence of lead containing paint.
- 6) Potential asbestos containing materials (ACM) were identified in the buildings located at 301 24th Street West and 321 Avenue C North. A consultant was retained by the City of Saskatoon to conduct detailed phase II asbestos audits on the buildings.

1.1. SCOPE OF WORK

The scope of work included the following:

- Locate underground utilities and service connections.
- Advance 42 boreholes to a maximum depth of 6.0 metres (m) below ground surface (bgs).
- Collect soil samples for field screening and potential laboratory analysis.
- Log the geology in each borehole.
- Install 16 groundwater monitoring wells.
- Survey each monitoring well to a common geodetic datum.

- Submit select soil samples for laboratory analysis of benzene, toluene, ethylbenzene, xylenes, (BTEX), petroleum hydrocarbon (PHC) Fractions F1 (C_6 to C_{10}) to F4 ($C_{>34}$ to C_{50}), and lead.
- Monitor wells for depth to groundwater, depth to bottom, depth to light non-aqueous phase liquids (LNAPL) (if present), and well headspace vapour concentration readings (WVCRs).
- Analyze groundwater samples from each new monitoring well and for three (3) existing monitoring wells for BTEX, PHC Fractions $F1(C_6 \text{ to } C_{10})$ and $F2(C_{>10} \text{ to } C_{16})$, and lead.
- Collect bulk samples of paint from the building located at 321 Avenue C North that test positive for lead and submit for analysis.
- Collect swab samples from the administration and bus storage portions of the building located at 301 23rd Street West and submit for diesel particulate analysis.
- Prepare a report documenting the Phase II ESA activities.

1.2. SUBJECT PROPERTY DESCRIPTION

The Subject Property is a group of properties owned by the City located at 301 24th Street West and 232, 316, and 321 Avenue C North in the city of Saskatoon. Adjacent land use to the Subject Property includes a mixture of commercial, residential, and industrial properties.

Figures 2 and 3, Appendix A, present the Subject Property layout. Appendix C presents selected site photographs.

1.2.1. Zoning

The Site is zoned Limited Intensity Light Industrial District, IL1 (City of Saskatoon, 2014). Table A presents a summary of adjacent land uses.

Direction from	Present Land Use		
Subject Property			
North	Residential and Commercial (Residential houses)		
East	Residential, Commercial, and Heavy Industrial (Residential houses, Fleet		
	Guide Truck & Trailer Repair Ltd., Saskatoon Station Place, Holiday Inn		
	Express Hotel & Suites, Canadian Pacific Railway line)		
South	Commercial and Mixed Use (Olson Auto Body (vacant), ADI Auto Inc.,		
	Darcy's 23 rd Street Service, Railway Gas & Convenience, Atomic Auto		
	Service, Canadian Pacific Railway line)		
West	Residential and Mixed Use (AODBT Architecture, Residential		
	condominiums, Residential houses)		

TABLE A -	Summary	of Current	Land Use
-----------	---------	------------	----------

1.2.2. Surface Water and Topography

The nearest surficial water body is the South Saskatchewan River, approximately 1,000 m south of the Subject Property. The topography of the Subject Property is generally flat though the area north does rise in elevation toward 33rd Street. The property located at 316 Avenue C North also had a gentle slope to the west towards Avenue C North.

2.0 METHODOLOGY

Phase II investigation activities were completed on 15, and 20 to 24 May 2014, with follow-up groundwater well development, monitoring, and sampling on 17 June 2014 and 26 June 2014. Lead paint and diesel particulate investigations were carried out on 05 June 2014.

2.1. SITE SPECIFIC HEALTH AND SAFETY

Prior to the commencement of the daily activities on the Subject Property, PINTER completed a Site-Specific Health and Safety assessment to identify on-site hazards and project health and safety requirements. Daily safe work permits were completed and discussed with on-site personnel at daily tailgate meetings.

2.2. WATER WELL SEARCH

A water well search was conducted on 03 April 2014 by reviewing the Saskatchewan Water Security Agency (SWSA) online water well database (SWSA, 2014). The search includes all registered groundwater wells and test holes potentially located within 1,000 m of the Subject Property; however, not all well records may be included in the database. The current status of the registered wells was not field-verified under the scope of this investigation.

2.3. BOREHOLE ADVANCEMENT

PINTER personnel supervised the advancement of 42 environmental boreholes on 15, and 20 to 24 May 2014 to establish soil and groundwater conditions on the Subject Property.

Prior to the initiation of ground disturbance activities, underground utility locates were requested from Saskatchewan 1st Call which included SaskTel and SaskEnergy. Saskatoon Light and Power, City of Saskatoon Sewer and Water, and Shaw Cable were also contacted to confirm they were devoid of any underground utilities on-site. Magna Electric Corporation of Saskatoon, SK was commissioned to locate private underground utilities. All proposed borehole locations were identified to be clear of underground utilities.

Western Heritage provided ground penetrating radar (GPR) survey of all proposed borehole locations to confirm that locations were devoid of underground conduits and fuel tanks (Photos 1 and 2, Appendix C). GPR was also used in the northwest storage yard located north of the building at 321 Avenue C North to determine the approximate location of the historic mechanic's pits and to locate any buried objects that could interfere with drilling activities.

Delta Coring and Cutting was commissioned to core through the concrete floor overlying the 24 test hole locations in the maintenance garage located at 321 Avenue C North. This was required to allow the drilling rig access to the subsurface soils.

Advantage Probe & Injection Corp. (APIC) of Saskatoon, SK provided a Geoprobe 6600 direct push rig with a Macro-core® sampler to advance the test holes and to recover soil samples from borehole locations. The soil samples were visually logged on site and selected soil samples were submitted for laboratory analysis. A Macro-core® soil sampler with a 0.038 m open-ended polyvinyl chloride (PVC) liner was used to core boreholes and to obtain soil samples. The direct push rig advanced the core sampler the full length of the borehole or to the depth of the desired sample. The open end allowed the soil to enter the chamber of the sampler and PVC liner. Once the desired soil sample was obtained, the sampler was withdrawn from the probe hole. The PVC liner was removed and opened with a Macro-core® liner cutter, revealing the soil sample. Portions of the soil sample were removed from the PVC liner for potential laboratory analysis. Boreholes not completed as monitoring wells were backfilled with bentonite to reduce the potential of creating a pathway for possible contaminants.

2.4. MONITORING WELL INSTALLATION

Sixteen (16) boreholes were completed as groundwater monitoring wells, each constructed with a 0.038 m diameter Schedule 40 polyvinyl PVC slot well screen and a 0.038 m diameter Schedule 40 PVC solid riser pipe to the ground surface. Monitoring well screen lengths varied between wells. Environmental filter sand was placed around the borehole annulus from the bottom of the well to approximately 0.5 m above the top of the well screen. Bentonite chips were placed above the sand

to near the ground surface. Monitoring wells were completed with flush mount road boxes as the wells were in areas of heavy traffic.

Groundwater monitoring wells were developed by removing three (3) equivalent well volumes of water or until dry using dedicated single use disposable bailers. Monitoring well development facilitates the removal of fine material from the screen resulting from installation and ensuring proper hydraulic connection with the surrounding groundwater.

2.5. SOIL LOGGING AND SAMPLING METHODOLOGY

Soil encountered during borehole advancement was visually logged using the Unified Soil Classification System with respect to soil type, colour, texture, consistency, moisture, and potential hydrocarbon. Appendix D presents the borehole logs.

Representative soil samples were collected at approximate 0.75 m depth intervals from the soil cores, unless an increased sampling frequency was warranted based on visual observations and/or changes in stratigraphy. Duplicate portions of the recovered soil sample were placed in laboratory supplied 125 millilitre (mL) glass jars equipped with Teflon[©] lids with zero headspace for potential laboratory analysis. The sample jars were labeled according to a pre-determined sample identification protocol and were kept cool until they were transferred to the laboratory.

The remaining portion of the soil sample was placed and sealed in a polyethylene laboratory grade soil bag with equal volume headspace for combustible vapour concentration (CVC) screening. The bagged samples were warmed to approximately 15 degrees Celsius (°C) prior to CVC analysis. The ambient headspace inside the bags was then analyzed with an RKI Eagle vapour analyzer operating in methane elimination mode and calibrated to a known hexane standard. Instrument calibration was completed daily prior to the commencement of work with a known calibration gas concentration of 40% Lower Explosive Limit (LEL) until the reading was within 10% of the known concentration. All CVCs were recorded in the corresponding field borehole logs.

2.6. SURVEY DATA

Exterior borehole locations were surveyed horizontally and vertically with a Hemisphere S320 GNSS GPS Survey Receiver system. Major site features were also surveyed to aid in the development of site drawings. Interior borehole locations were vertically surveyed with a Sokkia C32 level, relative to temporary benchmarks (fire hydrants) set to 100.00 m, located on Avenue C North, as indicated in Figure 2, Appendix A.

2.7. GROUNDWATER MONITORING AND SAMPLING

PINTER completed follow-up groundwater monitoring and sampling of monitoring wells on 27 June 2014.

During the monitoring events, each monitoring well was monitored for depth to water, depth to bottom, depth to LNAPL (if present), and well headspace vapour concentration readings (WVCRs). Monitoring well headspace WVCRs were measured with an RKI Eagle vapour analyzer operating in methane elimination mode and calibrated to a known hexane standard.

Groundwater samples were collected in clean laboratory-supplied sample bottles specific to the type of analysis required and preserved according to the laboratory's requirements. The sample bottles were labeled according to a pre-determined sample identification protocol and kept cool in an ice-chilled cooler until they were transferred to the laboratory.

2.8. LEAD SAMPLING

Painted surfaces in the building located at 321 Avenue C North were screened and sampled for lead-based paint. Initial screening consisted of scraping painted surfaces with a utility knife and using 3MTM LeadCheckTM Swabs to indicate the presence of lead. Approximately 5 grams (g) of sample were collected in laboratory supplied plastic bags using a utility knife from locations that tested positive for lead. The sample bags were labeled and kept cool until they were transferred to the laboratory.

2.9. DIESEL PARTICULATE SAMPLING

Diesel particulate samples were collected from various locations in the bus storage barn and in the stationery room of the administration building located at

301 24th Street West. Samples were collected in duplicate by swabbing an area of approximately 0.1 m x 0.1 m with gauze swabs dipped in methanol. Swabs were immediately transferred to laboratory supplied 125 mL glass jars equipped with Teflon[©] lids. The sample jars were labeled and kept cool until they were transferred to the laboratory.

2.10. ASBESTOS

The City of Saskatoon retained Bersch & Associates (Bersch) to conduct asbestos audits on the buildings located at 301 24th Street West and 321 Avenue C North. The audits included an asbestos survey and hazard assessment which consisted of the inspection of all accessible areas of the facilities. Bersch collected a total of 35 bulk samples of suspected Asbestos Containing Material (ACM) within the building located at 301 24th Street West and 18 bulk samples from the building located at 321 Avenue C North. The samples were analyzed by Bersch & Associates Ltd. laboratory for asbestos in building materials.

2.11. QUALITY ASSURANCE AND QUALITY CONTROL

A QA/QC program was implemented during soil and groundwater sampling to minimize and quantify potential impacts introduced during sample collection, handling, shipping and analysis.

As part of the QA/QC program, sampling protocols included; minimizing sample handling, using dedicated clean sampling equipment, sample specific identification and labeling procedures and utilizing laboratory provided Chain-of-Custody (COC) records.

Blind duplicate samples of soil and groundwater were submitted for laboratory analysis to assess potential sampling or laboratory error. For duplicate samples, the Relative Percent Difference (RPD) is calculated to assess the closeness of the results from the two (2) samples. RPDs are calculated as follows:

```
Where, RPD (%) = 100% x ABS (X - Y) / [(X + Y)/2]
X = the concentration of the original sample
Y = the concentration of the blind field duplicate sample
```

Laboratory QA/QC measures included analysis of laboratory blank, spiked blank, duplicate, matrix spike, and laboratory control samples.

Acceptable RPD values for various parameters are presented in Table B.

Parameter Category	Acceptable Relative Percent Difference (Applicable at Concentrations > 5x MDL)		
Organics in Soil and Sediment			
Polycyclic Aromatic Hydrocarbons (PAH)	75%		
Volatile organics (including BTEX and VH)	60%		
Extractable Petroleum Hydrocarbons (EPH)	60%		
Most Other Typical Organic Parameters	60%		
Organics in Water			
Volatile Organics (including BTEX and VH)	45%		
Most other Typical organic Parameters	45%		
Metals in Soil and Sediment			
High variability metals: Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, Ti	60%		
Other metals	45%		
Metals in Water	30%		
General Inorganics in Soil and Sediment	45%		
General Inorganics in Water	30%		

 TABLE B: Relative Percent Difference Reference Values

2.12. LABORATORY ANALYSIS

2.12.1. Applicable Regulatory Guidelines

Industrial guidelines are applicable to the Subject Property, however due to the proximity of residential properties to the west of 301 23rd Street West and 321 Avenue C North; a 30 m buffer along the western portion of the Subject Property was compared to residential guidelines. Due to the proximity of residential properties to the north and east of 321 Avenue C North, 30 m residential buffers along the northern and eastern portions of the Subject Property were compared to residential guidelines. Provincial guidelines do not exist for PHC Fractions F1 and F2 in groundwater, therefore Government of Canada (2012) federal interim water quality guidelines applied.

The guidelines used to compare the results of the laboratory analyses included the following:

Soil Guidelines

- Saskatchewan Ministry of Environment (SMOE) Risk-Based Corrective Actions for Petroleum Hydrocarbon Impacted Sites, March 2009, Tier 1 soil guidelines for coarse-grained soil, residential and industrial land uses (SMOE, 2009).
- Canadian Council of Ministers of the Environment (CCME). Canadian Soil Quality Guidelines (CEQG) for the Protection of Environmental and Human Health: Lead for coarse-grained soil, residential and industrial land uses (CCME 2014).

Groundwater Criteria

- SMOE 2009, Tier 1 groundwater guidelines protective of Potable Groundwater and Freshwater Aquatic Life (SMOE, 2009).
- Government of Canada 2012, Federal interim groundwater quality guidelines for federal contaminated sites (GC, 2012).
- Health Canada (HC) Guidelines for Canadian Drinking Water Quality Summary Table, Lead (HC, 2012).

2.12.2. Soil

Based on field screening results and visual observation, a total of 81 soil samples including six (6) blind duplicates for quality assurance/quality control (QA/QC) purposes were selected and submitted for laboratory analysis of BTEX, PHC Fractions F1 to F4, and lead. Ten (10) soil samples were submitted for particle size determination. All samples were submitted to ALS Canada Limited (ALS) Laboratories located in Saskatoon, SK. ALS's Saskatoon laboratory is accredited by the Canadian Association for Laboratory Accreditation (CALA).

2.12.3. Groundwater

Twenty (20) groundwater samples including two (2) blind duplicates for QA/QC purposes were submitted to ALS for laboratory analysis of BTEX, PHC Fractions F1 and F2. Four (4) of the twenty (20) samples were also submitted for laboratory analysis of dissolved lead.

2.12.4. Bulk Paint Samples

Based on field screening results, two (2) paint samples were submitted to ALS for laboratory analysis of lead in paint. The samples submitted for analysis were collected from the ceiling of the steam bay (Photo 12, Appendix C) located in the southwest portion of 321 Avenue C North and the doorframe of the stockroom located in the northwest portion of the gas garage (Photo 14, Appendix C).

2.12.5. Diesel Particulate Swabs

Eight (8) diesel particulate swabs including one (1) blind duplicate for QA/QC purposes were submitted to ALS laboratory for analysis of PHC Fractions F1 to F4.

2.13. NATIONAL CLASSIFICATION SYSTEM FOR CONTAMINATED SITES (NCSCS) REVIEW

A National Classification System for Contaminated Sites (NCSCS) pre-screening checklist and score sheet was completed for all of the information gathered on the Subject Property including past investigation activities.

2.14. GROUND PENETRATING RADAR

Western Heritage provided GPR equipment and personnel to assist in locating potential USTs, buried utilities, and conduits within areas of proposed borehole locations on the Subject Property. GPR was also used throughout the storage yard of 321 Avenue C North to locate historical mechanic's pits and buried objects that could interfere with drilling activities.

GPR surveys were conducted using a Sensors and Software SmartCart Nogginplus system with a 250 megahertz (MHz) antenna. When possible, grids of data were collected. In areas of limited access, such as the interior of the building located at 321 Avenue C North, single lines of data were collected.

3.0 **RESULTS**

3.1. WATER WELL SEARCH

A total of eleven (11) water well records were identified within the search area: one (1) for domestic withdrawal, six (6) for industrial withdrawal, three (3) research test holes, and one (1) domestic test hole. The completion dates for the wells ranged from 1929 to 1987. The water well completion depths ranged between 7.9 to 118.3 m bgs. Static water levels were reported in six (6) wells and ranged from 1.8 to 17.4 m bgs. Table 1, Appendix E presents a summary of the water well search results. Appendix F presents copies of the water well driller reports.

3.2. SITE STRATIGRAPHY

The stratigraphy observed during the soil investigation was visually logged and is summarized in the borehole logs presented in Appendix D. The geology was relatively consistent among the borehole locations and generally consisted of gravel fill in the top 0.2 m overlying intermixed beds of silt and clay with some sand extending to depths of approximately 2.0 to 4.0 m bgs. The silt and clay with some sand units overlaid clay till that is comprised of traces of sand and silt sized particles extending to 6.0 m bgs, the maximum depth of the investigation.

A borehole advanced in the northwestern storage yard of 321 Avenue C North penetrated the former mechanic's pits (Photo 4, Appendix C). The soil core from this test hole contained a layer of concrete and wood (Photo 5, Appendix C). The borehole location was relocated approximately 1 m south of the original location.

3.3. LABORATORY ANALYTICAL RESULTS – SOIL

Appendix G presents the Certificates of Analysis from ALS for the soil samples.

3.3.1. Petroleum Hydrocarbons

Table 2, Appendix E, and Figures 4 to 7, Appendix A present laboratory analytical results for soil samples submitted for BTEX and PHC Fractions F1 to F4. Table C presents the exceedances detected for samples collected from the property located at 321 Avenue C North. Soil samples collected from the remaining properties were below SMOE 2009 guidelines.

				PHC Contaminant						
Sample Location	Borehole	Depth (m)	B	Τ	Ε	Χ	F1	F2	F3	F4
Northwest storage lot	14-2	0.75							•	
Northeast parking lot	Surface sample	-							•	•
Southwest loading	14-23	2.25					•	•		
area										
Southwest loading	14-24	3.0						•		
area										
Southwest loading	14-40	3.0						•		
area										
Shop B east	14-17	2.25							•	
Shop B east	14-26	2.25						•	•	
Shop B west	14-34	2.25							•	
Shop B west	14-35	2.25			•			•	•	
Shop B west	14-36	2.25			•			•	•	
Shop B west	14-37	2.1						•	•	
South maintenance	14-21	1.5							•	
South maintenance	14-22	1.5							•	

TABLE C: 321 Avenue C North Soil Sample Exceedances

• Indicates that the soil sample exceeded the applicable criteria for the specified contaminant

All other soil samples submitted for laboratory analysis of BTEX, and PHC Fractions F1 to F4 were below the applicable SMOE 2009 guidelines.

3.3.2. Lead

Table 2, Appendix E, and Figures 4 to 7, Appendix A present analytical results for soil samples submitted for analysis of lead.

Soil samples collected from borehole 14-2 contained concentrations of lead at a depth of 0.75 m bgs above the applicable criteria. All soil other samples submitted for laboratory analysis of lead were below the applicable CCME CEQG 2014 guidelines.

3.3.3. Particle Size Analysis

Table 3, Appendix E, presents the analytical results of the ten (10) soil samples submitted for particle size analysis. The particle size analysis was used to confirm the visual borehole logging and the borehole logs.

Six (6) of the ten (10) soil samples submitted were classified as coarse-grained. The coarse-grained soils will govern contaminant migration on the Subject Property within

the saturated zone; consequently the coarse-grained guidelines were applied to the Subject Property.

3.4. LABORATORY ANALYTICAL RESULTS – GROUNDWATER

Appendix G presents the Certificate of Analysis from ALS for the groundwater samples.

3.4.1. Petroleum Hydrocarbons

Table 4, Appendix E, and Figures 8 to 10, Appendix A present the analytical results from groundwater samples for BTEX and PHC Fractions F1 and F2.

All groundwater samples submitted were below the applicable SMOE 2009 guidelines for BTEX and the Health Canada 2012 guidelines for lead. Groundwater samples submitted for monitoring well 14-23 had concentrations of PHC Fraction F1 PHC Fraction F2 that exceeded the Government of Canada federal interim groundwater quality guidelines for commercial and industrial land uses (GC, 2012). All other groundwater samples were below applicable Government of Canada 2012 guidelines.

3.4.2. Lead

Table 4, Appendix E, and Figures 8 to 10, Appendix A present the analytical results from groundwater samples for lead.

All groundwater samples submitted were below the applicable guidelines for lead.

3.5. GROUNDWATER MONITORING RESULTS

The results of the 26 June 2014 groundwater monitoring events are presented in the Site Monitoring Report in Appendix H. The depth to groundwater ranged between 1.83 to 3.19 m bgs. Groundwater flow was determined to be flowing in a southerly direction, towards the South Saskatchewan River. Figure 12, Appendix A presents the groundwater flow contour map.

3.6. LABORATORY ANALYTICAL RESULTS – LEAD IN PAINT

Table 5, Appendix E presents the analytical results from the paint sampling completed 05 June 2014 for lead in paint. The sample collected from the ceiling in the steam bay located in the southwest portion of 321 Avenue C North had a lead

concentration of 2,090 mg/kg and the sample collected from the stockroom doorframe located in the northwest portion of the gas garage contained a lead concentration of 1,410 mg/kg.

3.7. LABORATORY ANALYTICAL RESULTS – DIESEL PARTICULATE

Table 6, Appendix E presents the analytical results from the diesel particulate swabbing. The analysis results for PHC Fraction F1 were all below the laboratory MDL. PHC Fraction F2 results ranged from 170 to 260 micrograms (μ g) and PHC Fraction F3 ranged from 450 to 15,600 μ g. PHC Fraction F4 results ranged from 250 to 830 μ g. As the swabs were collected from areas approximately of 0.01 m² in area, Table 6, Appendix E also presents the results as grams per m².

3.8. ASBESTOS

Appendix I presents the asbestos audit reports completed by Bersch & Associates Ltd. The results of the asbestos audits completed by Bersch are as follows:

3.8.1. 301 24th Street West

The presence of ACM was confirmed in the building located at 301 24th Street West. Vinyl asbestos floor tile was confirmed in storage rooms #103 and #244. The presence of transite roof drain pipe was also confirmed in rooms #114, #119, #120, #201, #202, #203, #204, #208, and #209. The transite drain pipe has been labeled with an "ASBESTOS" stencil. Bersch has also installed labels on the doorjambs of the rooms containing asbestos. Tests carried out on the cinder block wall cavities, for vermiculite, did not detect vermiculite.

3.8.2. 321 Avenue C North

The presence of ACM was confirmed in the building located at 321 Avenue C North. Transite roof drain pipe was confirmed in rooms #104 (west portion of Shop B), #105 (east portion of Shop B), #108 (men's locker room), #109 (men's washroom), #111 (east portion of south maintenance garage), and #117 (maintenance office). The transite drain pipe has been labeled with an "ASBESTOS" stencil. Bersch has also installed labels on the doorjambs of the rooms containing asbestos. Bersch also tested the cinder block wall cavities for vermiculite, however no vermiculite was found.

3.9. QUALITY ASSURANCE AND QUALITY CONTROL

3.9.1. RPDs for Soil

RPDs for soil were calculated for soil samples DUP D (duplicate of soil sample 14-17-3), DUP E (duplicate of soil sample 14-23-3), and DUP F (duplicate of soil sample 14-35-3) for BTEX and PHC Fractions F1 to F4 where measured concentrations were greater than five times the laboratory method detection limit (MDL). The RPDs for QA/QC were within acceptable limits with the exception of PHC Fraction F3 in sample DUP E (duplicate of 14-23-3) with a result of 159.3 and PHC Fraction F4 in sample DUP F (duplicate of 14-35-3) with a result of 172.6. The elevated RPDs could be attributed to sample heterogeneity when the soil is divided into multiple jars. The results are considered reliable.

3.9.2. RPDs for Groundwater

RPDs for groundwater were not calculated for benzene, toluene, ethylbenzene, xylene, or PHC Fractions F1 and F2 as concentrations of duplicate samples were less than five times the laboratory MDL.

3.9.3. Certificate of Analysis (COA) Qualifiers – Soil and Groundwater

One (1) soil sample was given a Detection Limit Adjusted (DLA) qualifier as the MDLs were adjusted to account for sample dilution during analysis.

Several soil and groundwater samples were given a Surrogate Recovery Outside Acceptable Limits Due to Matrix Interference (SOL:MI). Known amounts of surrogate compounds are added to the sample at the beginning of the analysis to ensure that the sample extraction is effective. The surrogate results will appear higher than expected should the matrix contain compounds that elute at the same time as the surrogate compounds.

The integrity of the data was not comprised as a result of the qualifiers.

Individual sample MDLs are presented in the COAs in Appendix G.

3.10. NATIONAL CLASSIFICATION SYSTEM FOR CONTAMINATED SITES (NCSCS) REVIEW

Appendix J presents the NCSCS pre-screening checklists completed for the properties located at 301 24th Street West and 232 Avenue C North. No exceedances

of criteria were found, therefore it was not necessary to complete the NCSCS score sheets for these properties.

Appendix J presents the NCSCS pre-screening checklist and score sheet completed for the site investigation activities on 321 Avenue C North. The score obtained is 35.2 which categorizes the property located at 321 Avenue C North as "not a priority for action".

3.11. GROUND PENETRATING RADAR

3.11.1. Parking Lot 232 Avenue C North

No evidence of a UST was identified in the area scanned. An anomaly, unrelated to buried utilities, was noted towards the west end of the grid. The GPR technologist identified this anomaly as a potential rock or buried debris.

3.11.2. Parking Lot 301 24th Street West

Two (2) areas occupied by current and former USTs were scanned. Structures associated with the current fuel tanks were identified.

3.11.3. Parking Lot 321 Avenue C North

An area located in the northeast portion of the staff parking area was scanned. Subsurface disturbances up to 1.5 m deep were noted immediately north of the building. The technologist noted that this area may have previously been excavated. The area of disturbance was marked with spray paint.

An area of the northwest storage yard that was formerly the location of the original transit maintenance and repair shop was also scanned. Buried rail tracks ran in an east west direction through the lot. Areas of buried concrete and debris were also noted. An area of disturbance associated with the former mechanic's pits was marked with spray paint.

3.11.4. Maintenance Garage 321 Avenue C North

The majority of the GPR transects indicated rebar within the concrete. Thick concrete was identified and layers of concrete separated by layers of sand were also noted. No conduits or voids were detected near the proposed borehole locations.

4.0 **DISCUSSION**

301 24th Street West

The soil and groundwater samples collected from the southwest parking lot of the administration building did not provide evidence of residual PHC contamination from historic tank leakages.

The presence of PHC contaminants on the interior surfaces of the bus barns and administration building presents a potential contamination issue should the building be demolished. Once in a landfill, the potential exists for PHC contaminants to be leached from the building materials and into the surrounding environment. There is also a possibility of vapours generated by these deposits impacting workers. However, these vapours would be much less than those generated by running diesel engines in the facility. Furthermore, the indoor air quality testing completed on a regular basis at the facility incorporate vapours coming off of the diesel impacted surfaces. To date no issues have been reported with respect to the air quality. Based on this information no further work is required on this matter at this time.

232 Avenue C North

No evidence of a historic UST was uncovered during the Phase II activities. Based on available information no further work is required on this matter at this time.

321 Avenue C North

Based on the available information, it appears that all historic USTs are removed from this location.

Soil PHC concentrations above applicable criteria were detected in the northeast parking lot of 321 Avenue C North. The source of this contamination is believed to be from a one-time spill or leak. The potential of these surface contaminants migrating via surface water, to the City property located at 316 Avenue C North is low due to the intervening presence of Avenue C North. It is unlikely for this contamination to travel to depths greater than 1.0 m bgs, however the potential exists for these contaminants to migrate via surface water to the storm sewer system. In order to prevent the migration of these contaminants, it is recommended to remove the stained and PHC affected surface soils from this area.

Concentrations of PHC contaminants that exceeded regulatory criteria were detected in soil and groundwater samples collected throughout the property. The locations included areas around certain hoists and the northeast area of the building, and the southwest corner of the building near the boiler room. The movement of groundwater provides the potential for these contaminants to travel throughout the site and beyond in the direction of groundwater flow. Delineation of the horizontal and vertical extents of this contamination is recommended. In addition, a monitoring program should be developed to allow for the detection of the movement of the contaminants to the surrounding area and adjacent City of Saskatoon properties.

A surface soil sample collected in the northwest storage yard also contained concentrations of PHC (oil) and lead above applicable criteria. The PHC affected soil in the stained areas should be removed from the site and disposed of appropriately.

The presence of lead-based paint in the southwestern portion of 321 Avenue C North presents a potential human health concern. Proper management and disposal procedures are required to ensure that lead-containing painted materials are handled appropriately if encountered during maintenance and renovation activities. Steps should be taken to ensure that this material is not ingested or fine particles inhaled.

Asbestos containing materials were identified and labeled by Bersch. These types of materials pose little to no concern when undisturbed, however in order to eliminate or reduce the exposure of workers and occupants to asbestos fibers, special precautions must be taken during maintenance, alterations, renovation, and demolition activities that may disturb these materials.

5.0 CONCLUSIONS & RECOMMENDATIONS

The results of the Phase II ESA are summarized below:

- The Subject Property is used for the City of Saskatoon Transit Operations. A 30 m residential buffer zone was applied to the northern, western, and eastern portions of the property located at 321 Avenue C North. A 30 m residential buffer was also applied to the northern and eastern portions of 240 Avenue C North, and the eastern portions of 232 and 230 Avenue C North.
- Grain size analysis determined coarse-grained soils (sands and gravels) located on the Subject Property will govern contaminant migration.
- Soil concentrations of PHC contaminants exceeded the applicable SMOE 2009 guidelines in samples collected at 321 Avenue C North. All other soil samples submitted for PHC analysis were below laboratory MDL and/or applicable guidelines.
- Soil concentrations of lead exceeded the CCME CEQG 2014 guidelines for industrial and residential land uses in sample location 14-2, located in the northwest storage yard of 321 Avenue C North. All other soil samples submitted for lead analysis were below laboratory MDL and/or applicable guidelines.
- Groundwater concentrations of PHC Fractions F1 and F2 exceeded the Government of Canada 2012 guidelines in monitoring well 14-23, located in the northwest loading area of 321 Avenue C North. All other groundwater samples submitted for analysis were below laboratory MDL and/or applicable guidelines.
- The asbestos audits conducted by Bersch & Associates on 301 24th Street West and 321 Avenue C North confirmed the presence of asbestos containing materials. Proper asbestos management and disposal procedures are required to prevent the exposure of workers and occupants to asbestos fibres during maintenance, alterations, renovation, and demolition activities that cause potential asbestos fibres to be released or entrained into occupied space.
- A review of QA/QC measures determined that data quality was reliable.

- The NCSCS score for the property located at 321 Avenue C North was 35.2, which places it in the category of "not a priority for action".
- The removal of PHC affected surface soils from the northeast parking lot of 321 Avenue C North is recommended.
- A Phase II Delineation and the development of a monitoring plan is recommended for the property located at 321 Avenue C North.

6.0 **REFERENCES**

Canadian Council for Ministers of the Environment. 2013. Canadian Environmental Quality Guidelines. *Soil Quality Guidelines for the Protection of Environmental and Human Health: Lead – Residential and Industrial Land Uses*. Available at: http://st-ts.ccme.ca/ [accessed July, 2014]

Government of Canada. 2012. Government of Canada, Federal Contaminated Sites Action Plan (FCSAP) *Guidance Document on Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites*.

- Health Canada. 2012. *Guidelines for Canadian Drinking Water Quality Summary Table:* Lead. Dated August 2012. Available at: http://www.hc-sc.gc.ca/ewh-semt/alt_formats/pdf/pubs/water-eau/2012-sum_guide-res_recom/2012-sum_guide-res_recom-eng.pdf [accessed July 10, 2014]
- Saskatchewan Ministry of Environment. 2009. Risk-Based Corrective Actions for Petroleum Hydrocarbon Contaminated Sites. March 2009.
- Saskatchewan Water Security Agency. 2013. Online Water Well Information Database. Available at: https://gis.wsask.ca/ [accessed 03 April 2014]

7.0 LIMITATIONS

In conducting this investigation on Subject Property and in rendering our findings and conclusions on the presence and/or level of impacts present, PINTER & Associates Ltd. gives the benefit of its best judgment based on its experience and in accordance with generally accepted professional standards for this type of assessment. Our conclusions are limited by the following:

- The agreed scope of work requested to be undertaken;
- It was not feasible to sample or test for chemical constituents at each and every location on the site. Site-specific criteria were used during sampling and testing and are thought to be representative of present site conditions;
- Our conclusions are drawn from the information provided to PINTER & Associates Ltd., in whole or in part, during the course of this environmental site investigation and have been included in this report.

Performance of a standardized environmental site assessment is intended to reduce, but not wholly eliminate, uncertainty regarding the potential for recognized environmental conditions in connection with the property, given reasonable limits of time and cost.

PINTER will not be responsible or held liable for any existing contamination or adverse impacts on the study area that have not been caused by its activities. Actions at the Subject Property without PINTER's knowledge may influence the environmental status of the property. No warranty, expressed or implied is given concerning the current environmental condition of the Subject Property following the submission of the original report dated 29 August 2014.

No warranty, expressed or implied, is given concerning chemicals of concern at the Subject Property. This report has been prepared for the exclusive use of <u>The City of</u> <u>Saskatoon</u>. Without any mitigation or remediation the contaminant conditions on the Subject Property can change from that described in this report. Any use that a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. PINTER & Associates Ltd. accepts no responsibility for damages, if any suffered by any third party, as a result of decisions made or actions based on this report.

8.0 **CLOSURE**

This report has been prepared by PINTER for the exclusive use of The City of Saskatoon pursuant to the Limitations presented in Section 6.0.

PINTER & Associates Ltd.

Jessica Cutter, M.Sc. Project Scientist

Lawrence Pinter, P.Eng. Senior Engineer

Date: 29 August 2014 h:\projects\1544 city of saskatoon civic operations centre\1544-2 caswell transit site phs ii esa\1544-2 report\drafts\1544-2 cswll ltd ph ii esa-final-28aug 14_ww_jc_tw_lp.docx

Association of I	Professional Engineers & of Saskatchewan	Geoscientists			
CERTIFICATE OF AUTHORIZATION PINTER & Associates Ltd.					
Number C1232					
Permission to Consult held by:					
Discipline Municipal	Sk. Reg. No. 6565	Signature			
Environmental	6565	Marto			
Geotechnical	6565				

Appendix A

Figures

Ave B.	
Athr St WV	
	2
ale .	A ANDRESS
Ja	mieson
SURFACE SAMPLE – MANHOLE M	SUBJECT PROPERTY LAYOUT EXTERIOR BOREHOLE LOCATIONS 10 JUNE 2014 1544-2 PHS II ESA, CASWELL TRANSIT SITE, SASKATOON, SK.
ALE: 1: 1000 H:\PROJECTS\ 1544-2 PHS II ESA, CASWELL TRANSIT (SASKATOON, SK. \ 1544-2 DRAWINGS	DRAWN BY: NA SITE CHECKED BY: JC

			Ave
	Date Sampled: 21 May 2014	CONTRACT CUDELINES	
14-14 CVC B T E X F (m bgs) ppm mg/kg mg	Date sampled: 21 May 2014 1 F2 F3 F4 Lead /kg mg/kg mg/kg mg/kg mg/kg 10 <30	14-42 Depth (m bgs) 14-42-3 @ 2.25 14-42-3 @ 2.25 14-41 Depth	Date Sampled: 24 May 2014 CVC B T E X F1 F2 F3 F4 Lead ppm mg/kg
(m bgs) ppm mg/kg mg/kg <th< td=""><td>/kg mg/kg mg/kg mg/kg mg/kg 10 <30</td> <50</th<>	/kg mg/kg mg/kg mg/kg mg/kg 10 <30	(m bgs) 14-41-3 @ 2.25 240 30.M BUFFUR - RESIDENTIAL GUIDELINES O'M BUFFUR - INDUSTRIAL GUIDELINES	ppm mg/kg m
14-12-6 @ 4.5 m 10 <0.005 <0.01 <0.11 < 14-15	Date Sampled: 21 May 2014 1 F2 F3 F4 Lead /kg mg/kg mg/kg mg/kg 301 00 <30	ER PRODUCTIVAL GUIDE LINES ER PRODUCTIVAL GUIDE LINES ER ESTREMITAL GUIDE LINES ESTREMITAL	
14-13	Date Sampled: 21 May 2014 1 F2 F3 F4 Lead /kg mg/kg mg/kg mg/kg 10 <30		GREEN - BELOW APPLICABLE GUIDELINES RED - EXCEEDS ONE OR MORE APPLICABLE GUIDLINES
		Applicable SMOE 2009 - In SMOE 2009 - In SMOE 2009 - In CCME 2014	B T E X F1 F2 F3 F4 Lead mg/kg
PINTER NOTES: ************************************	 SASKATCHEWAN MINISTRY OF ENVIRONMENT (SMOE) RISK-BASED CORRECTIVE ACTIONS FOR PETROLEUM HYDROCARBON IMPACTED SITES, MARCH 2009 TIER 1 SOIL GUIDELINES FOR COARSE-GRAINED SOIL, RESIDENTIAL AND INDUSTRIAL LAND USES, (SMOE, 2009) CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME). CANADIAN SOIL QUALITY GUIDELINES (CEQG) FOR THE PROTECTION OF ENVIRONMENTAL ANI HUMAN HEALTH: LEAD FOR COARSE-GRAINED SOIL, RESIDENTIAL AND INDUSTRIAL LAND USES (CCME 1999). BTEX: B=BENZENE, T=TOLUENE, E=ETHYLBENZENE, X=XYLENES F1 TO F4 = PETROLEUM HYDROCARBON FRACTIONS F1 TO F4 	LEGEND SUBJECT PROPERTY - APPROXIMATE LOCATION HISTORICAL MECHANIC'S PITS TEMPORARY BENCHMARK	E SURFACE SAMPLE SURFACE SAMPLE SOUTH HALF OF SUBJECT PROPERTY ING MONITORING WELL
SASKATOON SK S7K 584 306.244.1710 pintermain@pinter.ca 6. LOCATIONS OF ALL MARKED UTILITIES ARE APPROXIMATE.	10. M BGS = METERS BELOW GROUND SURFACE 3. 11. MG/KG = MILLIGRAMS PER KILOGRAM 12. CVC = COMBUSTIBLE VAPOUR CONCENTRATION	0 25 50 METRES	SCALE: 1: 1000 FILE: H:/PROJECTS/ 1544-2 PHS II ESA, CASWELL TRANSIT SITE SASKATOON, SK. 1544-2 DRAWINGS CHECKED BY: JC

	25th	n St W				
14-2 Depth CVC B [m bgs] ppm mg/kg 14-2-1 / 20 0.75 m 0 0.0053 1	T E X F1 ng/kg mg/kg mg/kg m	Date Sampled: 15 May 2014 F2 F3 F4 Lead mg/kg mg/kg mg/kg mg/kg				
14-2-3 @ 2.25 m 0 <0.0050	T E X F1 mg/kg mg/kg mg/kg mg/kg m	Solution Line Line <30				Ave
Depth CVC B (m bgs) ppm mg/kg 14-3-3 @ 2.25m 65 <0.0050	T E X F1 mg/kg mg/kg mg/kg mg/kg mg/kg m x0.050 <0.010	F2 F3 F4 Lead mg/kg mg/kg mg/kg mg/kg <30	SI S	AL CUIDELINES	316 14-6 Depth CVC (m bgs) ppm mg/kg mg/kg	Date Sampled: 20 May 2014 F1 F2 F3 F4 Lead mg/kg mg/kg mg/kg mg/kg mg/kg
14-5 CVC B Depth CVC B (m bgs) ppm mg/kg 14-5-1 @ 0.75 m 30 <0.0050	T E X F1 mg/kg mg/kg mg/kg mg/kg m 00.050 <0.010	Date Sampled: 15 May 2014 F2 F3 F4 Lead mg/kg mg/kg mg/kg mg/kg <30	O H4-SH O H4-S	30 M BUFFER - INDUSTRI	14-6-3 @ 2.25m 10 <0.050 <0.050 <0.010 <0.10 Surface Sample	<10
14-39-2 @ 1.5 m 0 <0.005 14-39-4 @ 3.0 m 0 <0.005	<0.05 <0.01 <0.1 <10 <0.05 <0.01 <0.1 <10	<30 <50 <50 <5 <30 274 125 5.3 Date Sampled: 24 May 2014 F2 F3 F4 Lead mg/kg mg/kg mg/kg mg/kg 1750 543 <50			(m bgs) ppm mg/kg mg/kg mg/kg mg/kg 14-7-3 @ 2.25m 35 <0.0050	mg/kg mg/kg mg/kg mg/kg <10 <30 <50 <50 <50
14-23 VC B Depth CVC B (m bgs) ppm mg/kg 14-23-3 @ 2.25 m 190 <0.005	T E X F1 mg/kg	Date Sampled: 22 May 2014 F2 F3 F4 Lead mg/kg mg/kg mg/kg mg/kg 7040 1360 <50	301		Signation B T E X Applicable Guidelines B T E X MOE 2009 - Industrial 0.030 0.10 0.082 11 SMOE 2009 - Besidential 0.030 0.10 0.082 11	REEN - BELOW APPLICABLE GUIDELINES RED - EXCEEDS ONE OR MORE APPLICABLE GUIDLINES F1 F2 F3 F4 Lead rg mg/kg mg/kg mg/kg mg/kg mg/kg 240 260 1700 3300 NA
(m bgs) ppm mg/kg 14-24-4 @ 3.0 m 1250 <0.005	mg/kg mg/kg <th< td=""><td>mg/kg mg/kg mg/kg mg/kg 545 155 <50</td> <5</th<>	mg/kg mg/kg mg/kg mg/kg 545 155 <50	ED CORRECTIVE ACTIONS FOR PETROLEUM HYDROCARBON IMPACTED SITES. MARCH 2009	LEGEND	CCME 2014 - Industrial NA NA NA NA CCME 2014 - Residential NA NA NA NA SMOE RBCA (2009) TIER 1 GUIDELINES - COARSE GRAINED SOILS (BTE CCME (2014) SOIL QUALITY FOR THE PROTECTION OF ENVIRONMENT	NA NA NA NA NA 600 NA NA NA NA NA 600 X, F1-F4) TAL AND HUMAN HEALTH: LEAD FIGURE 5 5
PINTER ASSOCIATES LITD CARSOCIATES LITD CARSO	D11 (ACCESSED JUNE 2014). 8 S PREPARED FOR ILLUSTRATIVE 8. Y. 9. EGAL SURVEY. 9. ENTS ARE IN METRES. 10 MATION COLLECTED BY HEMISPHERE S320 GPS. 11 ALL MARKED UTILITIES ARE APPROXIMATE. 12	TIER 1 SOIL GUIDELINES FOR COARSE-GRAINED SOIL, RESIDENT I. CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (COM HUMAN HEALTH: LEAD FOR COARSE-GRAINED SOIL, RESIDENTI 8. BTEX: B=BENZENE, T=TOLUENE, E=ETHYLBENZENE, X=XYLENES F1TO F4 = PETROLEUM HYDROCARBON FRACTIONS F1 TO F4 0. M BGS = METERS BELOW GROUND SURFACE 1. MG/KG = MILLIGRAMS PER KILOGRAM 2. CVC = COMBUSTIBLE VAPOUR CONCENTRATION	TAL AND INDUSTRIAL LAND USES, (SMOE, 2009) E). CANADIAN SOIL QUALITY GUIDELINES (CEQG) FOR THE PROTECTION OF ENVIRONMENTAL AND INDUSTRIAL LAND USES (CCME 1999).	AND SUBJECT PROPERTY - APPROXIMATE LOCATION HISTORICAL MECHANIC'S PITS TEMPORARY BENCHMARK 0 25 METRES	Image: monosciency of the state of the	E C DETAILED SOIL ANALYTICAL RESULTS NORTH HALF OF SUBJECT PROPERTY 23 JULY 2014 1544-2 PHS II ESA, CASWELL TRANSIT SITE, SASKATOON, SK. DRAWN BY: NA ISIT SITE, GGS C CHECKED BY: JC

								Date S	ampled: 20	May 2014
	CVC	В	Т	E	Х	F1	F2	F3	F4	Lead
	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2.25 m	20	< 0.0050	< 0.050	< 0.010	<0.10	<10	<30	<50	<50	5.3
3.0 m	20	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	77	<50	<5.0
						-		Date S	ampled: 20	May 2014
	CVC	В	Т	E	Х	F1	F2	F3	F4	Lead
	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2.25 m	5	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	86	78	<5.0
4.5 m	15	< 0.0050	< 0.050	< 0.010	<0.10	<10	<30	100	54	5.3
								Date S	ampled: 20	May 2014
	CVC	В	Т	E	Х	F1	F2	F3	F4	Lead
	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
3.0 m	50	< 0.0050	< 0.050	<0.010	<0.10	<10	37	150	105	<5.0
3.75 m	0	< 0.0050	< 0.050	< 0.010	<0.10	<10	<30	112	54	5.6
								Date S	ampled • 21	May 2014
	CVC	B	Т	F	X	F1	E2	F3	F4	Lead
	pom	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1.5 m	10	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	15700	234	<5.0
4.5 m	10	<0.0050	< 0.050	<0.010	<0.10	<10	<30	215	<50	5.1
								Date S	ampled: 21	May 2014
	CVC	В	Т	E	Х	F1	F2	F3	F4	Lead
	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
3.0 m	15	<0.0050	< 0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
	4.5	10 0000	10.050	10.010		-4.0				

								Date S	ampled: 21	May 2014
	CVC	В	Т	E	Х	F1	F2	F3	F4	Lead
	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1.5 m	0	<0.0050	< 0.050	< 0.010	<0.10	<10	89	17700	268	128
4.5 m	5	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	124	<50	5.2

								Date S	ampled: 20	May 2014
	CVC	В	Т	E	Х	F1	F2	F3	F4	Lead
	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
.25 m	45	< 0.0050	< 0.050	< 0.010	<0.10	<10	<30	<50	<50	<5.0
.5 m	35	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	94	57	<5.0

	FIGURE 6 DETAILED SOIL ANALYTICAL RESULTS - SOUTH HALF OF 321 AVE C NORTH INTERIOR BOREHOLES
	25 JULY 2014 1544-2 PHS II ESA, CASWELL TRANSIT SITE, SASKATOON, SK.
ALE: NTS	DRAWN BY: NA
H:\PROJECTS\ 1544-2 PHS II ESA, CASWELL TRANSIT SITE, SASKATOON, SK. \ 1544-2 DRAWINGS	CHECKED BY: JC

24 TH STREET WEST

GREEN - BELOW APPLICABLE GUIDELINES RED - EXCEEDS ONE OR MORE APPLICABLE GUIDLINES

Analizable Cuidelines	В	Т	E	Х	F1	F2	F3	F4	Lead
Applicable Guidelines	mg/kg								
SMOE 2009 - Industrial	0.030	0.10	0.082	11	240	260	1700	3300	NA
SMOE 2009 - Residential	0.030	0.10	0.082	11	30	150	300	2800	NA
CCME 2014 - Industrial	NA	600							
CCME 2014 - Residential	NA	140							

CCME (2014) SOIL QUALITY FOR THE PROTECTION OF ENVIRONMENTAL AND HUMAN HEALTH: LEAD

PINTER & ASSOCIATES LTD	NOTES: 1. IMAGE SOURCE FROM CITY OF SASKATOON IMAPS, IMAGE DATED 2011 (ACCESSED JUNE 2014). 2. THIS DRAWING IS PREPARED FOR ILLUSTRATIVE PURPOSES ONLY.	 SASKATCHEWAN MINISTRY OF ENVIRONMENT (SMOE) RISK-BASED CORRECTIVE ACTIONS FOR PETROLEUM HYDROCARBON IMPACTED SITES, MARCH 2009 TIER 1 SOIL GUIDELINES FOR COARSE-GRAINED SOIL, RESIDENTIAL AND INDUSTRIAL LAND USES, (SMOE, 2009) CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME), CANADIAN SOIL QUALITY GUIDELINES (CEQG) FOR THE PROTECTION OF ENVIRONMENTAL AND HUMAN HEALTH: LEAD FOR COARSE-GRAINED SOIL, RESIDENTIAL AND INDUSTRIAL LAND USES (CCME 1999). 	LEGEND TEST HOLE MONITORING WELL	© ∳		FIGURE 7 DETAILED SOIL ANALYTICAL RESULTS - NORTH HALF OF 321 AVE C NORTH INTERIOR BOREHOLES
	3. THIS IS NOT A LEGAL SURVEY.	9. BTEX: B=BENZENE, T=TOLUENE, E=ETHYLBENZENE, X=XYLENES F I TO F4 = PETROLEUM HYDROGARBON FRACTIONS F1 TO F4	PRE-EXISTING MONITORING WELL	+		1544-2 PHS II ESA CASWELL TRANSIT SITE
710A-48TH STREET EAST	4. ALL MEASUREMENTS ARE IN METRES.	10 M BGS = METERS BELOW GROUND SUBFACE		T		SASKATOON, SK.
SASKATOON SK S7K 5B4 306 244 1710	5. SURVEY INFORMATION COLLECTED BY HEMISPHERE S320 GPS.	11 MG/KG = MILLIGRAMS PER KILOGRAM			SCALE: NTS	
pintermain@pinter.ca	6. LOCATIONS OF ALL MARKED UTILITIES ARE APPROXIMATE.	12. CVC = COMBUSTIBLE VAPOUR CONCENTRATION			FILE: H:\PROJECTS\ 1544-2 PHS II ESA, CASWELL TRANSIT SITI SASKATOON, SK. \ 1544-2 DRAWINGS	CHECKED BY: JC

14-25								Date S	ampled: 22	May 2014
Depth	CVC	B	Т	E	X	F1	F2	F3	F4	Lead
(mbgs)	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14-25-2 @ 1.5 m	15	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	<50	<50	5.1
14-25-3 @ 2.25 m	15	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	480	104	<5.0
14-25-6@4.5m	15	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	67	<50	5.3
14-27						1		Date S	ampled: 22	May 2014
Depth	CVC	B	Т	E	X	F1	F2	F3	F4	Lead
(m bgs)	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14-27-3@2.25 m	35	<0.0050	<0.050	<0.010	<0.10	<10	< 30	<50	<50	<5.0
14-29								Date S	ampled: 22	May 2014
Depth	OVC	В	Т	E	Х	F1	F2	F3	F4	Lead
(m bgs)	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14-29-2 @ 1.5 m	5	< 0.0050	< 0.050	<0.010	<0.10	<10	< 30	<50	<50	5.0
14-29-6 @ 4.5 m	10	<0.0050	<0.050	<0.010	≪0.10	<10	<30	32	<50	5.0
14-26								Date	ampled: 22	May 2014
Depth	CVC	B	Т	E	х	F1	F2	F3	F4	Lead
(m bgs)	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14-26-3 @ 2.25 m	20	< 0.0050	< 0.050	<0.010	<0.10	<10	315	3050	770	<5.0
14-26-4@3.0m	20	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	84	<50	<5.0
14-28								Date S	ampled: 22	May 2014
Depth	CVC	B	Т	E	Х	F1	F2	F3	F4	Lead
(m bgs)	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14-28-3@2.25m 14-28-6@4.5m	5	<0.0050	<0.050	<0.010	<0.10	<10	< 30	<50	<50	<5.0
14-19								Date S	ampled: 21	May 2014
Depth	OVC	В	Т	E	Х	F1	F2	F3	F4	Lead
(m bgs)	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14-19-3 @ 2.25 m	5	< 0.0050	< 0.050	<0.010	<0.10	<10	< 30	84	61	<5.0
14-19-4 @ 3.0 m	5	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-18								Date S	ampled: 21	May 2014
Depth	OVC	В	Т	E	х	F1	F2	F3	F4	Lead
m bgs)	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14-18-5 @ 3.75 m	45	<0.0050	< 0.050	<0.010	<0.10	<10	<30	65	51	<5.0
14-18-6 @ 4.5 m	20	NU.0050	~0.050	40.010	~0.10	10	~50	20	/4	5.0
14-30								Date S	ampled: 22	May 2014
Depth	CVC	В	Т	E	X	F1	F2	F3	F4	Lead
m bgs)	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14-30-3 @ 2.25 m 14-30-5 @ 3.75 m	0	< 0.0050	<0.050	<0.010 <0.010	<0.10 <0.10	<10 <10	<30 <30	<50	<50 62	<5.0
14-17								Date S	ampled: 21	May 2014
Depth	CVC	В	Т	E	х	F1	F2	F3	F4	Lead
m bgs)	ppm	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
14-17-3 @ 2.25 m	10	< 0.0050	< 0.050	<0.010	<0.10	<10	119	10700	3210	<5.0
14-17-6@4.5 m	25	< 0.0050	< 0.050	<0.010	<0.10	<10	< 30	1650	455	<5.0
14-17-8@6.0m	0	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	80	53	<5.0

TEMPORARY BENCHMARK

METRES

IMAGE DATED 2011 (ACCESSED JUNE 2014). 2. THIS DRAWING IS PREPARED FOR ILLUSTRATIVE PURPOSES ONLY. 3. THIS IS NOT A LEGAL SURVEY. 4. ALL MEASUREMENTS ARE IN METRES. 5. SURVEY INFORMATION COLLECTED BY HEMISPHE

710A-48TH STREET EAST

SASKATOON SK S7K 5B4 306.244.1710 pintermain@pinter.ca

- SURVEY INFORMATION COLLECTED BY HEMISPHERE S320 GPS.
 LOCATIONS OF ALL MARKED UTILITIES ARE APPROXIMATE.
- 10. BTEX: B=BENZENE, T=TOLUENE, E=ETHYLBENZENE, X=XYLENES F1 TO F4 = PETROLEUM HYDROCARBON FRACTIONS F1 TO F4 11. MG/L = MILLIGRAMS PER LITRE S.
 - 12. WVCR = WELL HEADSPACE VAPOUR READINGS

24th St W

The support of the local division of the loc		and the second second					Contraction of the local distance of the loc
					Da	ate Sampled	: 26 June 201
WVCR	B	Т	E	Х	F1	F2	Lead
ppm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
120	< 0.00050	< 0.00050	< 0.00050	< 0.0020	<0.20	< 0.20	-
	- 10 A.P.	11 20	R = 1.7	12 - 1	Var and	Ar	-0-
		1.0			11		-
		11450			1		-
Sec. 1 and	1. (1) (1) (1) (1)	1. 10 1	Print 1	1	No.		001
					Da	ate Sampled	: 26 June 201
WVCR	B	Т	E	X	F1	F2	Lead
ppm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
20	< 0.00050	<0.00050	<0.00050	< 0.0020	<0.20	<0.20	-
R.S.	and the second second	1 1 1 1			100	10/2	
ALC: NO	1000		3		and the second s		Qa
1	11		A DECK		the state	- Low Street	OT_
					10 100	and and	-
19/18		All and a second		Sec. 1	270.00	1000	200
and the second second		ALC: NOT		TOTAL AND NO.		-	A DESCRIPTION OF THE OWNER OF THE

GREEN - BELOW APPLICABLE GUIDELINES
RED - EXCEEDS ONE OR MORE APPLICABLE GUIDLINES

Cuidalinas	В	Т	E	X	F1	F2	Lead	
Guidennes	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	61
oundwater	0.005	0.024	0.0024	0.3	NC	NC	NC	
rinking Water	NA	NA	NA	NA	NA	NA	0.010	5.6
2012 - Groundwater	NA	NA	NA	NA	0.81	1.3	-	-

SMOE RBCA (2009) TIER 1 GUIDELINES - POTABLE GROUNDWATER AND FRESHWATER/AQUATIC LIFE (BTEX, F1-F2) HEALTH CANADA (2012) DRINKING WATER QUALITY GUIDELINES (LEAD)

GOVERNMENT OF CANADA (2012) FEDERAL INTERIM GROUNDWATER QUALITY GUIDELINES, COARSE GRAINED SOILS (F1 and F2)

	/ELL	€ ▲	SURFACE SAMPLE		FIGURE 8 DETAILED GROUNDWATER ANALYTICAL RESULTS SOUTH HALF OF SUBJECT PROPERTY
PRE-EXISTING	MONITORING WELL	¢		W	23 JULY 2014 1544-2 PHS II ESA, CASWELL TRANSIT SITE, SASKATOON, SK.
	SCALE: 1: 1000				DRAWN BY: NA
	FILE: H:\PROJECTS\ 154 SA	14-2 PHS I ASKATOOI	I ESA, CASWELL TRANS N, SK. \ 1544-2 DRAWING	IT SITE, iS	

710A-48TH STREET EAST SASKATOON SK S7K 5B4 306.244.1710 pintermain@pinter.ca

3. THIS IS NOT A LEGAL SURVEY. 4. ALL MEASUREMENTS ARE IN METRES.

5. SURVEY INFORMATION COLLECTED BY HEMISPHERE \$320 GPS. 6. LOCATIONS OF ALL MARKED UTILITIES ARE APPROXIMATE.

11. MG/L = MILLIGRAMS PER LITRE

12. WVCR = WELL HEADSPACE VAPOUR READINGS

_	and the second se	of all summer as well.	And in the local division of the local divis	Contraction of the second seco		The second second	A LO DA BARAN			
	Date Sampled: 26 June 2014									
R	В	Т	E	Х	F1	F2	Lead			
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L			
	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	<0.000050			
	and the	1.00				100				

ž m

Ve

			and the second s		and the second second		
					Da	ate Sampled	l: 26 June 2014
R	В	Т	E	Х	F1	F2	Lead
1	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	0.23	-

24th St W

25 METRES

GREEN - BELOW APPLICABLE GUIDELINES RED - EXCEEDS ONE OR MORE APPLICABLE GUIDLINES

		200 C					
o Cuidolinos	В	Т	E	Х	F1	F2	Lead
e Guideimes	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Groundwater	0.005	0.024	0.0024	0.3	NC	NC	NC
Drinking Water	NA	NA	NA	NA	NA	NA	0.010
a 2012 - Groundwater	NA	NA	NA	NA	0.81	1.3	-

SMOE RBCA (2009) TIER 1 GUIDELINES - POTABLE GROUNDWATER AND FRESHWATER/AQUATIC LIFE (BTEX, F1-F2) HEALTH CANADA (2012) DRINKING WATER QUALITY GUIDELINES (LEAD)

GOVERNMENT OF CANADA (2012) FEDERAL INTERIM GROUNDWATER QUALITY GUIDELINES, COARSE GRAINED SOILS (F1 and F2)

, ,	VELL 4	SURFACE SAMPLE		FIGURE 9 DETAILED GROUNDWATER ANALYTICAL RESULTS NORTH HALF OF SUBJECT PROPERTY
•		•	W	23 JULY 2014 1544-2 PHS II ESA, CASWELL TRANSIT SITE, SASKATOON, SK.
	SCALE: 1: 1000			DRAWN BY: NA
	FILE: H:\PROJECTS\ 1544-2 SASK/	PHS II ESA, CASWELL TRANSI ATOON, SK. \ 1544-2 DRAWINGS	T SITE S	

	WVCR	В	Т	E	X	Date S F1	ampled: 26 F2	June 2014 Lead
	ppm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	25	< 0.00050	<0.00050	<0.00050	<0.0020	<0.20	0.32	-
4-27						Date S	ampled: 26	June 2014
	WVCR	В	Т	E	Х	F1	F2	Lead
	ppm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	45	< 0.00050	<0.00050	< 0.00050	<0.0020	<0.20	<0.20	-
4-18						Date S	ampled: 26	June 2014
	WVCR	В	т	E	X	F1	F2	Lead
	ppm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	10	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	
L4-20						Date S	ampled: 26	June 2014
	WVCR	В	Т	E	X	F1	F2	Lead
	ppm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	25	< 0.00050	<0.00050	< 0.00050	<0.0020	<0.20	0.26	-
		AVENUE C NOF						

	FIGURE 10 DETAILED GROUNDWATER ANALYTICAL RESULTS INTERIOR MONITORING WELLS
	25 JULY 2014 1544-2 PHS II ESA, CASWELL TRANSIT SITE, SASKATOON, SK.
ALE: NTS	DRAWN BY: NA
H:\PROJECTS\ 1544-2 PHS II ESA, CASWELL TRANSIT SITE, SASKATOON, SK. \ 1544-2 DRAWINGS	

2	4th	St	W
-	and the second second	and the second second	1000

B,N

Ave

SURFACE SAMPLE	
MANHOLE	

• (M)

FIGURE 12 GROUNDWATER FLOW

Jamieson St

85.9

28 AUGUST 2014 1544-2 PHS II ESA, CASWELL TRANSIT SITE, SASKATOON, SK.

	DRAWN BY:
CALE: 1: 1000	DRAWN BY: NA
E: H:\PROJECTS\ 1544-2 PHS II ESA, CASWELL TRANSIT SITE SASKATOON, SK, \ 1544-2 DRAWINGS	

Appendix B

Glossary of Terms and Abbreviations

CONFIDENTIAL

GLOSSARY OF TERMS AND ABBREVIATIONS

%LEL	Percent of lower explosive limit – the lowest percent mixture of
	explosive gases mixed in air that will ignite – these values are read with
	an explosive gas meter
°C	Degrees Celsius
μg	microgram
Asbestos	Thin fibrous silicate minerals used that have been used historically in
	building materials such as insulation and ceiling and floor tiles
ACM	Asbestos containing materials
AST	Above ground fuel storage tank
BTEX	Abbreviation that represents the petroleum hydrocarbon contaminants
	benzene (B), toluene (T), ethylbenzene (E) and xylenes (X). Higher
	concentrations of BTEX exist in gasoline and light hydrocarbons, and
	lower concentrations exist in diesel fuel. BTEX concentrations are not
	present in oils and heavier hydrocarbons
Contaminants	Identified or suspected materials, compounds, chemicals, metals, and
	other products (usually man made) that may be present in concentrations
	that exceed the applicable regulatory criteria or guidelines
ССМЕ	Canadian Council of Ministers of the Environment
CVC	Combustible vapour concentration – readings collected using an
	explosive gas meter on the gases that accumulate in the headspace above
	a soil sample contained in a plastic bag. The readings are in ppm or
	%LEL
EC	Electrical conductivity. The ability of a material to conduct an electrical
	current. For soils, EC provides data on the concentration of various ions
	and on the soil type
Environmental	A hole drilled into the ground as part of a Phase II Environmental Site
Borehole	Assessment to collect soil samples, determine soil stratigraphy, and to
	install groundwater monitoring wells
g	gram
GPR	Ground penetrating radar. A non-destructive method that uses
	electromagnetic radiation to detect reflected signals from subsurface
	structures
Groundwater	A well constructed to provide access to groundwater for collecting
Monitoring Well	groundwater data and samples. The well is carefully constructed in such
C	a manner as to avoid cross contamination between zones of
	contamination and to avoid interconnecting groundwater from different
	elevations
ESA	Environmental Site Assessment
F1	The fraction or part of the PHC mixture that contains compounds with
	the numbers of carbons ranging between C6 and C10
F2	The fraction or part of the PHC mixture that contains compounds with

CONFIDENTIAL

	the numbers of carbons ranging between C10 and C16
F3	The fraction or part of the PHC mixture that contains compounds with
	the numbers of carbons ranging between C16 and C34
F4	The fraction or part of the PHC mixture that contains compounds with
	the numbers of carbons ranging between C34 and C50
LNAPL	Light non-aqueous phase liquid. A contaminant (for example, gasoline)
	that is not soluble in water and floats on top of water due to its lower
	density
Limited Phase II	A Phase II ESA that confirms the presence of contamination but does
ESA	not determine the vertical or horizontal extent of contamination
NCSCS	The Canadian Council of Ministers of the Environment's (CCME)
	National Classification System for Contaminated Sites is a method for
	evaluating contaminated sites according to current or potential adverse
	impact on human health and the environment. The NCSCS was
	developed to establish a rational and scientifically defensible system for
	comparable assessment of contaminated sites across Canada. The
	NCSCS is an important management tool for prioritizing the
	investigation and remediation of contaminated sites
m	metres
m bgs	metres below ground surface
MDL	Method detection limit. Refers to the minimum concentration of a
/1	contaminant that laboratory equipment can detect.
mg/kg	miligrams per kilogram
mg/L	miligrams per litre
MHZ	meganertz
mL	
Petroleum	PHC (see below)
Hydrocarbons	A Dhana H ECA (had data main an the securitization differential and the sime set of an
Phase II Delineation	A Phase II ESA that determines the vertical and horizontal extent of
Defineation	Containination Detroloum hydrogenhone (hydrogenhone) gennounde that result from
PHC	the refining of and a cil. Typically these compounds include gesoline
	diagol fuel fuel oil int fuels kerosone non synthetic motor and
	hydraulic oils
DDM	Parts per million used to communicate the concentration of certain
	contaminants in soil or water. Milligrams per kilogram, milligrams per
	litre and micrograms per gram can be interpreted as ppm
	Quality Assurance/Quality Control
SMOF	Saskatchewan Ministry of the Environment
UST	Underground fuel storage tank
WVCR	Well headspace vanour concentration readings Readings collected
	using an explosive gas meter on the gases that accumulate in the
	headspace within a groundwater monitoring well. The readings can be
	in ppm or %LEL

Appendix C

Selected Site Photographs

Photograph #1: Ground penetrating radar (GPR) in maintenance shop at 321 Avenue C North.

Photograph #2: GPR in Steam Bay located in the southwest corner of 321 Avenue C North.

Photograph #3: Storage yard of 321 Avenue C North, looking east. The historic mechanic's pits were located in this area.

Photograph #4: Borehole drilled into historic mechanic's pit in storage yard of 321 Avenue C North.

Photograph #5: Soil core from borehole drilled into historic mechanic's pit in storage yard of 321 Avenue C North. Note the wood and concrete.

Photograph #6: Advancing borehole 14-8 in the maintenance shop located at 321 Avenue C North.

Photograph #7: Advancing borehole 14-24 in the loading area located at 321 Avenue C North.

Photograph #8: Soil core removed from borehole 14-24. This soil core had a strong hydrocarbon odour. Note the staining.

Photograph #9: Steam Bay, located in maintenance building at 321 Avenue C North. Borehole 14-31 is located behind the drill rig.

Photograph #10: Advancing borehole 14-41 at 240 Avenue C North, looking northwest.

Photograph #11: Groundwater monitoring and sampling, monitoring well 14-37, located in Shop B at 321 Avenue C North.

Photograph #12: Sampling for lead-based paint, Steam Bay, maintenance shop located at 321 Avenue C North.

Photograph #13: Diesel particulate sampling, bus storage barn located at 301 24th Street West.

Photograph #14: Positive test for lead-based paint on doorframe of stockroom (#103) located in the maintenance shop of 321 Ave North.

Appendix D

Borehole Logs

PINTER & ASSOCIATES LTD							14-10	
								(Page 1 of 1)
1544-2 Caswell Transit Site Saskatoon, SK Limited Phase II			Investigative Method Date Finished Time of Logging Logged By Checked By	: Macro-C : 20 May : 1815 - 1 : WW : LP	Core 7 2014 915	Water Elev Record Groundwater Elev *Elevations based	led : : on temporary bench mark*	
Depth- Metres (m)	Surf. Elev. 515.83	GRAPHIC	DESCRI	PTION	Sample	Sample #	CVCs log scale (ppm) 10 ⁰ 10 ¹ 10 ² 10 ³ 10 ⁴	MW: TOC:
0.0	- 515.83	$\langle \rangle \rangle$	CONCRETE					-CONCRETE
0.5	- 515.33		GRAVEL FILL, some sand non-plastic, light to dark b staining, moist, loose to fil @ 0.48m dark brown, fin	d, trace clay, rown, oxidation rm, fining with depth e grained		14-10-1 0.75m	8	
1.0	- 514.83	\times	@ 0.9m light brown SAND, trace silt, non-plas compact	tic, brown, moist,	_			
1.5	- 514.33					14-10-2 1.5m	P	
2.0	- 513.83		SAND, some silt, trace cla brown, oxidation staining, hard, many fractures	ay, low plastic, moist, compact to				
2.5	- 513.33		@ 2.27m dark staining wit	th odour		14-10-3 2.25		Bentonite
3.0	- 512.83					14-10-4 3.0m		
3.5	- 512.33		SILT TILL, some sand, tra low-plastic, grey to dark g moist, stiff to hard	ace gravel, rey, non-oxidized,		14-10-5	φ	
4.0	- 511.83					3.7511		
4.5	- 511.33	1,1	End of borehole @ 4.5m			<u>14-10-6</u> 4.5m		
5.0	- 510.83							
5.5	- 510.33							
6.0	- 509.83							
6.5								

			PINTER & ASSOCIATES LTD	14-11 (Page 1 of 1)				
1544-2 Caswell Transit Site Saskatoon, SK Limited Phase II				Investigative Method Date Finished Time of Logging Logged By Checked By	: Macro-Core 7 Water Elev Record : 20 May 2014 Groundwater Elev : 1915 - 2010 : WW *Elevations based : LP			ed : : on temporary bench mark*
Depth- Metres (m)	Surf. Elev. 515.83	GRAPHIC	DESCRI	PTION	Sample	Sample # 10	CVCs log scale (ppm) 0 10 ¹ 10 ² 10 ³ 10 ⁴	MW: TOC:
0.5	- 515.33		CONCRETE SAND FILL, and gravel, tr brown, oxidation staining, SAND, trace silt, low-plas staining, moist, compact t fractures CLAY TILL, some silt, trac	race silt, non-plastic, damp, soft tic, brown, oxidation o dense, some		14-11-1 0.75m	٩	Concrete
1.0	- 514.83 - 514.33		brown, oxidation staining, moist, firm to stiff SAND, trace silt, low-plastic, brown, oxidation staining, moist, compact to dense, some fractures SILT TILL, some sand, trace clay, trace		14-11-2 1.5m	•		
2.0	- 513.83 - 513.33		gravel, low-plastic, brown friable to firm, some fractu cobbles.	, oxidation staining, ures, occasional		14-11-3 2.25	•	Bentonite
3.0	- 512.83 - 512.33		SAND, trace gravel, non-poxidation staining, wet, loo @ 2.8 Trace silt, fine gra @ 2.9 Fracture with oxid SILT TILL, trace sand, tra plastic, dark brown, moist	blastic, brown, bse ined, compact ation staining ce gravel, low , stiff to hard, some		14-11-4 3.0m	Φ	
4.0	- 511.83		fractures			14-11-5 3.75m	φ	
5.0	- 511.33 - 510.83		End of borehole @ 4.5m			4.5m	; ;;	
6.0	- 510.33 - 509.83							
6.5								

			PINTER & ASSOCIATES LTD				14-36	(Page 1 of 1)		
	1544-2 Caswell Transit Site Saskatoon, SK Limited Phase II			Investigative Method: Macro-Core 7Date Finished: 23 May 2014Time of Logging: 1745 - 1830Logged By: WWChecked By: LP			Water Elev Record Groundwater Elev *Elevations based	Water Elev Recorded : Groundwater Elev : *Elevations based on temporary bench mark*		
Depth- Metres (m)	Surf. Elev. 515.83	GRAPHIC	DESCRI	PTION	Sample	Sample # 1	CVCs log scale (ppm) d ⁰ 10 ¹ 10 ² 10 ³ 10 ⁴	MW: TOC:		
0.0-	- 515.83	\propto	CONCRETE					- Concrete		
0.5	- 515.33		NO RECOVERY SAND, and clay, non-plas oxidation staining, moist, grained @ 0.9m Black rock, strong	tic, brown/grey, compact, fine a odour		14-36-1 0.75m	q			
1.0	- 514.83									
1.5	- 514.33		SAND, trace clay, non-pla grey, oxidation staining, fi coarsening with depth	istic, rusty brown to ne grained		14-36-2 1.5m				
2.0	- 513.83		@ 2.0m Grey, strong odo	ur		14-36-3 2.25	þ	Bentonite		
2.5	- 513.33		CLAY TILL, some sand, to plastic, grey/brown, oxidat firm @ 2.7m Gravel seam, w	race gravel, low tion staining, moist, et						
3.0	- 512.83		C@ 2.8m Sand and grave	I seam, grey		14-36-4 3.0m	¢			
3.5	- 512.33		CLAY TILL, some sand, to plastic, dark grey/brown, u stiff to hard	race gravel, low unoxidized, moist,		14-36-5 3.75m	φ			
4.0	- 511.83		@ 4.0m Fracture, unoxidi	zed						
4.5	- 511.33		End of borehole @ 4.5m			14-36-6 4.5m				
5.0	510.83									
5.5	- 510.33									
6.0	509.83									
6.5-										

			PINTER & ASSOCIATES LTD				14-41		
	1544-	2 Cas Saska Limite	well Transit Site atoon, SK d Phase II	Investigative Method : Macro-Core 7 Date Finished : 24 May 2014 Time of Logging : 1045 - 1215 Logged By : WW Checked By : LP			(Page 1 of 1) Water Elev Recorded : Groundwater Elev : *Elevations based on temporary bench mark		
Depth- Metres (m)	Surf. Elev. 515.83	GRAPHIC	DESCRI	PTION	Sample	Sample #	CVCs log scale (ppm) 10 ⁰ 10 ¹ 10 ² 10 ³	MW: TOC:	
0.0	- 515.83 - 515.33		GRAVEL, and sand, some dark brown, oxidation stai compact @ 0.6m Black staining, co	e clay, non-plastic, ning, loose to pal		14 41 1		Concrete	
1.0	- 514.83 - 514.33		SAND, some to trace clay dark brown, oxidation stai compact, fine grained @0.9m Dark brown @ 1.3m Brown	r, non-plastic, light to ning, damp,		14-41-1 0.75m 14-41-2	φ	Bentonite	
2.0	- 513.83		@ 2.0m Brown/grey @ 2.25m Medium to coar	se grained, rusty		1.5m 14-41-3 2 25	9	Solid 2" PVC Sched 40	
2.5	- 513.33 - 512.83	1,1,	@ 2.5m Some gravel CLAY TILL, some sand, th plastic, brown, oxidation s SLOUGH	race gravel, low tianing, moist, stiff		14-41-4 3.0	Q		
3.5	- 512.33		CLAY TILL, some sand, to plastic, brown to grey, oxi- moist, stiff to hard @ 3.7m Grey, unoxidized	race gravel, low dation staining,		14-41-5 3.75	φ	Sobert 40	
4.0	- 511.83	1,1	SAND, rusty brown, oxida saturated to wet, compact CLAY TILL, some sand, tr plastic, brown to grey, oxim maint ciff to bard	tion staining, , coarse race gravel, low dation staining,		14-41-6 4.5		Slot 0.01"	
5.0	- 510.83 - 510.33		moist, suit to fidfu					Bentonite	
6.0	- 509.83		End of borehole @ 6.0						

Appendix E

Tables

TABLE 1: Summary of Saskatchewan Water Security Agency Water Well Information Database Search

				Well Dreventin	-		
			Water Struck	well Propertie	S	4	
Record No.	Well Location	Intended Use	Depth	Screen Interval	Date Installed	Stratigraphic Description	Comments
031974	NW-28-036-05-W3M	Research	NA	NA	17 May 1972	Till to 2.4 m, Sand to 8.8 m, Till to 69.5 m, Sand to 76.2 m	
031975	NE-29-036-05-W3M	Domestic	9.1 m	NA	07 January 1929	NA	
031976	NW-29-036-05-W3M	Industrial	1.8 m	58.9 m to 61.9 m	NA	Sand from 41.5m to 58.8 m	
031980	SE-32-036-05-W3M	Research	NA	NA	15 May 1972	Sand to 1.8 m, Till to 40.9 m	
031981	SE-32-036-05-W3M	Industrial	15.9 m	54.6 m to 57.6 m	07 January 1960	Till to 17.1 m, Sand @ 17.1 m, Till to 57.6 m	
031983	NW-33-036-05-W3M	Industrial	6.1 m	67.1 m to 73.2 m	NA	Clay @ 67.1 m, Sand @ 73.2 m	
031985	SW-33-036-05-W3M	Research	NA	NA	14 May 2014	Till to 13.4 m, Gravel @ 14.3m, Till to 71.3 m, Sand & Silt layers to 118 m	
031986	SW-33-036-05-W3M	Industrial	4.9 m	71.3 m to 75 m	NA	Alternating Clay and Sand @ 65.9 m	
045665	SW-32-036-05-W3M	Domestic	NA	NA	29 November 1975	Till to 41.1 m, Clay to 43.1, Till to 46.9 m, Till @ 84.1 m, Shale @ 91.5 m	
052937	SW-33-036-05-W3M	Industrial	17.4 m	79.3 m to 85.4 m	01 January 1957	NA	
085026	NW-33-036-05-W3M	Domestic	NA	NA	06 June 1987	Sand to 5.5 m, Silt @ 7.9 m	

TABLE 2: Summary of Soil Analytical Results - Hydrocarbons

					Combustible		Monocyclic I	lydrocarbons		Pet	roleum Hydro	ocarbon Fract	ions	Lead
6l	6	ALS	Date	Depth	Vapour			Ethyl-	× 1.	F1-BTEX	F2	F3	F4	
Sample	Sample	Sample	Sampled	Interval (m)	Concentration [®]	Benzene	Toluene (mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	(C6-C10) (mg/kg)	(>C10-C16)	(>C16-C34)	(>C34-C50)	Lead
Location	Method	Detection Limi	t	(11)	(ppin)	0.005	0.050	0.010	0.10	10	30	50	50	5.0
14-1	14-1-4	L1456755-1	15/05/2014	2.25	0	<0.0050	< 0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-2	14-2-1	L1456755-2	15/05/2014	0.75	0	0.0053	<0.050	<0.010	<0.10	<10	<30	487	137	2450
14-2	14-2-3	L1456755-3	15/05/2014	2.25	0	<0.0050	< 0.050	<0.010	<0.10	<10	<30	67	<50	6.0
14-3	14-3-3	L1456755-4	15/05/2014	2.25	65 110	<0.0050	<0.050	<0.010	<0.10	<10	<30	99	118 <50	5.2
14-4	14-5-1	L1456755-6	15/05/2014	0.75	30	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	65	5.7
14-5	14-5-3	L1456755-7	15/05/2014	2.25	40	<0.0050	< 0.050	<0.010	<0.10	<10	<30	<50	<50	5.7
14-6	14-6-3	L1460494-1	20/05/2014	2.25	10	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
Surface Sample	14-6 & 14-7 Surface Sample	L1460494-2	20/05/2014	0.15	NA	<0.0050	<0.050	<0.010	<0.10	<10	<150	<u>7170</u>	<u>10700</u>	20.1
14-7	14-7-3	L1406494-12	20/05/2014	2.25	35	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-8	14-8-3	L1406494-7	20/05/2014	2.25	45	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-8	14-8-6	L1406494-8	20/05/2014	4.5	35	<0.0050	< 0.050	<0.010	<0.10	<10	<30	94	57	<5.0
14-9	14-9-4	L1406494-3	20/05/2014	3.0	50	<0.0050	<0.050	<0.010	<0.10	<10	3/	150	105	<5.0
14-9	14-10-3	L1406494-5	20/05/2014	2.25	5	<0.0050	<0.050	<0.010	<0.10	<10	<30	86	78	<5.0
14-10	14-10-6	L1406494-6	20/05/2014	4.5	15	<0.0050	<0.050	<0.010	<0.10	<10	<30	100	54	5.3
14-11	14-11-3	L1406494-9	20/05/2014	2.25	20	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	5.3
14-11	14-11-4	L1406494-10	20/05/2014	3.0	20	<0.0050	< 0.050	<0.010	<0.10	<10	<30	77	<50	<5.0
14-12	14-12-3	L1460722-3	21/05/2014	2.25	25	<0.0050	<0.050	<0.010	<0.10	<10	<30	63 58	<50	<5.0
14-12	14-13-3	L1460722-4	21/05/2014	2.25	5	<0.0050	<0.050	<0.010	<0.10	<10	<30	63	<50	<5.0
14-13	14-13-6	L1460722-6	21/05/2014	4.5	15	<0.0050	< 0.050	<0.010	<0.10	<10	<30	81	<50	5.1
14-14	14-14-3	L1460722-7	21/05/2014	2.25	15	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-14	14-14-8	L1460722-8	21/05/2014	5.5	0	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-15 14-15	14-15-3	L1460722-9	21/05/2014	2.25	45	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-15	14-15-7	L1460722-10	21/05/2014	6.0	10	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-16	14-16-2	L1460722-11	21/05/2014	1.5	15	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-16	14-16-5	L1460722-12	21/05/2014	3.75	0	<0.0050	<0.050	<0.010	<0.10	<10	<30	66	<50	6.3
14-17	14-17-3	L1460722-33	21/05/2014	2.25	10	<0.0050	<0.050	<0.010	<0.10	<10	119	<u>10700</u>	3210	<5.0
14-17	14-17-6	L1460722-34	21/05/2014	4.5	25	<0.0050	<0.050	<0.010	<0.10	<10	<30	1650	455	<5.0
<u>14-17</u> 14-18	14-17-8 14-18-5	L1460722-35	21/05/2014	0.U 3.75	45	<0.0050	<0.050	<0.010	<0.10	<10	<30	65	53	<5.0
14-18	14-18-6	L1460722-37	21/05/2014	4.5	20	<0.0050	<0.050	<0.010	<0.10	<10	<30	98	74	5.6
14-19	14-19-3	L1460722-38	21/05/2014	2.25	5	<0.0050	<0.050	<0.010	<0.10	<10	<30	84	61	<5.0
14-19	14-19-4	L1460722-39	21/05/2014	3.0	5	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-20	14-20-4	L1460722-18	21/05/2014	3.0	15	<0.0050	< 0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-20	14-20-6	L1460722-19	21/05/2014	4.5	15	<0.0050	<0.050	<0.010	<0.10	<10	<30	134	<50	<5.0
14-21	14-21-2	L1460722-20	21/05/2014	4.5	5	<0.0050	<0.050	<0.010	<0.10	<10	<30	124	<50	5.2
14-22	14-22-3	L1460722-22	21/05/2014	1.5	10	< 0.0050	<0.050	<0.010	<0.10	<10	<30	15700	234	<5.0
14-22	14-22-6	L1460722-23	21/05/2014	4.5	10	<0.0050	<0.050	<0.010	<0.10	<10	<30	215	<50	5.1
14-23	14-23-3	L1460722-55	22/05/2014	2.25	190	<0.0050	<0.050	0.065	<0.10	<u>351</u>	<u>7040</u>	1360	<50	10.6
14-23	14-23-5	L1460722-56	22/05/2014	3.75	0	<0.0050	<0.050	<0.010	<0.10	<10	<30	144	<50	5.3
14-24	14-24-4	L1460722-57	22/05/2014	3.0	25	<0.0050	<0.050	<0.022	<0.10	<10	<u>545</u> 52	91	<50 56	<5.0 5.1
14-25	14-25-2	L1460722-24	22/05/2014	1.5	15	< 0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	5.1
14-25	14-25-3	L1460722-25	22/05/2014	2.25	15	<0.0050	<0.050	<0.010	<0.10	<10	<30	480	104	<5.0
14-25	14-25-6	L1460722-26	22/05/2014	4.5	15	<0.0050	<0.050	<0.010	<0.10	<10	<30	67	<50	5.3
14-26	14-26-3	L1460722-40	22/05/2014	2.25	20	<0.0050	<0.050	<0.010	<0.10	<10	<u>315</u>	<u>3050</u>	770	<5.0
14-20	14-20-4	11460722-41	22/05/2014	2.25	20	<0.0050	<0.050	<0.010	<0.10	<10	<30	84 <50	<50	<5.0
14-27	14-27-6	L1460722-28	22/05/2014	4.5	30	< 0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-28	14-28-3	L1460722-29	22/05/2014	2.25	5	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-28	14-28-6	L1460722-30	22/05/2014	4.5	15	<0.0050	<0.050	<0.010	<0.10	<10	<30	318	252	5.6
14-29	14-29-2	L1460722-31	22/05/2014	1.5	5	<0.0050	< 0.050	<0.010	<0.10	<10	<30	<50	<50	5.0
14-29	14-29-6	L1460722-32	22/05/2014	4.5	10	<0.0050	<0.050	<0.010	<0.10	<10	<30	95 <50	<50	5.0
14-30	14-30-5	L1460722-43	22/05/2014	3.75	15	<0.0050	<0.050	<0.010	<0.10	<10	<30	85	62	<5.0
14-31	14-31-3	L1460722-16	23/05/2014	2.25	50	<0.0050	<0.050	<0.010	<0.10	<10	<30	56	<50	5.3
14-31	14-31-4	L1460722-17	23/05/2014	3.0	60	<0.0050	<0.050	<0.010	<0.10	<10	<30	86	64	5.3
14-32	14-32-4	L1460722-13	23/05/2014	2.8	60	<0.0050	< 0.050	<0.010	<0.10	<10	<30	290	149	<5.0
14-32 14-32	14-32-5	L1460722-14	23/05/2014	3.75	40 45	<0.0050	<0.050	<0.010	<0.10	<10 <10	<30 <20	97	66 97	5.2
14-32	14-33-3	L1460722-44	23/05/2014	1.5	35	<0.0050	<0.050	<0.010	<0.10	<10	<30	93	<50	<5.0
14-34	14-34-1	L1460722-45	23/05/2014	0.75	30	<0.0050	<0.050	<0.010	<0.10	<10	<30	139	64	42.8
14-34	14-34-3	L1460722-46	23/05/2014	2.25	20	<0.0050	<0.050	< 0.010	<0.10	<10	<30	<u>3480</u>	582	<5.0
14-35	14-35-3	L1460722-47	23/05/2014	2.25	40	< 0.0050	< 0.050	0.245	0.77	149	4000	<u>21500</u>	388	5.4
14-35 14-36	14-35-b 1 <u>4</u> -36-1	11460722-48	23/05/2014	4.5 0.75	20	<0.0050	<0.050	<0.010	<0.10	<10 <10	<3U <20	105 <50	<5U <50	5.1 <5.0
14-36	14-36-3	L1460722-49	23/05/2014	2.25	130	<0.0050	<0.050	<0.010 0.11	0.61	111	12900	3850	<50	<5.0
14-36	14-36-6	L1460722-51	23/05/2014	4.5	40	< 0.0050	< 0.050	< 0.010	<0.10	<10	<30	140	<50	5.4
14-37	14-37-3	L1460722-52	23/05/2014	2.1	90	<0.0050	<0.050	0.022	<0.10	58	<u>10200</u>	<u>2950</u>	<50	<5.0
14-37	14-37-5	L1460722-53	23/05/2014	3.75	NA	<0.0050	< 0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-38	14-38-3	L1460722-54	23/05/2014	2.25	20	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	6.8
14-39	14-39-4	L1460722-60	24/05/2014	3.0	0	<0.0050	<0.050	<0.010	<0.10	<10	<30	274	125	5.3
14-40	14-40-4	L1460722-61	24/05/2014	3.0	280	< 0.0050	< 0.050	< 0.010	<0.10	147	<u>1750</u>	543	<50	<5.0
14-40	14-40-6	L1460722-62	24/05/2014	4.5	0	<0.0050	<0.050	<0.010	<0.10	<10	<30	77	<50	5
14-41	14-41-3	L1460722-1	24/05/2014	2.25	25	< 0.0050	< 0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
14-42	14-42-3	L1460722-2	24/05/2014	2.25	5	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	6.1
DUP A DUP R	Duplicate of 14-5-1 Duplicate of 14-9-4	L1406494-11	20/05/2014	3.0	50	<0.0050	<0.050	<0.010	<0.10	<10	<30 40	<5U 181	<5U 131	<5.U <5.0
DUP C	Duplicate of 14-15-7	L1460722-63	21/05/2014	5.25	25	<0.0050	<0.050	<0.010	<0.10	<10	<30	<50	<50	<5.0
DUP D	Duplicate of 14-17-3	L1460722-64	21/05/2014	2.5	NA	<0.0050	<0.050	<0.010	<0.10	<10	123	8880	2690	<5.0
DUP E	Duplicate of 14-23-3	L1460722-65	22/05/2014	2.25	190	<0.0050	<0.050	0.025	<0.10	210	12400	1200	<50	11.7
DUP F	Duplicate of 14-35-3	L1460722-66	23/05/2014	2.25	40	<0.0050	<0.050	0.23	0.81	163	4110	13300	5270	<5.0
SMOF RRCA (2000)	ier 1 Industrial Coarse-Grained	Soils Guidelines	b			0.030	0.10	0.085	11	2/10	260	1 700	3 300	ΝA
SMOE RECA (2009) - T	ier 1 Residential Coarse-Grained	d Soils Guidelines	se p			0.030	0.10	0.002	11	240	150	200	2,300	NΔ
CCME (2014) - Soil Ou	ality Guidelines for Lead - Indus	trial land use				0.050 NA	NA	0.06Z	ΝΔ	ΝΔ	NA NA	NA	2,300 NA	600
CCME (2014) - Soil Qu	ality Guidelines for Lead - Resid	ential/Parkland	land use ^c			NA	NA	NA	NA	NA	NA	NA	NA	140

Associated ALS Files L1456755, L1460494, L1460722

Associated ALS Files L1456/55, L1450/55, L1450/52, L1450

< Denotes concentrations less than indicated detection limit.

<u>BOLD</u> Concentration greater than or equal to applicable industrial guidelines.

SHADOW Concentration greater than or equal to applicable residential guidelines.

Sample Location	Sample ID	ALS Sample ID	Sample Date (mm dd yyyy)	Depth Interval (m)	Field Screen (ppm)	PSA MUST %>75um	Texture
		Method [Detection Limit			0.1	
14-2	14-2-3	L1456755-2	15/05/2014	2.25	0	92.3	Coarse
14-5	14-5-3	L1456755-7	15/05/2014	2.25	40	66.9	Coarse
14-5	14-5-6	L1456755-9	15/05/2014	4.5	50	44.5	Fine
14-10	14-10-3	L1460494-5	20/05/2014	2.25	5	51.5	Coarse
14-10	14-10-6	L1460494-6	20/05/2014	4.5	15	48.3	Fine
14-7	14-7-3	L1460494-12	20/05/2014	2.25	110	95.9	Coarse
14-12	14-12-2	L1460722-67	21/05/2014	1.5	15	46.0	Fine
14-12	14-12-6	L1460722-4	21/05/2014	4.5	10	42.0	Fine
14-36	14-36-3	L1460722-50	23/05/2014	2.25	130	91.8	Coarse
14-36	14-36-6	L1460722-51	23/05/2014	4.5	40	64.4	Coarse

TABLE 3: Summary of Soil Analytical Results - Grain Size

Associated ALS files: L1456755, L1460494, L1460722

All terms defined within the body of PINTER's report.

TABLE 4: Summary of Groundwater Analytical Results - Hydrocarbons

			Well Headspace		Monocyclic H	lydrocarbons	Petroleum Hydro	ocarbon Fractions		
	ALS	Date	Vapour			Ethyl-		F1-BTEX	F2	
Sample	Sample	Sampled	Concentration ^a	Benzene	Toluene	benzene	Xylenes	(C6-C10)	(>C10-C16)	Lead (mg/L)
ID	ID	(dd mm yyyy)	(ppm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
		Method Detection	1 Limit	0.00050	0.00050	0.00050	0.0020	0.20	0.20	0.000050
14-13	L1478162-1	26/06/2014	4200	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
14-15	L1478162-2	26/06/2014	4350	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
14-12	L1478162-3	26/06/2014	6450	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
MWA	L1478162-4	26/06/2014	0	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
MWB	L1478162-5	26/06/2014	0	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
14-41	L1478162-6	26/06/2014	120	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
14-42	L1478162-7	26/06/2014	20	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
14-06	L1478162-8	26/06/2014	20	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	<0.000050
14-05	L1478162-9	26/06/2014	80	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	0.23	-
14-03	L1478162-10	26/06/2014	790	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	0.000067
14-01	L1478162-11	26/06/2014	200	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	<0.000050
14-33	L1478162-12	26/06/2014	0	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
14-37	L1478162-13	26/06/2014	10	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	0.60	-
14-18	L1478162-14	26/06/2014	10	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
14-27	L1478162-15	26/06/2014	45	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	<0.20	-
14-25	L1478162-16	26/06/2014	25	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	0.32	-
14-20	L1478162-17	26/06/2014	25	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	0.26	-
14-23	L1478162-18	26/06/2014	65	<0.00050	<0.00050	<0.00050	<0.0020	3.52	136	0.000155
DUP-A	L1478162-19	26/06/2014	-	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	0.64	-
DUP-B	L1478162-20	26/06/2014	-	<0.00050	<0.00050	<0.00050	<0.0020	<0.20	0.21	-
Applicable	Guidelines									
^b SMOE RB	CA (2009) - Tier	1 - Potable Grou	ndwater	0.005	0.024	0.0024	0.3	NC	NC	NC
Governm	ent of Canada (2	2012) - Interim Gro	oundwater Guidelines	NC	NC	NC	NC	0.81	1.3	NC
^d Health Ca	nada (2012) - D	rinking Water Qua	ality Guidelines	NC	NC	NC	NC	NC	NC	0.01

Associated ALS File L1478162

All terms defined in body of PINTER report.

DUP-A is the duplicate sample for 14-37

DUP-B is the duplicate sample for 14-25

^a Field screening results are measured using a combustible gas meter calibrated to a hexane standard.

^b Saskatchewan Ministry of Environment (SMOE) Risk-Based Criteria for Petroleum Hydrocarbons in Groundwater (SMOE, 2009).

^c Government of Canada Federal Interim Groundwater Quality Guidelines For Industrial and Residential/Parkland Land Use, Coarse Grained Soils (GC, 2012).

^d Health Canada Guidelines for Canadian Drinking Water Quality - Summary Table, Lead (HC, 2012)

< Denotes concentrations less than indicated detection limit.

NC Denotes no applicable criteria.

Concentration greater than or equal to SMOE 2009 Tier 1 guidelines

SHADOW Concentration greater than or equal to GC 2012 interim guidelines

TABLE 5: Summary of Paint Sample Analytical Results - Lead in Paint

Sample Location	ALS Sample Sample ID ID		Sample Date (mm dd yyyy)	Lead in Paint (mg/kg)
	Method De	etection Limit		5.0
Steam Bay Ceiling	Pb 1	L1466799-9	05/06/2014	2090
Stockroom Doorframe	Pb 2	L1466799-10	05/06/2014	1410

Associated ALS file: L1466799

All terms defined within the body of PINTER's report.

TABLE 6: Summary of Diesel Particulate Analytical Results

			Petroleum Hydrocarbon Fractions							
	ALS	Date	F1	F1	F2	F2	F3	F3	F4	F4
Sample	Sample	Sampled	(C6-C10)	(C6-C10)	(>C10-C16)	(>C10-C16)	(C16-C34)	(C16-C34)	(C34-C50)	(C34-C50)
ID	ID	(dd mm yyyy)	(µg)	(g/m²)	(µg)	(g/m²)	(µg)	(g/m²)	(µg)	(g/m²)
Ν	Aethod Detection	on Limit	50	-	150	-	450	-	250	-
D1	L1466799-1	05/06/2014	<50	-	<150	-	3640	0.364	610	0.061
D2	L1466799-2	05/06/2014	<50	-	<150	-	3240	0.324	380	0.038
D3	L1466799-3	05/06/2014	<50	-	170	0.017	4520	0.452	690	0.069
D4	L1466799-4	05/06/2014	<50	-	170	0.017	15600	1.560	830	0.083
D5	L1466799-5	05/06/2014	<50	-	<150	-	2720	0.272	410	0.041
D6	L1466799-6	05/06/2014	<50	-	<150	-	2630	0.263	640	0.064
D7	L1466799-7	05/06/2014	<50	-	<150	-	2960	0.296	680	0.068
D8	L1466799-8	05/06/2014	<50	-	260	0.026	5370	0.537	540	0.054

Associated ALS File L1466799

All terms defined in body of PINTER report.

D7 is the duplicate sample for D6

< Denotes concentrations less than indicated detection limit.

Appendix F

Water Well Driller Records

Page 1 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

and Location 305 VWDR# 031	036 28NW00 974					
SASK RESEARC				Completio	on 05/17/1972	
					RM Major Basin SubBasin NTS Map	344 06 30 73B02
Well Location						
LSD Quarter Se	ction Township Range	Meridian Reserve	Riverlot			
00 NW	28 036 05	3		Location o	f Well (in Quarter)	
Zone Easting	Northing Source	Accuracy		0.0	0 ft from N/S Bo	undary
				0.0	0 ft from E/W Bo	oundary
Well Information						
Driller #	HAYTER DRILLING LT	D Well Casings				
Water Use	Research	Length (ft)	Btm (ft)	Dia (in)	Description	
Hole #		0.00	0.00	0.00		
Well Use	Water Test Hole	0.00	0.00	0.00		
Installation Method	Drilled	0.00	0.00	0.00		
Water Level	0.00	Screens				
Bit	0.00	Length (ft)	Btm (ft)	Dia (in) Slot	(in) Description	
Flowing Head	0.00	0.00	0.00	0.00 0	.00	
		0.00	0.00	0.00 0	.00	
		0.00	0.00	0.00 0	.00	
Pump Test						
Draw Down	0.00 ft	Rec. Pumping Ra	te	0.00		
Duration	0.00 hrs	Intake		0.00		
Pumping Rate	0.00 igpm	Aquifer	00411			
Flevation	0.00 deg. r 1 590 00 ft	E-L0g Phys	SCANN E03	ED		
	1,590.00	Fliys	EU3			

Depth (ft)	Material	Colour	Description
5.00	Till	Unknown	Unknown
8.00	Sand	Unknown	Unknown
29.00	Till	Unknown	Unoxidized
182.00	Till	Unknown	Oxidized
228.00	Sand	Unknown	Unknown
250.00	Silt	Grey	Noncalcareous

Page 2 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

273.00 Sand315.00 Silt356.00 Sand388.00 Sand

Grey Grey Unknown Grey Noncalcareous Noncalcareous Noncalcareous Noncalcareous

Page 1 of 1 4/3/2014 (OneWellPerPage) (c) Water Security Agency

and Location 305 VWDR# 031	036 29NE00 975						
ROXY THEATRE				Complet	on	07/01/1929	
						RM Major Basin SubBasin NTS Map	344 06 30 73B02
Well Location							
LSD Quarter See	ction Township Rang	e Meridian Reserve	Riverlot				
00 NE	29 036 05	3		Location of	of We	ll (in Quarter)	
Zone Easting	Northing Source	e Accuracy		0	.00	ft from N/S Bou	undary
				0	.00	ft from E/W Bo	undary
Well Information							
Driller #	UNKNOWN	Well Casings					
Water Use	Domestic	Length (ft)	Btm (ft)	Dia (in)	Des	cription	
Hole #		0.00	0.00	0.00	Stee	el	
Well Use	Withdrawal	0.00	0.00	0.00			
Installation Method	Drilled	0.00	0.00	0.00			
Water Level	30.00	Screens					
Bit	0.00	Length (ft)	Btm (ft)	Dia (in) Slo	t (in)	Description	
Flowing Head	0.00	0.00	0.00	0.00	0.0Ó	Other	
		0.00	0.00	0.00	0.00		
		0.00	0.00	0.00	0.00		
Pump Test							
Draw Down	50.00 ft	Rec. Pumping Ra	ite	0.00			
Duration	12.00 hrs	Intake		0.00			
Fumping Rate	40.00 igpm	Aquiter	No				
		E-LUU	INO				

Lithology List

Depth (ft) Material

Colour

Description

Page 1 of 1 4/3/2014 (OneWellPerPage) (c) Water Security Agency

QUAKER OATS MILL Completion	RM Major Basin SubBasin NTS Map	344 06
	RM Major Basin SubBasin NTS Map	344 06
		30 73B02
Well Location		
LSD Quarter Section Township Range Meridian Reserve Riverlot		
00 NV 29 036 05 3 Location of V	Vell (in Quarter)	
Zone Easting Northing Source Accuracy 0.00	ft from N/S Bo	undary
0.00	ft from E/W Bo	oundary
Well Information		
Driller # UNKNOWN Well Casings		
Water Use Industrial Length (ft) Btm (ft) Dia (in) Dia	escription	
Hole # 0.00 0.00 0.00 S	teel	
Well Use Withdrawal 0.00 0.00 0.00		
Depth 203.00		
Water Level 6.00 Screens		
Bit0.00Length (ft)Btm (ft)Dia (in)Slot (in)	n) Description	
Flowing Head 0.00 6.00 136.00 0.00 30.0	0 Other	
10.00 203.00 0.00 30.0 0.00 0.00 0.00 0.0	10 Other 10	
Pump Test		
Draw Down 0.00 ft Rec. Pumping Rate 0.00		
Duration 0.00 hrs Intake 0.00		
Pumping Kate 0.00 igpm Aquifer		
Elevation 1.600.00 ft Phys F03		

Depth (ft)	Material	Colour	Description
130.00	Unknown	Unknown	Unknown
136.00	Sand	Unknown	Coarse
193.00	Unknown	Unknown	Unknown
203.00	Sand	Unknown	Coarse

Page 1 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

and Location 30 VWDR# 03	5 036 32SE00 1980							
SASK RESEAF					C	ompletion	05/16/1972	
							RM Major Basin SubBasin NTS Map	344 06 30 73B02
Well Location								
LSD Quarter S	ection Township Ra	inge Meridian	Reserve	Riverlot				
00 SE	32 036 0	5 3			Lo	ocation of W	ell (in Quarter)	
Zone Easting	Northing Sou	rce Acci	uracy			0.00	ft from N/S Bou	undary
						0.00	ft from E/W Bo	undary
Well Informatic	'n							
Driller #	HAYTER DRILLIN	IG LTD Well	Casings					
Water Use	Research	L	ength (ft)	Btm (ft)	Di	a (in) De	scription	
Hole #			0.00	0.00		0.00		
Well Use	Water Test Hole		0.00	0.00		0.00		
Installation Metho	d Drilled		0.00	0.00		0.00		
Water Level	0.00	Scre	ens					
Bit	0.00	Le	ength (ft)	Btm (ft)	Dia (in)	Slot (in)) Description	
Flowing Head	0.00		0.00	0.00	0.00	0.00)	
			0.00	0.00	0.00	0.00)	
			0.00	0.00	0.00	0.00		
Pump Test								
Draw Down	0.00 ft	Rec	. Pumping Ra	ate	0.00			
Duration	0.00 hrs	Intal	ke		0.00			
Dumaning Date	A AA !							
Pumping Rate	0.00 igpm	Aqui	iter	SCANIA				

Depth (ft)	Material	Colour	Description
6.00	Sand	Brown	Fine
8.00	Till	Brown	Unknown
16.00	Till	Grey	Calcareous
46.00	Till	Unknown	Oxidized
134.00	Till	Grey	Calcareous
153.00	Silt	Unknown	Unknown

Page 2 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

186.00SandGreyNoncalcareous202.00SiltGreyNoncalcareous206.00SandGreyNoncalcareous252.00SiltGreyNoncalcareous

Page 1 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

Land Location 305 WWDR# 031	036 32SE00 981							
DAIRY POOL					Comp	letion	07/01/1960	
							RM Major Basin SubBasin NTS Map	344 06 30 73B02
Well Location	-tion Township	Damas	levidiere Deserves	Diversitet				
LSD Quarter Se	ction i ownsnip	Range IV	eridian Reserve	Riveriot		C \ A \		
00 SE	32 036	05	3		Locatio	on of W	ell (in Quarter) ft from N/S Boi	Indany
Zone Easting	Northing	Source	Accuracy			0.00		
						0.00	ft from E/W Bo	undary
Well Information								
Driller #	CREELMAN	& SONS DRI	Well Casings					
Water Use	Industrial		Length (ft)	Btm (ft)) Dia (in) Des	scription	
Hole #			0.00	154.00	12.00) Ste	el	
Well Use	Withdrawal		0.00	0.00	0.00)		
Installation Method	Drilled		0.00	0.00	0.00)		
Water Level	52 00		Screens					
Bit	12.00		Length (ft)	Btm (ft)	Dia (in)	Slot (in)	Description	
Flowing Head	0.00		10.00	189.00	6.00	20.00	Unknown	
			0.00	0.00	0.00	0.00)	
			0.00	0.00	0.00	0.00		
Pump Test								
Draw Down	108.00	ft	Rec. Pumping Ra	ate	0.00			
Duration	24.00	hrs	Intake		0.00			
Pumping Rate	25.00	igpm	Aquifer					
Temp	43.00	deg. F	E-Log	No				
Elevation	1,600.00	π	Phys	E03				

Depth (ft)	Material	Colour	Description
10.00	Till	Yellow	Unknown
48.00	Till	Blue	Unknown
56.00	Sand	Unknown	Unknown
152.00	Till	Blue	Unknown
189.00	Sandy Clay	Blue	Unknown

Page 2 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

Page 1 of 1 4/3/2014 (OneWellPerPage) (c) Water Security Agency

Land Location 3 WWDR# 0	05 036 33NW00 31983					
SASK W P FL	OUR MILL			Completion	ı	
					RM Major Basin SubBasin NTS Map	344 06 30 73B02
Well Location						
LSD Quarter	Section Township Rar	ge Meridian Reserve	Riverlot			
00 NM	33 036 0	i 3		Location of	Well (in Quarter)	
Zone Fastin	a Northing Sour	e Accuracy		0.0) ft from N/S Bo	undary
2010 Eustin	g Northing Court			0.0) ft from E/W Bo	oundary
Well Informati	on					
Driller #	UNKNOWN	Well Casings				
Water Use	Industrial	Length (ft)	Btm (ft)	Dia (in) D	escription	
Hole #		0.00	0.00	0.00 \$	iteel	
Installation Meth		0.00	0.00	0.00		
Depth	240.00	0.00	0.00	0.00		
Water Level	20.00	Screens	Diana (ft)			
Bit Flowing Head	0.00	Length (π) 20 00	Btm (π) 240 00	Dia (in) Siot (n) Description	
· · · · · · · · · · · · · · · · · · ·	0.00	0.00	0.00	0.00 0.0	00	
		0.00	0.00	0.00 0.	00	
Pump Test						
Draw Down	0.00 ft	Rec. Pumping Ra	te 60	0.00		
Duration	48.00 hrs	Intake		0.00		
	150.00 igpm 0.00 dea. F	Aquiter F-Loa	No			
Elevation	1,600.00 ft	Phys	E03			

Depth (ft)	Material	Colour	Description
220.00	Clay	Blue	Unknown
240.00	Sand	Unknown	Unknown

Page 1 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

and Location 305 VWDR# 031	036 33SW00 985						
SASK RESEARC				Co	mpletion	05/14/1972	
						RM Major Basin SubBasin NTS Map	344 06 30 73B02
Well Location							
LSD Quarter Se	ction Township Range	Meridian Reserve	e Riverlot				
00 SN	33 036 05	3		Lo	cation of We	ell (in Quarter)	
Zone Easting	Northing Source	Accuracy			0.00	ft from N/S Bo	undary
					0.00	ft from E/W Bo	undary
Well Information							
Driller #	HAYTER DRILLING LTI	D Well Casings					
Water Use	Research	Length (ft)	Btm (ft)	Dia	a (in) Des	scription	
Hole #		0.00	0.00	(0.00		
Well Use	Water Test Hole	0.00	0.00	(0.00		
Installation Method	Drilled 387 00	0.00	0.00		0.00		
Water Level	0.00	Screens					
Bit	0.00	Length (ft)	Btm (ft)	Dia (in)	Slot (in)	Description	
Flowing Head	0.00	0.00	0.00	0.00	0.00	1	
		0.00	0.00	0.00	0.00	1	
		0.00	0.00	0.00	0.00	1	
Pump Test							
Draw Down	0.00 ft	Rec. Pumping Ra	ate	0.00			
Duration	0.00 hrs	Intake		0.00			
Pumping Rate	0.00 igpm	Aquifer		.==			
Flevation	U.UU aeg. ⊢ 1 595 00 ft	E-Log Phys	SCAN	NED			
	1,585.00	Fliys	E03				

Depth (ft)	Material	Colour	Description
4.00	Gravel	Unknown	Unknown
15.00	Till	Unknown	Oxidized
28.00	Till	Unknown	Unoxidized
40.00	Till	Unknown	Oxidized
44.00	Gravel	Unknown	Unknown
60.00	Till	Unknown	Oxidized

Page 2 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

63.00	Sand	Unknown	Unknown
158.00	Till	Unknown	Unoxidized
234.00	Silt	Grey	Noncalcareous
260.00	Sand	Grey	Noncalcareous
292.00	Silt	Grey	Noncalcareous
336.00	Sand	Grey	Noncalcareous
387.00	Silt	Grey	Noncalcareous

Page 1 of 1 4/3/2014 (OneWellPerPage) (c) Water Security Agency

Land Location 305 WWDR# 031	036 33SW00 986						
CO-OP COLD ST	ORAGE			Complet	ion		
						RM Major Basin SubBasin NTS Map	344 06 30 73B02
Well Location							
LSD Quarter Se	ction Township Rang	ge Meridian Reserve	Riverlot				
00 SW	33 036 05	3		Location	of We	ll (in Quarter)	
Zone Fasting	Northing Source	e Accuracy		0	.00	ft from N/S Bou	undary
Lono		, couracy		0	.00	ft from E/W Bo	undary
Well Information							
Driller #	UNKNOWN	Well Casings					
Water Use	Industrial	Length (ft)	Btm (ft)	Dia (in)	Desc	cription	
Hole #		0.00	0.00	0.00	Stee	el	
Well Use	Withdrawal	0.00	0.00	0.00			
Depth	246.00	0.00	0.00	0.00			
Water Level	16.00	Screens					
Bit	0.00	Length (ft)	Btm (ft)	Dia (in) Slo	ot (in)	Description	
Flowing Head	0.00	8.00	224.00	0.00	6.00	Unknown	
		12.00 0.00	246.00 0.00	0.00 3 0.00	0.00	Unknown	
Pump Test							
Draw Down	59.00 ft	Rec. Pumping Ra	ite	0.00			
Duration	0.00 hrs	Intake		0.00			
Fumping Rate	100.00 Igpm 0.00 deg F	Aquiter E-Log	No				
Elevation	1,588.00 ft	Phys	E03				

Depth (ft)	Material	Colour	Description
216.00	Clay	Blue	Boulders
224.00	Sand	Unknown	Fine
234.00	Clay	Blue	Unknown
246.00	Sand	Unknown	Coarse

Page 1 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

and Location. VWDR#	305 (0456)36 32SW00 65								
SASK POW	VER						C	ompletion	11/29/1975	
									RM Major Basin SubBasin NTS Map	344 06 30 73B02
Well Locati	ion									
LSD Quart	ter Sec	tion Township	Range	Meridian	Reserve	Riverlot				
00 SV	3	2 036	05	3			Lo	ocation of W	ell (in Quarter)	
Zone Ea	asting	Northing	Source	Accur	acy			0.00	ft from N/S Bou	undary
		-						0.00	ft from E/W Bo	undary
Well Inform	nation									
Driller #		PEDERSON	DRILLING	Well (Casings					
Water Use		Domestic		Le	ngth (ft)	Btm (ft)	Di	a (in) De	scription	
Hole #		0000001			0.00	0.00		0.00		
Well Use		Water Test H	lole		0.00	0.00		0.00		
Installation N	lethod	Drilled			0.00	0.00		0.00		
Water Level		0.00		Scree	ns					
Bit		0.00		Ler	igth (ft)	Btm (ft)	Dia (in)	Slot (in) Description	
Flowing Hea	d	0.00			0.00	0.00	0.00	0.00)	
					0.00	0.00	0.00	0.00)	
					0.00	0.00	0.00	0.00)	
Pump Test										
Draw Down		0.00	ft	Rec. I	^o umping Rat	te	0.00			
Duration	ha	0.00	hrs	Intake	t 		0.00			
Fumping Rat	le	0.00	iypiii dea F	Aquite	F	No				
Temn										

Depth (ft)	Material	Colour	Description
17.00	Clay	Brown	Soft
43.00	Till	Grey	Unknown
52.00	Till	Unknown	Sandy
130.00	Till	Grey	Unknown
135.00	Clay	Unknown	Unknown
139.00	Till	Unknown	Unknown

Page 2 of 2 4/3/2014 (OneWellPerPage) (c) Water Security Agency

154.00 Sand 276.00 Till 300.00 Shale Unknown Grey Unknown Silty Unknown Unknown

Page 1 of 1 4/3/2014 (OneWellPerPage) (c) Water Security Agency

Land Location WWDR#	305 036 33SW00 052937							
DAIRY PRO	DUCERS COOF				Com	pletion	07/01/1957	
							RM Major Basin SubBasin NTS Map	344 06 30 73B02
Well Location	on							
LSD Quarte	er Section Township	Range M	leridian Reserve	Riverlot				
00 SW	33 036	05	3		Loca	tion of W	ell (in Quarter)	
	ting Northing	Source	Acourcov			0.00	ft from N/S Bo	undary
Zone Eas	sung woruning	Source	Accuracy			0.00	ft from E/W Bo	undarv
								,, ,
Well Inform	ation							
Driller #								
Water Use	Industrial		Length (ft)	Btm (ft) Dia (in) De	scription	
Hole #			0.00	0.00	12.0	00 Ste	el	
Well Use	Withdrawal		0.00	0.00) 0.0	00		
Installation M	ethod Drilled		0.00	0.00) 0.0	00		
Water Level	280.00 57.00		Screens					
Bit	12.00		Length (ft)	Btm (ft)	Dia (in)	Slot (in) Description	
Flowing Head	0.00		20.00	280.00	6.00	0.00	Unknown	
			0.00	0.00	0.00	0.00)	
			0.00	0.00	0.00	0.00		
Pump Test								
Draw Down	0.00	ft	Rec Pumping R	ate 4	50.00			
Duration	0.00	hrs	Intake		0.00			
Pumping Rate	e 0.00	igpm	Aquifer					
Temp	0.00	deg. F	E-Log	No				
Elevation	1,620.00	ft	Phys	E03				

Depth (ft)	Material	Colour	Description
280.00	Unknown	Unknown	Unknown

Page 1 of 1 4/3/2014 (OneWellPerPage) (c) Water Security Agency

KATSIRIS, NICK Completion 06/08/1987 RM 344 Major Basin 06 SubBasin 30 NTS Map 73B02 Well Location LSD Quarter Section Township Range Meridian Reserve Riverlot 00 NW 33 036 05 3 Location of Well (in Quarter) Zone Easting Northing Source Accuracy 0.00 ft from N/S Boundary Driller # PRAIRIE WATER LTD Well Casings Used Wood to the Composition Length (ft) Btm (ft) Dia (in) Description Hole # 00000001 26.00 26.00 36.00 Porous Concrete Well Use Withdrawal 0.00 0.00 0.00 Depth 26.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Description Flowing Head 0.00 ft O.00 0.00 0.00 0.00 Drow Down 0.00 ft Rec. Pumping Rate 0.00 </th <th>Land Location 305 WWDR# 085</th> <th>036 33NW00 026</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Land Location 305 WWDR# 085	036 33NW00 026					
Well Location RAM 344 LSD Quarter Section Township Range Meridian Reserve Riverlot 00 NM 33 036 05 3 Location of Well (in Quarter) Zone Easting Northing Source Accuracy 0.00 ft from N/S Boundary Driller # PRAIRIE WATER LTD Well Casings Location of Well (in Quarter) 0.00 ft from E/W Boundary Water Use Domestic Length (ft) Btm (ft) Dia (in) Description Hole # 00000001 26.00 26.00 36.00 Porous Concrete Well Use Withdrawal 0.00 0.00 0.00 0.00 Installation Method Bored 0.00 0.00 0.00 0.00 Water Level 0.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Description Hole # 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Drintallation Method Bored 0.00 0.00 0.00 0.00 0.00 0.00 </th <th>KATSIRIS, NICK</th> <th></th> <th></th> <th></th> <th>Completion</th> <th>06/08/1987</th> <th></th>	KATSIRIS, NICK				Completion	06/08/1987	
Well Location LSD Quarter Section Township Range Meridian Reserve Riverlot 00 NV 33 036 05 3 Location of Well (in Quarter) Zone Easting Northing Source Accuracy 0.00 ft from N/S Boundary Driller # PRAIRIE WATER LTD Well Casings Use Use Domestic Length (ft) Btm (ft) Dia (in) Description Hole # 00000001 26.00 26.00 36.00 Porous Concrete Well Use Withdrawal 0.00 0.00 0.00 Domestic Installation Method Bored 0.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Slot (in) Description Flowing Head 0.00 Screens Dia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.						RM Major Basin SubBasin NTS Map	344 06 30 73B02
00 NV 33 036 05 3 Location of Well (in Quarter) Zone Easting Northing Source Accuracy 0.00 ft from N/S Boundary 0.00 ft from M/S Boundary 0.00 ft from E/W Boundary Driller # PRAIRIE WATER LTD Well Casings Water Use Domestic Length (ft) Btm (ft) Dia (in) Description Hole # 00000001 26.00 26.00 36.00 Porous Concrete Well Use Withdrawal 0.00 0.00 0.00 0.00 Depth 26.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Description Flowing Head 0.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Slot (in) Description Flowing Head 0.00 ft Rec. Pumping Rate 0.00 0.00 0.00 0.00 0.00 Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 0.00 Rec. 0.00 Did Ft Log <t< td=""><td>Well Location</td><td>ction Township Range</td><td>Meridian Reserve</td><td>Riverlot</td><td></td><td></td><td></td></t<>	Well Location	ction Township Range	Meridian Reserve	Riverlot			
Zone Easting Northing Source Accuracy 0.00 ft from N/S Boundary 0.00 ft from E/W Boundary 0.00 ft from E/W Boundary Well Information Driller # PRAIRIE WATER LTD Well Casings Water Use Domestic Length (ft) Btm (ft) Dia (in) Description Hole # 00000001 26.00 26.00 36.00 Porous Concrete Well Use Withdrawal 0.00 0.00 0.00 Installation Method Bored 0.00 0.00 0.00 Depth 26.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Description Flowing Head 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 Duration 0.00 hrs Intake 0.00 0.00 Pumping Rate 0.00 igpm Aquifer Temp Temp 0.00 deg. F E-Log No	00 NW	33 036 05	3		Location of W	/ell (in Quarter)	
Well Information Driller # PRAIRIE WATER LTD Well Casings Water Use Domestic Length (ft) Btm (ft) Dia (in) Description Hole # 00000001 26.00 26.00 36.00 Porous Concrete Well Use Withdrawal 0.00 0.00 0.00 Installation Method Bored 0.00 0.00 0.00 Depth 26.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Description Bit 36.00 Length (ft) Btm (ft) Dia (in) Slot (in) Description Flowing Head 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 0.00 0.00 Duration 0.00 hrs Intake 0.00 0.00 Pumping Rate 0.00 deg. F Pumping Rate 0.00 deg. F E-Log No No No <td>Zone Easting</td> <td>Northing Source</td> <td>Accuracy</td> <td></td> <td>0.00</td> <td>ft from N/S Bo</td> <td>undary</td>	Zone Easting	Northing Source	Accuracy		0.00	ft from N/S Bo	undary
Well Information Unilse # PRAIRIE WATER LTD Well Casings Water Use Domestic Length (ft) Btm (ft) Dia (in) Description Hole # 00000001 26.00 26.00 36.00 Porous Concrete Well Use Withdrawal 0.00 0.00 0.00 0.00 Installation Method Bored 0.00 0.00 0.00 0.00 Depth 26.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Description Flowing Head 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 0.00 Duration 0.00 intake 0.00 Pumping Rate	Zone Lasting	Northing Oburce	Accuracy		0.00	ft from E/W Bo	oundary
Driller #PRAIRIE WATER LTDWell CasingsWater UseDomesticLength (ft)Btm (ft)Dia (in)DescriptionHole #0000000126.0036.00Porous ConcreteWell UseWithdrawal0.000.000.00Installation MethodBored0.000.000.00Depth26.00ScreensBit36.00Length (ft)Btm (ft)Dia (in)Slot (in)DescriptionBit36.00Length (ft)Btm (ft)Dia (in)Slot (in)Description0.000.000.000.00Flowing Head0.000.000.000.000.000.000.000.000.00Pump TestDraw Down0.00 ftRec. Pumping Rate0.000.000.000.00Duration0.00 igpmAquiferTemp0.00 deg. FE-LogNo	Well Information						
Water Use Domestic Length (ft) Btm (ft) Dia (in) Description Hole # 00000001 26.00 26.00 36.00 Porous Concrete Well Use Withdrawal 0.00 0.00 0.00 0.00 Installation Method Bored 0.00 0.00 0.00 0.00 Depth 26.00 Screens Streens Streens Streens Streens Bit 36.00 Length (ft) Btm (ft) Dia (in) Slot (in) Description Flowing Head 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 0.00 Duration 0.00 hrs Intake 0.00 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No No No No	Driller #	PRAIRIE WATER LTD	Well Casings				
Hole # 0000001 26.00 26.00 36.00 Porous Concrete Well Use Withdrawal 0.00 0.00 0.00 Installation Method Bored 0.00 0.00 0.00 Depth 26.00 Screens 0.00 0.00 0.00 Water Level 0.00 Screens 5 5 5 5 Bit 36.00 Length (ft) Btm (ft) Dia (in) Slot (in) Description Flowing Head 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 0.00 Duration 0.00 hrake 0.00 0.00 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No	Water Use	Domestic	Length (ft)	Btm (ft)	Dia (in) De	scription	
Well Use Withdrawal 0.00 0.00 0.00 Installation Method Depth Bored 0.00 0.00 0.00 Water Level 0.00 Screens Statistics Slot (in) Description Bit 36.00 Length (ft) Btm (ft) Dia (in) Slot (in) Description Flowing Head 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test 0.00 ft Rec. Pumping Rate 0.00 0.00 0.00 Duration 0.00 hrake 0.00 Pump Test 0.00 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No	Hole #	0000001	26.00	26.00	36.00 Pc	orous Concret	e
Installation Method Bored 0.00 0.00 0.00 Depth 26.00 Screens 0.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Slot (in) Description Flowing Head 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test 0.00 ft Rec. Pumping Rate 0.00 0.00 0.00 Duration 0.00 hrs Intake 0.00 0.00 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No	Well Use	Withdrawal	0.00	0.00	0.00		
Depth 20.00 Water Level 0.00 Screens Bit 36.00 Length (ft) Btm (ft) Dia (in) Slot (in) Description Flowing Head 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 0.00 Duration 0.00 hrs Intake 0.00 Pumping Rate 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No	Installation Method	Bored	0.00	0.00	0.00		
Bit 36.00 Length (ft) Btm (ft) Dia (in) Slot (in) Description Flowing Head 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test 0.00 ft Rec. Pumping Rate 0.00 Duration 0.00 hrs Intake 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No	Water Level	20.00	Screens				
Flowing Head 0.00	Bit	36.00	Length (ft)	Btm (ft)	Dia (in) Slot (in) Description	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 0.00 Duration 0.00 hrs Intake 0.00 Pumping Rate 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No	Flowing Head	0.00	0.00	0.00	0.00 0.0)	
0.00 0.00 0.00 0.00 Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 Duration 0.00 hrs Intake 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No			0.00	0.00	0.00 0.00	ט	
Pump Test Draw Down 0.00 ft Rec. Pumping Rate 0.00 Duration 0.00 hrs Intake 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No			0.00	0.00	0.00 0.00	0	
Draw Down 0.00 ft Rec. Pumping Rate 0.00 Duration 0.00 hrs Intake 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No	Pump Test						
Duration 0.00 hrs Intake 0.00 Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No	Draw Down	0.00 ft	Rec. Pumping Ra	te	0.00		
Pumping Rate 0.00 igpm Aquifer Temp 0.00 deg. F E-Log No	Duration	0.00 hrs	Intake		0.00		
י דער אין אין אין אין אין אין אין אין אין אין	Pumping Rate	0.00 igpm	Aquifer	NI -			
Flevation 1 650 00 ft Phys E03	Flevation	0.00 deg. r 1 650 00 ft	E-Log Phvs	NO F03			

Depth (ft)	Material	Colour	Description
1.00	Topsoil	Unknown	Unknown
18.00	Sand	Brown	Unknown
26.00	Silt	Grey	Unknown

Appendix G

Laboratory Analytical Reports

PINTER AND ASSOCIATES LTD. ATTN: JESSICA CUTTER 710A 48th Street East Saskatoon SK S7K 5B4 Date Received: 16-MAY-14 Report Date: 23-MAY-14 11:38 (MT) Version: FINAL

Client Phone: 306-244-1710

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1456755 NOT SUBMITTED 1544-2

SASKATOON, SK

1a

Brian Morgan Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: #819-58th St E., Saskatoon, SK S7K 6X5 Canada | Phone: +1 306 668 8370 | Fax: +1 306 668 8383 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1456755-1 14-1-4							
Sampled By: JC on 15-MAY-14 @ 10:30							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Toluene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Ethylbenzene	<0.010		0.010	mg/kg	20-MAY-14	21-MAY-14	R2842386
Xylenes	<0.10		0.10	mg/kg	20-MAY-14	21-MAY-14	R2842386
o-xylene	<0.050		0.050	mg/kg	20-MAY-14	21-IVIA Y-14	R2842386
Surrogate: 1 4-Difluorobenzene	<0.050		0.050 70-130	шу/ку %	20-MAY-14	21-MAY-14	R2042300
Surrogate: 4-Bromofluorobenzene	94.5		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 3.4-Dichlorotoluene	88.3		70-130	%	20-MAY-14	21-MAY-14	R2842386
CCME Total Hydrocarbons	00.0		10.00	,.			
F1 (C6-C10)	<10		10	mg/kg		21-MAY-14	
F1-BTEX	<10		10	mg/kg		21-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		21-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		21-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		21-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		21-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID						o	Dec / 200
TEH (C11-C22)	<50		50	mg/kg	20-MAY-14	21-MAY-14	R2842201
Chrom to baseline at nC50	<100		100	тід/кд	20-MAY-14	21 - WAY - 14	R2842201
Surrogate: 2-Bromobenzotrifluoride	82.0		0 70-130	%	20-MAY-14	21-MAY-14	R2042201 R2842201
Miscellaneous Parameters	02.0		10-100	70	2010/2114	21-10/21-14	112042201
% Moisture	11.3		1.0	%	20-MAY-14	21-MAY-14	R2842163
Lead (Pb)	<5.0		5.0	mg/kg wwt	22-MAY-14	22-MAY-14	R2843389
L1456755-2 14-2-1							
Sampled By: JC on 15-MAY-14 @ 13:20							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX						o	D 00 10000
Benzene	0.0053		0.0050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Toluene Ethylhonzono	<0.050		0.050	mg/kg	20-MAY-14	21-IVIA Y-14	R2842386
Xylenes	<0.010		0.010	mg/kg	20-MAY-14	21-MAY-14	R2042300
o-Xvlene	<0.10		0.10	mg/kg	20-MAY-14	21-MAY-14	R2842386
m+p-Xvlene	<0.050		0.050	ma/ka	20-MAY-14	21-MAY-14	R2842386
Surrogate: 1,4-Difluorobenzene	114.8		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 4-Bromofluorobenzene	110.4		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 3,4-Dichlorotoluene	75.1		70-130	%	20-MAY-14	21-MAY-14	R2842386
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		21-MAY-14	
F1-BTEX	<10		10	mg/kg		21-MAY-14	
F2 (010-016)	<30		30	mg/kg		21-MAY-14	
	487		50	mg/kg		21-IVIAY-14	
Total Hydrocarbons (C6-C50)	137 624		50 50	mg/kg		∠1-IVIA1-14 21-MΔV-14	
Extractable Hydrocarbons Tumbler/GC-FID	024		50	iiig/kg		∠ i ⊐W/⊂ i = 14	
TEH (C11-C22)	120		50	ma/ka	20-MAY-14	21-MAY-14	R2842201
TEH (C23-C60)	560		100	mg/kg	20-MAY-14	21-MAY-14	R2842201
Chrom. to baseline at nC50	YES		0	5.5	20-MAY-14	21-MAY-14	R2842201
Surrogate: 2-Bromobenzotrifluoride	89.4		70-130	%	20-MAY-14	21-MAY-14	R2842201

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1456755-2 14-2-1							
Sampled By: IC on 15-MAY-14 @ 13:20							
Matrix: SOU							
Maurix. SOIL Miscellaneous Parameters							
% Moisture	16.8		1.0	%	20-MAY-14	21-MAY-14	P28/2163
Lead (Pb)	2450		5.0	ma/ka www.t	20 MAV 14	21 MAY 14	D2042103
	2430		5.0	mg/kg wwt	22-1017 1-14	22-1014 1-14	12043309
L1450755-3 14-2-3							
Sampled By: JC on 15-MAY-14 @ 13:45							
Matrix: SOIL							
BIEX, F1-F4 and SK Reg. PHC'S.							
	<0.0050		0.0050	ma/ka	20-MAV-14	21-MAV-14	P2842386
Toluene	<0.0050		0.0000	mg/kg	20-MAY-14	21-MAY-14	R2842386
Fthylbenzene	<0.030		0.030	mg/kg	20-MAY-14	21-MAY-14	R2842386
Xvlenes	<0.010		0.010	mg/kg	20-MAY-14	21-MAY-14	R2842386
o-Xvlene	<0.050		0.050	ma/ka	20-MAY-14	21-MAY-14	R2842386
m+p-Xylene	< 0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Surrogate: 1,4-Difluorobenzene	115.5		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 4-Bromofluorobenzene	106.4		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 3,4-Dichlorotoluene	88.9		70-130	%	20-MAY-14	21-MAY-14	R2842386
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		21-MAY-14	
F1-BTEX	<10		10	mg/kg		21-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		21-MAY-14	
F3 (C16-C34)	67		50	mg/kg		21-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		21-MAY-14	
Total Hydrocarbons (C6-C50)	67		50	mg/kg		21-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	70				00 1401/44	04 1441/44	D0040004
ТЕН (С11-С22) ТЕН (С22 С60)	70		50	mg/кg	20-MAY-14	21-MAY-14	R2842201
Chrometer baseline at pC50	<100		100	mg/кg	20-IVIA Y-14	21-IVIA Y-14	R2842201
Surrogate: 2-Bromobenzotrifluoride	1E3 77.5		U 70 120	0/	20-MAY-14	21-IVIA1-14	R2042201
Miscellaneous Parameters	11.5		70-130	70	20-1014 1-14	21-101/21-14	12042201
% Moisture	12		1.0	0/	20-MAV-14	21-MAV-14	P2942162
MUST $PSA \ll 575 \mu m$	4.5		0.10	70 9/	20 MAY 14	21 MAV 14	D2042103
	92.5		5.0	/o ma/ka www.t	$21 - MA \vee 14$	21-MAY 14	R2042304
	6.0		5.0	mg/kg wwi	22-1VIA 1-14	22-IVIA 1-14	R2043309
L1456755-4 14-3-3							
Sampled By: JC on 15-MAY-14 @ 14:45							
Matrix: SOIL							
BIEX, F1-F4 and SK Reg. PHC's.							
	<0.0050		0.0050	ma/ka	20-MAV-14	21-MAV-14	D2942296
Toluene	<0.0050		0.0050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Fthylbenzene	<0.030		0.000	mg/kg	20-MAY-14	21-MAY-14	R2842386
Xvlenes	<0.10		0.10	ma/ka	20-MAY-14	21-MAY-14	R2842386
o-Xylene	<0.050		0.050	mg/ka	20-MAY-14	21-MAY-14	R2842386
m+p-Xylene	< 0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Surrogate: 1,4-Difluorobenzene	107.8		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 4-Bromofluorobenzene	96.8		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 3,4-Dichlorotoluene	77.4		70-130	%	20-MAY-14	21-MAY-14	R2842386
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		21-MAY-14	
F1-BTEX	<10		10	mg/kg		21-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		21-MAY-14	

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1456755-4 14-3-3							
Sampled By: IC on 15-MAV-14 @ $14:45$							
ECME Total Hydrocarbons	00		50	ma/ka		21-MAV-14	
F4 (C34-C50)	55 118		50	mg/kg		21-MAY-14	
Total Hydrocarbons (C6-C50)	217		50	mg/kg		21-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-FID	217		50	ing/itg		211001114	
TEH (C11-C22)	<50		50	ma/ka	20-MAY-14	21-MAY-14	R2842201
TEH (C23-C60)	240		100	mg/kg	20-MAY-14	21-MAY-14	R2842201
Chrom. to baseline at nC50	YES		0		20-MAY-14	21-MAY-14	R2842201
Surrogate: 2-Bromobenzotrifluoride	78.3		70-130	%	20-MAY-14	21-MAY-14	R2842201
Miscellaneous Parameters							
% Moisture	15.8		1.0	%	20-MAY-14	21-MAY-14	R2842163
Lead (Pb)	5.2		5.0	mg/kg wwt	22-MAY-14	22-MAY-14	R2843389
L1456755-5 14-4-3				-			
Sampled By: JC on 15-MAY-14 @ 16:15							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	20-MAY-14	21-MAY-14	R2842386
I oluene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Etnylbenzene	<0.010		0.010	mg/kg	20-MAY-14	21-MAY-14	R2842386
Aylenes	<0.10		0.10	mg/kg	20-MAY-14	21-MAY-14	R2842386
o-Xylene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
m+p-Aylene	<0.050		0.050	mg/kg	20-IVIA Y - 14	21-IVIA Y-14	R2842386
Surrogate: 1,4-Dilidolobenzene	109.6		70-130	% 0/	20-IVIA 1-14	21-IVIA 1 -14	R2842386
Surrogate: 3 4-Dichlorotoluene	105.9		70-130	70 0/	20 -IVIA 1 - 14	21 -IVIA 1 - 14	R2042300
CCME Total Hydrocarbons	07.7		70-130	/0	20-101A 1 - 14	21-IVIA1-14	R2042300
F1 (C6-C10)	<10		10	ma/ka		21-MAY-14	
F1-BTEX	<10		10	mg/kg		21-MAY-14	
F2 (C10-C16)	<30		30	ma/ka		21-MAY-14	
F3 (C16-C34)	169		50	mg/kg		21-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		21-MAY-14	
Total Hydrocarbons (C6-C50)	169		50	mg/kg		21-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID				0.0			
TEH (C11-C22)	<50		50	mg/kg	20-MAY-14	21-MAY-14	R2842201
TEH (C23-C60)	170		100	mg/kg	20-MAY-14	21-MAY-14	R2842201
Chrom. to baseline at nC50	YES		0		20-MAY-14	21-MAY-14	R2842201
Surrogate: 2-Bromobenzotrifluoride	78.7		70-130	%	20-MAY-14	21-MAY-14	R2842201
Miscellaneous Parameters							
% Moisture	16.7		1.0	%	20-MAY-14	21-MAY-14	R2842163
Lead (Pb)	<5.0		5.0	mg/kg wwt	22-MAY-14	22-MAY-14	R2843389
L1456755-6 14-5-1							
Sampled By: JC on 15-MAY-14 @ 17:00							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Toluene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Ethylbenzene	<0.010		0.010	mg/kg	20-MAY-14	21-MAY-14	R2842386
Xylenes	<0.10		0.10	mg/kg	20-MAY-14	21-MAY-14	R2842386
o-Xylene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1456755-6 14-5-1							
Sampled By: JC on 15-MAY-14 @ 17:00							
Matrix: SOII							
m+p-Xvlene	<0.050		0.050	ma/ka	20-MAY-14	21-MAY-14	R2842386
Surrogate: 1.4-Difluorobenzene	108.4		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 4-Bromofluorobenzene	92.1		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 3,4-Dichlorotoluene	85.8		70-130	%	20-MAY-14	21-MAY-14	R2842386
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		21-MAY-14	
F1-BTEX	<10		10	mg/kg		21-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		21-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		21-MAY-14	
F4 (C34-C50)	65		50	mg/kg		21-MAY-14	
Total Hydrocarbons (C6-C50)	65		50	mg/kg		21-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	20-MAY-14	21-MAY-14	R2842201
TEH (C23-C60)	130		100	mg/kg	20-MAY-14	21-MAY-14	R2842201
Chrom. to baseline at nC50	YES		0		20-MAY-14	21-MAY-14	R2842201
Surrogate: 2-Bromobenzotrifluoride	74.5		70-130	%	20-MAY-14	21-MAY-14	R2842201
Miscellaneous Parameters							
% Moisture	13.0		1.0	%	20-MAY-14	21-MAY-14	R2842163
Lead (Pb)	5.7		5.0	mg/kg wwt	22-MAY-14	22-MAY-14	R2843389
L1456755-7 14-5-3							
Sampled By: JC on 15-MAY-14 @ 17:25							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Toluene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Ethylbenzene	<0.010		0.010	mg/kg	20-MAY-14	21-MAY-14	R2842386
Xylenes	<0.10		0.10	mg/kg	20-MAY-14	21-MAY-14	R2842386
o-Xylene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
m+p-Xylene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Surrogate: 1,4-Difluorobenzene	114.7		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 4-Bromofluorobenzene	113.5		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 3,4-Dichlorotoluene	90.4		70-130	%	20-MAY-14	21-MAY-14	R2842386
CCME Total Hydrocarbons	-10		10	ma/ka		21 MAV 14	
F1 (CO-CTO)	<10		10	mg/kg		21-MAV-14	
F2 (C10-C16)	<10		30	mg/kg		21-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		21-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		21-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	ma/ka		21-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-FID	100		00				
TEH (C11-C22)	<50		50	mg/kg	20-MAY-14	21-MAY-14	R2842201
TEH (C23-C60)	<100		100	mg/kg	20-MAY-14	21-MAY-14	R2842201
Chrom. to baseline at nC50	YES		0		20-MAY-14	21-MAY-14	R2842201
Surrogate: 2-Bromobenzotrifluoride	76.4		70-130	%	20-MAY-14	21-MAY-14	R2842201
Miscellaneous Parameters							
% Moisture	17.4		1.0	%	20-MAY-14	21-MAY-14	R2842163
MUST PSA % > 75um	66.9		0.10	%	21-MAY-14	21-MAY-14	R2842584
Lead (Pb)	5.7		5.0	mg/kg wwt	22-MAY-14	22-MAY-14	R2843389
· · ·							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L 1430/33-8 UUPLICATE A							
Sampled By. JC on 15-MAY-14 @ 17:00							
Matrix: SOIL BTEX E1-E4 and SK Pag. PHC's							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Toluene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Ethylbenzene	<0.010		0.010	mg/kg	20-MAY-14	21-MAY-14	R2842386
Xylenes	<0.10		0.10	mg/kg	20-MAY-14	21-MAY-14	R2842386
o-Xylene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
m+p-Xylene	<0.050		0.050	mg/kg	20-MAY-14	21-MAY-14	R2842386
Surrogate: 1,4-Difluorobenzene	119.2		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 4-Bromofluorobenzene	100.4		70-130	%	20-MAY-14	21-MAY-14	R2842386
Surrogate: 3,4-Dichlorotoluene	83.3		70-130	%	20-MAY-14	21-MAY-14	R2842386
CCME Total Hydrocarbons	~10		10	malka		21-MAV 14	
F1-BTEX	<10 ~10		10	ma/ka		21-MAY-14	
F2 (C10-C16)	<30		30	ma/ka		21-MAY-14	
F3 (C16-C34)	<50		50	ma/ka		21-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		21-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		21-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	20-MAY-14	21-MAY-14	R2842201
TEH (C23-C60)	<100		100	mg/kg	20-MAY-14	21-MAY-14	R2842201
Chrom. to baseline at nC50	YES		0		20-MAY-14	21-MAY-14	R2842201
Surrogate: 2-Bromobenzotrifluoride	78.9		70-130	%	20-MAY-14	21-MAY-14	R2842201
Miscellaneous Parameters							
% Moisture	12.4		1.0	%	20-MAY-14	21-MAY-14	R2842163
Lead (Pb)	<5.0		5.0	mg/kg wwt	22-MAY-14	22-MAY-14	R2843389
L1456755-9 14-5-6							
Sampled By: JC on 15-MAY-14 @ 17:45							
Matrix: SOIL							
Miscellaneous Parameters							
MUST PSA % > 75um	44.5		0.10	%	21-MAY-14	21-MAY-14	R2842584
Lead (Pb)	5.8		5.0	mg/kg wwt	22-MAY-14	22-MAY-14	R2843389

1544-2

Reference Information

L1456755 CONTD.... PAGE 7 of 8

Version: FINAL

Test Method Reference	s:		
ALS Test Code	Matrix	Test Description	Method Reference**
ETL-BTX,TVH-CCME-SK	Soil	CCME BTEX	CCME CWS-PHC DEC-2000 - PUB 1310
Fraction F1, C6 - C10 Hydr adding the methanol extrac 100% poly(dimethylsiloxan	rocarbons, is ct to a purge- e)column, wi	determined by extracting a 5 gram soil sample and-trap unit for release of volatile organics. Th th BTEX components quantified by MSD and th	with methanol, separating the methanol from the soil, then ne volatile organics are separated by gas chromatography using a e F1 range quantified using a flame ionization detector.
Note: The result of a BTEX	analysis is a	subtracted to give the final result.	
Reference: Modified EPA S	SW846 Meth	ods 5030/ 8260, CCME CSW PHC Dec 2000	
ETL-TVH,TEH-CCME-SK	Soil	CCME Total Hydrocarbons	CCME CWS-PHC DEC-2000 - PUB 1310
Analytical methods used for	or analysis of	CCME Petroleum Hydrocarbons have been val	idated and comply with the Reference Method for the CWS PHC.
Hydrocarbon results are ex	pressed on a	a dry weight basis.	
In cases where results for I the gravimetric heavy hydro In samples where BTEX ar been subtracted from F1.	both F4 and ocarbons car nd F1 were a	F4G are reported, the greater of the two results not be added to the C6 to C50 hydrocarbons. nalyzed,F1-BTEX represents a value where th	must be used in any application of the CWS PHC guidelines and ne sum of Benzene, Toluene, Ethylbenzene and total Xylenes has
In samples where PAHs, F represents a result where t Fluoranthene, Indeno(1,2,3	2 and F3 we he sum of Be 3-cd)pyrene,	re analyzed, F2-Naphth represents the result wh enzo(a)anthracene, Benzo(a)pyrene, Benzo(b)flu Phenanthrene, and Pyrene has been subtracted	nere Naphthalene has been subtracted from F2. F3-PAH uoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, I from F3.
Unless otherwise qualified, 1. All extraction and analys 2. Instrument performance 3. Linearity of gasoline resp	the following is holding tin showing res conse within	g quality control criteria have been met for the F nes were met. ponse factors for C6 and C10 within 30% of the 15% throughout the calibration range.	1 hydrocarbon range: response factor for toluene.
Unless otherwise qualified, 1. All extraction and analys 2. Instrument performance 3. Instrument performance 4. Linearity of diesel or mot	the following is holding tin showing C10 showing the tor oil respor	g quality control criteria have been met for the F nes were met. 0, C16 and C34 response factors within 10% of C50 response factor within 30% of the average se within 15% throughout the calibration range.	2-F4 hydrocarbon ranges: their average. of the C10, C16 and C34 response factors.
PB-MUST-SK	Soil	Lead (Pb)	SW846/3050/6010B
Lead in soil is converted to is determined using ICP-O	soluble form ES.	by wet oxidation using a combination of nitric a	acid, hydrogen peroxide and hydrochloric acid. Lead in the extract
PREP-MOISTURE-SK	Soil	% Moisture	Oven dry 105C-Gravimetric
The weighed portion of soil is calculated.	is placed in	a 105°C oven overnight. The dried soil is allow	ed to cooled to room temperature, weighed and the % moisture
Reference: ASTM D2216-8	30		
PSA-MUST-SK	Soil	% Particles > 75um (Coarse/Fine)	ASTM D422-63-SIEVE
An air-dried sample is redu µm) sieve. The retained ma	iced to < 2 m ass of sampl	m size and mixed with a dispersing agent (Calg e is used to determine % sand fraction.	on solution). The sample is washed through a 200 mesh (75
Reference: ASTM D422-63	3		
TEH-TMB-SK	Soil	Extractable Hydrocarbons. Tumbler/GC-FID	CWS-PHC DEC 2000 (SOIL)
This analysis is carried out Method, Canadian Council hydrocarbons (F4G-sg), a gel clean-up to remove pol	in accordand of Ministers subsample o ar compound	ce with the "Reference Method for the Canada-V of the Environment, December 2000." For C10 f the sediment/soil is extracted with 1:1 hexane: ls. F2, F3 & F4 are analyzed by on-column GC	Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 to C50 hydrocarbons (F2, F3, F4) and gravimetric heavy acetone using a rotary extractor. The extract undergoes a silica- /FID, and F4G-sg is analyzed gravimetrically.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
Chain of Custody Num	pers:		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

L1456755-2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at <u>www.alsglobal.com</u>.

ALS Sample ID:

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at <u>www.alsglobal.com</u>.

L1456755-COFC

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

Page <u>1</u> of <u>1</u>

Report to		Report F	ormat / Distrik	oution	-	Serv	ice R	equest	ed (Rusi	n for ro	utine ar	alysis su	oject to	availabilit	y)
Company:	PINTER & Associates Ltd.	Standard	d 🚺 Other			• R	egular	(Standard	Turnarou	und Tim	es - Busi	ness Days)			
Contact:	Jessica Cutter	✓ PDF	Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT						π						
Address:	710A 48th Street East	Email 1:	Email 1: jessica.cutter@pinter.ca					O Emergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT							
	Saskatoon, SK S7K 5B4	Email 2:	Email 2: <u>lpinter@pinter.ca</u>					O Same Day or Weekend Emergency - Contact ALS to Confirm TAT							
Phone:	306.244.1710 Fax: 306.933.4986	Email 3:	Email 3: dustin.hicke@pinter.ca					Analysis Request							
Invoice To	Same as Report ? Yes No	Client / Pr	roject Informatio	on		Ple	ase in	dicate I	pelow Fi	ltered	Prese	rved or b	ooth (F,	P, F/P)	
Hardcopy of	Invoice with Report? Yes Vo	Job #:	1544-2												
Company:	SAME	PO / AFE:													
Contact:		LSD:	Saskatoon, SK												
Address:															ners
Phone:	Fax:	Quote #:	Q37502	-		- F4									ntai
Lab V (lat	Vork Order #	ALS Contact:	Brian Morgan	Sampler:	JC	PHC F1	ze								r of Co
Sample	Sample Identification	994	Date	Time	Commits Trees		in Si								nbe
#	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	BTE	g								Nui
	14-1-4		15-May-14	10:30	Soil	X									2
	14-2-1		15-May-14	13:20	Soil	X									2
	14-2-3		15-May-14	13:45	Soil	X	Х								3
	14-3-3		15-May-14	14:45	Soil	X									2
	14-4-3		15-May-14	16:15	Soil	X									2
	14-5-1		15-May-14	17:00	Soil	X									2
	14-5-3		15-May-14	17:25	Soil	X	Х								3
	Duplicate A		15-May-14	17:00	Soil	X									2
	14-5-6		15-May-14	17:45	Soil		Х		6	AR					3
	Special Instructions / Regulations with water or land	d use (CCM	E-Freshwater A	quatic Life/BC	CSR - Commerci	ial/AE	3 Tier	1 - Nat	ural, etc	:) / Ha	zardou	us Detai	s		
	An														
	Failure to complete all By the use of this form the user ackno	portions of owledges a	f this form may nd agrees with t s, phone numbe	delay analysis. the Terms and rs and sample	Please fill in thi Conditions as pr container / prese	s fori rovide ervati	n LE(ed on on / h	GIBLY. a sepa olding	rate Ex time ta	cel ta ble fo	b. r comr	non ana	lvses.		
	SHIPMENT RELEASE (client use)	SHIP	MENT RECEPTIO	ON (lab use onl	γ) *			SHIF	MENT	VERIF	ICATIO	DN (lab i	ise onl	y)	
Released by	r: Date (dd-mmm-yy) Time (hh-mm) Received	by:	Date:	Time:	Temperature:	Veri	fied bj	¥ 0 /	Dat	e:	-	Fime:	0	Observa	iiqns:
Jessica Cutte	er 16-May-14 14:00		16-MAY-14	2:45pm	10 °C,			UL.	- 167	MAY.	jy	<u>3:</u> 2	m	res (No f Yes ad	∦ d SIF
		The second s						Provide State					NA-FM-03	26d v06 Front / 3	2 May 2013

ALS Laboratory Group Additional/Changes/Request Form

Addit Analy	ional sis	х	Analysis Change In house	Analysis Change Other La	ab
DATE	20-MAY-14		REQUESTED BY CL	IENT/LAB CLIENT / AN	M
Log In File #:	L1456755				
ADDITIONA (CHANGE	L ANALYSIS)	PSA-M	IUST-SK (3, 7, 9); PB-J	MUST-SK (all samples)	
Sample ID #		3, 7, 9	- (all for PB-MUST)		
REMOVE A	NALYSIS	GRAI	N SIZE-SK		
Sample ID #					
PREP: (ADD) (REM	OVE)			
200 CODES:	DONE		TRANSIT		
DUE DATE	EMER	GENCY	PRIORITY	RUSH	REG
	* J. MATT, Y.J. V				
Comments:					
Bill the Clien	t:			Do Not Bill the Client:	
Request Take	n By: BEM		. ·		
Approved By	: Receiving Lab	LAH bfe		Changed By	

PINTER AND ASSOCIATES LTD. ATTN: JESSICA CUTTER 710A 48th Street East Saskatoon SK S7K 5B4 Date Received: 27-MAY-14 Report Date: 02-JUN-14 15:20 (MT) Version: FINAL

Client Phone: 306-244-1710

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1460494 NOT SUBMITTED 1544-2

SASKATOON

la

Brian Morgan Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: #819-58th St E., Saskatoon, SK S7K 6X5 Canada | Phone: +1 306 668 8370 | Fax: +1 306 668 8383 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1460494-1 14-6-3 Sampled By: JC on 20-MAY-14 @ 14:35 Matrix: SOIL BTEX, F1-F4 and SK Reg. PHC's. CCME BTEX Benzene Toluene <0.0050 0.0050 mg/kg 27-MAY-14 28-MAY-14 R2847 Toluene <0.010 <0.010 0.010 mg/kg 27-MAY-14 28-MAY-14 R2847 Kylenes <0.010 <0.010 0.010 0.050 mg/kg 27-MAY-14 28-MAY-14 R2847 Kylenes <0.010 <0.010 0.050 mg/kg 27-MAY-14 28-MAY-14 R2847 Xylenes <0.010 <0.050 0.050 <0.050	347549 347549 347549 347549 347549 347549 347549 347549 347549
Sampled By: JC on 20-MAY-14 @ 14:35 Matrix: SOIL BTEX, F1-F4 and SK Reg. PHC's. CCME BTEX Benzene <0.0050	347549 347549 347549 347549 347549 347549 347549 347549 347549
Matrix: SOIL BTEX, F1-F4 and SK Reg. PHC's. CCME BTEX Benzene <0.0050	347549 347549 347549 347549 347549 347549 347549 347549 347549
BTEX, F1-F4 and SK Reg. PHC's. <	347549 347549 347549 347549 347549 347549 347549 347549 347549
CCME BTEX </td <td>347549 347549 347549 347549 347549 347549 347549 347549 347549</td>	347549 347549 347549 347549 347549 347549 347549 347549 347549
Benzene <0.0050 mg/kg 27-MAY-14 28-MAY-14 R2847 Toluene <0.050	347549 347549 347549 347549 347549 347549 347549 347549 347549
Toluene <0.050 mg/kg 27-MAY-14 28-MAY-14 R2847 Ethylbenzene <0.010	347549 347549 347549 347549 347549 347549 347549 347549
Ethylbenzene <0.010 0.010 mg/kg 27-MAY-14 28-MAY-14 R2847 Xylenes <0.10	347549 347549 347549 347549 347549 347549 347549
Xylenes <0.10 0.10 mg/kg 27-MAY-14 28-MAY-14 R2847	347549 347549 347549 347549 347549
0.3 Viene 0.050 0.050 0.050 0.050 0.050 0.050 0.050	347549 347549 347549 347549
	347549 347549 347549
m+p-Xylene <0.050 0.050 mg/kg 27-MAY-14 28-MAY-14 R284/	347549 347549
Surrogate: 4-Bromofluorobenzene 95.1 70-130 % 27-MAY-14 20-MAY-14 R2047	347 349
Surrogate: 3 4-Dichlorotoluene 89.3 70-130 % 27-MAY-14 28-MAY-14 R2847	117510
CCME Total Hydrocarbons)47 343
F1 (C6-C10) <10 10 mg/kg 29-MAY-14	
F1-BTEX <10 10 mg/kg 29-MAY-14	
F2 (C10-C16) <30 30 mg/kg 29-MAY-14	
F3 (C16-C34) <50 50 mg/kg 29-MAY-14	
F4 (C34-C50) <50 mg/kg 29-MAY-14	
Total Hydrocarbons (C6-C50) <50 mg/kg 29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	
TEH (C11-C22) <50 50 mg/kg 27-MAY-14 29-MAY-14 R2847	347987
TEH (C23-C60) <100 100 mg/kg 27-MAY-14 29-MAY-14 R2847	347987
Chrom. to baseline at nC50 YES 0 27-MAY-14 29-MAY-14 R2847	347987
Surrogate: 2-Bromobenzotrifluoride 75.4 70-130 % 27-MAY-14 29-MAY-14 R2847	347987
Miscellaneous Parameters	0.474.00
% Moisture 12.1 1.0 % 27-MAY-14 28-MAY-14 R284/	347130
	347556
L1460494-2 14-6 AND 14-7 SURFACE SAMPLE	
Sampled By: JC on 20-MAY-14 @ 14:32	
Matrix: SOIL	
COME BIEX Benzene <0.0050 0.0050 mg/kg 27-MAY-14 28-MAY-14 R2847	347549
Toluene <0.050 0.050 mg/kg 27-MAY-14 28-MAY-14 R2847	347549
Ethylbenzene <0.010 0.010 mg/kg 27-MAY-14 28-MAY-14 R2847	347549
Xylenes <0.10 0.10 mg/kg 27-MAY-14 28-MAY-14 R2847	347549
o-Xylene <0.050 0.050 mg/kg 27-MAY-14 28-MAY-14 R2847	347549
m+p-Xylene <0.050 0.050 mg/kg 27-MAY-14 28-MAY-14 R2847	347549
Surrogate: 1,4-Difluorobenzene 97.9 70-130 % 27-MAY-14 28-MAY-14 R2847	347549
Surrogate: 4-Bromofluorobenzene 85.7 70-130 % 27-MAY-14 28-MAY-14 R2847	347549
Surrogate: 3,4-Dichlorotoluene 107.9 70-130 % 27-MAY-14 28-MAY-14 R2847	347549
CCME Total Hydrocarbons	
F1 (C6-C10) <10 10 mg/kg 29-MAY-14	
FI-BIEA <10 10 mg/kg 29-MAY-14 E2 (C10 C16)	
(150) (150) (150) (150) (160) (150) (160) $(160$	
F4 (C34-C50) = 10700 = DLA = 250 = mg/kg = 23-MAT-14 = 20-MAV-14	
Total Hydrocarbons (C6-C50) 17900 250 mg/kg 29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	
TEH (C11-C22) 710 DLA 250 mg/kg 27-MAY-14 29-MAY-14 R2847	347987
TEH (C23-C60) 17800 DLA 500 mg/kg 27-MAY-14 29-MAY-14 R2847	347987
Chrom. to baseline at nC50 NO 0 27-MAY-14 29-MAY-14 R2847	347987
Surrogate: 2-Bromobenzotrifluoride N/A SDO:RNA - % 27-MAY-14 29-MAY-14 R2847	

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460494-2 14-6 AND 14-7 SURFACE SAMPLE							
Matrix							
Matrix: SOIL Miscellaneous Parameters							
% Moisture	21.2		1.0	%	27-MAY-14	28-MAY-14	R2847130
Lead (Pb)	20.1		5.0	ma/ka wwt	28-MAY-14	28-MAY-14	R2847556
	20.1		0.0	mg/kg wwt	2010/11 14	20 10/11 14	112047330
L1400494-3 14-9-4 Sampled By: IC on 20 MAX 14 @ 14:37							
Matrix							
BTEX E1-E4 and SK Reg PHC's							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Toluene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Ethylbenzene	<0.010		0.010	mg/kg	27-MAY-14	28-MAY-14	R2847555
Xylenes	<0.10		0.10	mg/kg	27-MAY-14	28-MAY-14	R2847555
o-Xylene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
m+p-Xylene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Surrogate: 1,4-Difluorobenzene	107.1		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 4-Bromonuorobenzene	93.1		70-130	%	27-MAY-14	28-MAY-14	R2847555
COME Total Hydrogerbana	64.9		70-130	%	27-IVIA 1-14	20-IVIA I - 14	R2047555
EL (C6-C10)	<10		10	ma/ka		29-MAY-14	
F1-BTEX	<10		10	ma/ka		29-MAY-14	
F2 (C10-C16)	37		30	mg/kg		29-MAY-14	
F3 (C16-C34)	150		50	mg/kg		29-MAY-14	
F4 (C34-C50)	105		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	292		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID TEH (C11-C22)	50		50	mg/kg	27-MAY-14	29-MAY-14	R2847924
TEH (C23-C60)	260		100	mg/kg	27-MAY-14	29-MAY-14	R2847924
Chrom. to baseline at nC50	YES		0		27-MAY-14	29-MAY-14	R2847924
Surrogate: 2-Bromobenzotrifluoride	73.6		70-130	%	27-MAY-14	29-MAY-14	R2847924
Miscellaneous Parameters							
% Moisture	7.5		1.0	%	27-MAY-14	28-MAY-14	R2847446
Lead (Pb)	<5.0		5.0	mg/kg wwt	28-MAY-14	28-MAY-14	R2847556
L1460494-4 14-9-6							
Sampled By: JC on 20-MAY-14 @ 14:40							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
	<0.0050		0.0050	ma/ka	27-MAV-14	28-MAV-14	D2947555
Toluene	<0.0000		0.0000	ma/ka	27-MAY-14	28-MAY-14	R2847555
Ethylbenzene	<0.010		0.010	ma/ka	27-MAY-14	28-MAY-14	R2847555
Xylenes	<0.10		0.10	mg/kg	27-MAY-14	28-MAY-14	R2847555
o-Xylene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
m+p-Xylene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Surrogate: 1,4-Difluorobenzene	109.2		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 4-Bromofluorobenzene	87.5		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 3,4-Dichlorotoluene	77.0		70-130	%	27-MAY-14	28-MAY-14	R2847555
CCME Total Hydrocarbons	40		40			20 MAY 44	
	<10		10	mg/kg		29-IVIAY-14	
F1-D1EA F2 (C10-C16)	<1U ~30		10 20	mg/kg		29-IVIA I - 14 29-M∆V-11	
F3 (C16-C34)	112		50	ma/ka		29-MAY-14	
F4 (C34-C50)	54		50	mg/kg		29-MAY-14	

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1460494-4 14-9-6 Sampled By: JC on 20-MAY-14 @ 14:40 Matrix: SOIL CCME Total Hydrocarbons Total Hydrocarbons (C6-C50) 166 Extractable Hydrocarbons (C6-C50) 166 TEH (C11-C22) 54 TEH (C23-C60) 150 Chrom. to baseline at nC50 YES Surrogate: 2-Bromobenzotrifluoride 74.6 Miscellaneous Parameters 8.2 % Moisture 8.2 L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 Matrix: SOIL							
Sampled By: JC on 20-MAY-14 @ 14:40 Matrix: SOIL CCME Total Hydrocarbons 166 Total Hydrocarbons (C6-C50) 166 Extractable Hydrocarbons. Tumbler/GC-FID TEH (C11-C22) 54 TEH (C23-C60) 150 Chrom. to baseline at nC50 YES Surrogate: 2-Bromobenzotrifluoride 74.6 Miscellaneous Parameters 8.2 % Moisture 8.2 Lead (Pb) 5.6 L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 Matrix: SOIL							
Matrix: SOIL							
Containation Containation <th< td=""><td></td></th<>							
Total Hydrocarbons (C6-C50) 166 50 mg/kg 29-MAY-14 Extractable Hydrocarbons. Tumbler/GC-FID 54 50 mg/kg 27-MAY-14 29-MAY-14 TEH (C11-C22) 54 50 mg/kg 27-MAY-14 29-MAY-14 R28479 TEH (C23-C60) 150 100 mg/kg 27-MAY-14 29-MAY-14 R28479 Chrom. to baseline at nC50 YES 0 27-MAY-14 29-MAY-14 R28479 Surrogate: 2-Bromobenzotrifluoride 74.6 70-130 % 27-MAY-14 29-MAY-14 R28479 Miscellaneous Parameters 8.2 1.0 % 27-MAY-14 29-MAY-14 R28479 % Moisture 8.2 1.0 % 27-MAY-14 29-MAY-14 R28479 Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28474 Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28479 Matrix: SOIL SOIL - - - -							
Extractable Hydrocarbons. Tumbler/GC-FID 54 50 mg/kg 27-MAY-14 29-MAY-14 R28479 TEH (C11-C22) 150 100 mg/kg 27-MAY-14 29-MAY-14 R28479 Chrom. to baseline at nC50 YES 0 27-MAY-14 29-MAY-14 R28479 Surrogate: 2-Bromobenzotrifluoride 74.6 70-130 % 27-MAY-14 29-MAY-14 R28479 Miscellaneous Parameters 8.2 1.0 % 27-MAY-14 29-MAY-14 R28479 % Moisture 8.2 1.0 % 27-MAY-14 29-MAY-14 R28479 Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28479 L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 R28479 Matrix: SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL							
TEH (C11-C22) 54 50 mg/kg 27-MAY-14 29-MAY-14 R28479 TEH (C23-C60) 150 100 mg/kg 27-MAY-14 29-MAY-14 R28479 Chrom. to baseline at nC50 YES 0 27-MAY-14 29-MAY-14 R28479 Surrogate: 2-Bromobenzotrifluoride 74.6 70-130 % 27-MAY-14 29-MAY-14 R28479 Miscellaneous Parameters 8.2 1.0 % 27-MAY-14 29-MAY-14 R28479 % Moisture 8.2 1.0 % 27-MAY-14 28-MAY-14 R28479 Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28479 L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 R28479 Image: Constant of the second of the se							
TEH (C23-C60) 150 100 mg/kg 27-MAY-14 29-MAY-14 R28479 Chrom. to baseline at nC50 YES 0 27-MAY-14 29-MAY-14 R28479 Surrogate: 2-Bromobenzotrifluoride 74.6 70-130 % 27-MAY-14 29-MAY-14 R28479 Miscellaneous Parameters 8.2 1.0 % 27-MAY-14 28-MAY-14 R28479 % Moisture 8.2 1.0 % 27-MAY-14 28-MAY-14 R28479 Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28479 L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 R28479 Image: Constant of the second seco	24						
Chrom. to baseline at nC50 YES 0 27-MAY-14 29-MAY-14 R28475 Surrogate: 2-Bromobenzotrifluoride 74.6 70-130 % 27-MAY-14 29-MAY-14 R28475 Miscellaneous Parameters 8.2 1.0 % 27-MAY-14 28-MAY-14 R28474 Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28475 L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 A Image: Comparison of the second s	24						
Surrogate: 2-Bromobenzotrifluoride 74.6 70-130 % 27-MAY-14 29-MAY-14 R28479 Miscellaneous Parameters 8.2 1.0 % 27-MAY-14 28-MAY-14 R28474 V Moisture 8.2 1.0 % 27-MAY-14 28-MAY-14 R28474 Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28475 L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 L <t< td=""><td>24</td></t<>	24						
Miscellaneous Parameters 8.2 1.0 % 27-MAY-14 28-MAY-14 R28474 Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28474 L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 Image: Compare the second sec	24						
% Moisture 8.2 1.0 % 27-MAY-14 28-MAY-14 R28474 Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28474 L1460494-5 14-10-3 5.6 5.0 mg/kg wwt 28-MAY-14 R28475 Sampled By: JC on 20-MAY-14 @ 15:32 JC Image: SOIL Image: SOIL <td< td=""><td></td></td<>							
Lead (Pb) 5.6 5.0 mg/kg wwt 28-MAY-14 R28476 L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 Image: Compare the second	46						
L1460494-5 14-10-3 Sampled By: JC on 20-MAY-14 @ 15:32 Matrix: SOIL	56						
Sampled By: JC on 20-MAY-14 @ 15:32 Matrix: SOIL							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
Delizene <0.0050 0.0050 Ing/kg 27-MAY-14 26-MAY-14 R284/5 Toluopo -0.050 -0.050 -0.050 -0.050 -0.050 -0.050)) 55						
CO.050 110/kg 27-MAT-14 20-MAT-14 R20475	55 55						
Xvlenes <0.010 0.010 mg/kg 27-MAY-14 28-MAY-14 R28475	55 55						
o-Xvlene <0.50 0.00 mg/kg 27-MAY-14 28-MAY-14 R28475	55 55						
m+p-Xylene <0.050 0.050 mg/kg 27-MAY-14 28-MAY-14 R28475	55						
Surrogate: 1,4-Difluorobenzene 116.1 70-130 % 27-MAY-14 28-MAY-14 R28475	55						
Surrogate: 4-Bromofluorobenzene 105.6 70-130 % 27-MAY-14 28-MAY-14 R28475	55						
Surrogate: 3,4-Dichlorotoluene 78.3 70-130 % 27-MAY-14 28-MAY-14 R28475	55						
CCME Total Hydrocarbons							
F1 (C6-C10) <10 10 mg/kg 29-MAY-14							
FI-DIEA <10 10 mg/kg 29-MAY-14							
$F_3(C_{16}-C_{34})$ 86 50 mg/kg 29-MAY-14							
F4 (C34-C50) 78 50 mg/kg 29-MAY-14							
Total Hydrocarbons (C6-C50) 164 50 mg/kg 29-MAY-14							
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22) <50 50 mg/kg 27-MAY-14 29-MAY-14 R28479	24						
TEH (C23-C60) 170 100 mg/kg 27-MAY-14 29-MAY-14 R28479	24						
Chrom. to baseline at nC50 YES 0 27-MAY-14 29-MAY-14 R28479	24						
Surrogate: 2-Bromobenzotrifluoride 75.2 70-130 % 27-MAY-14 29-MAY-14 R28479	24						
Miscellaneous Parameters							
% Moisture 8.5 1.0 % 27-MAY-14 28-MAY-14 R284/4	46						
MUST PSA % > /5um 51.5 0.10 % 28-MAY-14 28-MAY-14 R28482) 4						
Lead (Pb) <5.0 5.0 mg/kg wwt 28-MAY-14 28-MAY-14 R284/5	56						
L1460494-6 14-10-6							
BTEX. F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene <0.0050 0.0050 mg/kg 27-MAY-14 28-MAY-14 R28475	55						
Toluene <0.050 0.050 mg/kg 27-MAY-14 28-MAY-14 R28475	55						
Ethylbenzene <0.010 0.010 mg/kg 27-MAY-14 28-MAY-14 R28475	55						
Xylenes <0.10 mg/kg 27-MAY-14 28-MAY-14 R28475	55						
o-Xylene <0.050 0.050 mg/kg 27-MAY-14 28-MAY-14 R28475	55						
m+p-Xylene <0.050 0.050 mg/kg 27-MAY-14 28-MAY-14 R28475	55						
Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
---	---------	------------	-------------	------------------	----------------------	--------------	-----------
L1460494-6 14-10-6							
Sampled By: JC on 20-MAY-14 @ 16:32							
Matrix: SOIL							
CCME BTEX							
Surrogate: 1,4-Difluorobenzene	109.2		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 4-Bromofluorobenzene	95.3		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 3,4-Dichlorotoluene	77.3		70-130	%	27-MAY-14	28-MAY-14	R2847555
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (C16-C34)	100		50	mg/kg		29-MAY-14	
F4 (C34-C50)	54		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	154		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	50		50		07 MAX 44	00 MAX 44	D0047004
TEH (C11-C22)	<50		50	mg/kg	27-IVIA Y-14	29-IMAY-14	R2847924
$\begin{array}{c} IEH (C23\text{-}C60) \\ Chrom to \; bosoling \; ot \; nCE0 \\ \end{array}$	150		100	тід/кд	27 MAV 14	29-IVIA 1-14	R2847924
Surregate: 2 Bromohonzetrifluoride	160		U 70 120	0/	27 -IVIA 1 - 14	29-IMA 1-14	R2047924
Miscellaneous Parameters	75.0		70-130	70	27-IVIA 1-14	29-IVIA 1-14	K2047924
Whisterro	0 6		1.0	0/	27 MAV 14	29 MAV 14	D2047446
MUST BSA % > 75um	0.0		0.10	70 0/	27-IVIAT-14	20-MAV 14	R2047440
	40.3		0.10	70 ma/ka unut	20-IVIA 1-14	20-IVIA 1-14	R2040294
	5.3		5.0	mg/kg wwi	20-1VIA I - 14	20-IVIA 1-14	R2847556
L1460494-7 14-8-3							
Sampled By: JC on 20-MAY-14 @ 17:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
	0.0050		0.0050		07 MAX 44	00 MAX 44	D00 47555
Teluene	<0.0050		0.0050	mg/kg	27-IVIA Y-14	28-IMAY-14	R2847555
Ethylbonzono	<0.050		0.050	mg/kg	27 -IVIA 1 - 14	20-IVIA 1-14	R2047555
Yvlenes	<0.010		0.010	mg/kg	27-MAV-14	28-MAV-14	R2047555
o-Xvlene	<0.10		0.10	ma/ka	27-MAY-14	28-MAY-14	R2847555
m+p-Xylene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Surrogate: 1.4-Difluorobenzene	117.0		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 4-Bromofluorobenzene	96.6		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 3.4-Dichlorotoluene	81.2		70-130	%	27-MAY-14	28-MAY-14	R2847555
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	27-MAY-14	29-MAY-14	R2847924
TEH (U23-U60)	<100		100	mg/kg	27-MAY-14	29-MAY-14	R2847924
Chirom. to baseline at NC50	YES		0	0/	27-IVIAY-14	29-MAY-14	R2847924
Surrogate. 2-Dromoberizotrinuoride	11.8		70-130	%	∠ <i>1</i> -IVIAY-14	∠9-IVIA Y-14	K2847924
Miscellaneous Parameters	407		4.0	0/		00 MAX 44	D0047440
	10.7		1.0	<i>%</i> 0	21-IVIAY-14	20-IVIA ¥-14	R204/440
	<5.0		5.0	rng/кg wwt	28-IVIAY-14	28-IVIAY-14	K284/556

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
11460404 9 14 9 6							
Sampled By: IC on 20-MAV-14 @ 18:32							
Matrix: SOIL RTEX E1-E4 and SK Pog PHC's							
COME DIEX							
Benzene	<0.0050		0.0050	ma/ka	27-MAY-14	28-MAY-14	R2847555
Toluene	< 0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Ethylbenzene	<0.010		0.010	mg/kg	27-MAY-14	28-MAY-14	R2847555
Xylenes	<0.10		0.10	mg/kg	27-MAY-14	28-MAY-14	R2847555
o-Xylene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
m+p-Xylene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Surrogate: 1,4-Difluorobenzene	109.4		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 4-Bromofluorobenzene	91.1		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 3,4-Dichlorotoluene	84.7		70-130	%	27-MAY-14	28-MAY-14	R2847555
CCME Total Hydrocarbons	10					00 14014 44	
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-B1EA E2 (C10 C16)	<10		10	mg/kg		29-IMAY-14	
$F_2(C16-C14)$	<30		50	mg/kg		29-MAY-14	
F4 (C34-C50)	57		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	151		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-FID	101		00			20	
TEH (C11-C22)	<50		50	mg/kg	27-MAY-14	29-MAY-14	R2847924
TEH (C23-C60)	150		100	mg/kg	27-MAY-14	29-MAY-14	R2847924
Chrom. to baseline at nC50	YES		0		27-MAY-14	29-MAY-14	R2847924
Surrogate: 2-Bromobenzotrifluoride	75.1		70-130	%	27-MAY-14	29-MAY-14	R2847924
Miscellaneous Parameters							
% Moisture	8.3		1.0	%	27-MAY-14	28-MAY-14	R2847446
Lead (Pb)	<5.0		5.0	mg/kg wwt	28-MAY-14	28-MAY-14	R2847556
L1460494-9 14-11-3							
Sampled By: JC on 20-MAY-14 @ 19:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
			0.0050	malka	27 MAV 14	29 MAV 14	D0047666
	<0.0050		0.0050	mg/kg	27 MAV 14	20-IVIA 1-14	R2847555
Ethylbenzene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2047555
Xvlenes	<0.010		0.010	mg/kg	27-MAY-14	28-MAY-14	R2847555
o-Xvlene	<0.050		0.050	ma/ka	27-MAY-14	28-MAY-14	R2847555
m+p-Xylene	< 0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Surrogate: 1,4-Difluorobenzene	108.2		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 4-Bromofluorobenzene	92.3		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 3,4-Dichlorotoluene	84.9		70-130	%	27-MAY-14	28-MAY-14	R2847555
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (U16-U34)	<50		50	mg/kg		29-MAY-14	
F4 (U34-U3U) Tatal Hydrocarbans (C6-C50)	<50		50	mg/kg		29 - IVIAY - 14	
Extractable Hydrocarbona, Tumbles/CC FID	<00		50	шу/кд		29-IVIA 1-14	
TFH (C11-C22)	<50		50	ma/ka	27-MAY-14	29-MAY-14	R2847924
TEH (C23-C60)	<100		100	mg/ka	27-MAY-14	29-MAY-14	R2847924
Chrom. to baseline at nC50	YES		0	3.3	27-MAY-14	29-MAY-14	R2847924
Surrogate: 2-Bromobenzotrifluoride	78.6		70-130	%	27-MAY-14	29-MAY-14	R2847924

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameter	S	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460404 0 14 11 2								
Sampled By: JC on 20-I	MAY-14 @ 19·32							
Matrix: SOII	W/T1 14 @ 10.02							
Miscellaneous Parame	eters							
% Moisture		8.3		1.0	%	27-MAY-14	28-MAY-14	R2847446
Lead (Pb)		5.3		5.0	ma/ka wwt	28-MAY-14	28-MAY-14	R2847556
11460494-10 14-11-4					5.5			
Sampled By: JC on 20-I	MAY-14 @ 19:33							
Matrix: SOII								
BTEX, F1-F4 and SK Red	a. PHC's.							
CCME BTEX								
Benzene		<0.0050		0.0050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Toluene		<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Ethylbenzene		<0.010		0.010	mg/kg	27-MAY-14	28-MAY-14	R2847555
Xylenes		<0.10		0.10	mg/kg	27-MAY-14	28-MAY-14	R2847555
o-Xylene		<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Surrogate: 1 4-Difluorob		< 0.050		0.050	mg/кg «	27 -IVIA Y - 14	28-IMAY-14	R2847555
Surrogate: 4-Bromofluor	robenzene	92.6		70-130	/0 %	27-MAY-14	28-MAY-14	R2847555
Surrogate: 3.4-Dichlorot	oluene	89.8		70-130	%	27-MAY-14	28-MAY-14	R2847555
CCME Total Hydrocark	oons				, -			
F1 (C6-C10)		<10		10	mg/kg		29-MAY-14	
F1-BTEX		<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)		<30		30	mg/kg		29-MAY-14	
F3 (C16-C34)		77		50	mg/kg		29-MAY-14	
F4 (C34-C50)		<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6	-C50)	77		50	mg/kg		29-MAY-14	
Extractable Hydrocarb	ons. Tumbler/GC-FID	~50		50	ma/ka	27-MAV-14	20-MAV-14	D2947024
TEH (C23-C60)		120		100	ma/ka	27-MAY-14	29-MAY-14	R2847924
Chrom. to baseline at n	C50	YES		0	iiig/kg	27-MAY-14	29-MAY-14	R2847924
Surrogate: 2-Bromoben:	zotrifluoride	77.5		70-130	%	27-MAY-14	29-MAY-14	R2847924
Miscellaneous Parame	eters	-						
% Moisture		7.8		1.0	%	27-MAY-14	28-MAY-14	R2847446
Lead (Pb)		<5.0		5.0	mg/kg wwt	28-MAY-14	28-MAY-14	R2847556
L1460494-11 DUP B								
Sampled By: JC on 20-I	MAY-14 @ 18:32							
Matrix: SOIL								
BTEX, F1-F4 and SK Reg	g. PHC's.							
CCME BTEX								
Benzene		<0.0050		0.0050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Toluene		<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Ethylbenzene		<0.010		0.010	mg/kg	27-MAY-14	28-MAY-14	R2847555
Aylenes		<0.10		0.10	mg/kg	27-IVIA Y-14	28-IVIA Y-14	R2847555
0-Aylene		<0.050		0.050	mg/kg	27-MAY-14	20-IVIA 1-14	R2047555
Surrogate: 1 4-Difluorob	enzene	<0.050 107.0		70-130	тту/ку %	27-MAY-14	28-MAY-14	R2847555
Surrogate: 4-Bromofluor	robenzene	96.9		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 3,4-Dichlorot	oluene	84.7		70-130	%	27-MAY-14	28-MAY-14	R2847555
CCME Total Hydrocark	oons							
F1 (C6-C10)		<10		10	mg/kg		29-MAY-14	
F1-BTEX		<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)		40		30	mg/kg		29-MAY-14	
F3 (C16-C34)		181		50	mg/kg		29-MAY-14	
F4 (C34-C50)		131		50	mg/kg		29-MAY-14	

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460494-11 DUP B							
Sampled By: JC on 20-MAY-14 @ 18:32							
Matrix: SOIL							
CCME Total Hydrocarbons Total Hydrocarbons (C6-C50)	352		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	57		50	mg/kg	27-MAY-14	29-MAY-14	R2847924
TEH (C23-C60)	310		100	mg/kg	27-MAY-14	29-MAY-14	R2847924
Chrom. to baseline at nC50	YES		0	<i></i>	27-MAY-14	29-MAY-14	R2847924
Surrogate: 2-Bromobenzotrinuonde	76.5		70-130	%	27-IVIAY-14	29-MAY-14	R2847924
Miscellaneous Parameters	10.0		1.0	0/	07 MAV 44	00 MAV 44	D0047440
% Moisture	10.6		1.0	% ~~~//.~	27-IVIA Y-14	28-MAY 14	R2847446
	<5.0		5.0	mg/kg wwi	20-IVIA I - 14	20-IVIA 1-14	R2847556
Sampled By: JC on 20-MAY-14 @ 21:32							
Matrix: SOIL							
CCME RTEX							
Benzene	<0.0050		0.0050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Toluene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Ethylbenzene	<0.010		0.010	mg/kg	27-MAY-14	28-MAY-14	R2847555
Xylenes	<0.10		0.10	mg/kg	27-MAY-14	28-MAY-14	R2847555
o-Xylene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
m+p-Xylene	<0.050		0.050	mg/kg	27-MAY-14	28-MAY-14	R2847555
Surrogate: 1,4-Difluorobenzene	110.7		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 4-Bromofluorobenzene	82.1		70-130	%	27-MAY-14	28-MAY-14	R2847555
Surrogate: 3,4-Dichlorotoluene	85.4		70-130	%	27-MAY-14	28-MAY-14	R2847555
CCME Total Hydrocarbons	10		4.0			00 1441/ 44	
F1 (C6-C10) E1 PTEV	<10		10	mg/кg mg/kg		29-MAY-14	
F1-B1LA F2 (C10-C16)	<10		20	mg/kg		29-MAY-14	
F3 (C16-C34)	<50		50	ma/ka		29-MAY-14	
F4 (C34-C50)	<50		50	ma/ka		29-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	27-MAY-14	29-MAY-14	R2847924
TEH (C23-C60)	<100		100	mg/kg	27-MAY-14	29-MAY-14	R2847924
Chrom. to baseline at nC50	YES		0	0/	27-MAY-14	29-MAY-14	R2847924
Surrogate: 2-Bromobenzotniluonde	73.0		70-130	%	27-IVIA Y-14	29-IVIA Y-14	R2847924
Moistura	13.6		1.0	0/_	27 - MAV-14	28-MAV-1/	P2847446
	15.0		0.10	/0 0/.	27 - WAT - 14	20-IMAT-14	R2047440
Lead (Ph)	95.9 ~5.0		5.0	70 ma/ka wwt	28-MAV-14	28-MAV-14	R2040294
	<5.0		5.0	iiig/kg wwt	20-101A 1 - 14	20-101A 1 - 14	K2047550

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
DLA	Detection Limit adjusted for required dilution
SDO:RNA	Surrogate diluted out:% recovery not available

Test Method References: ALS Test Code Matrix **Test Description** Method Reference**

ETL-BTX,TVH-CCME-SK Soil CCME BTEX

CCME CWS-PHC DEC-2000 - PUB 1310

Fraction F1, C6 - C10 Hydrocarbons, is determined by extracting a 5 gram soil sample with methanol, separating the methanol from the soil, then adding the methanol extract to a purge-and-trap unit for release of volatile organics. The volatile organics are separated by gas chromatography using a 100% poly(dimethylsiloxane)column, with BTEX components quantified by MSD and the F1 range quantified using a flame ionization detector.

Note: The result of a BTEX analysis is subtracted to give the final result.

Reference: Modified EPA SW846 Methods 5030/ 8260, CCME CSW PHC Dec 2000

ETL-TVH,TEH-CCME-SK Soil CCME Total Hydrocarbons CCME CWS-PHC DEC-2000 - PUB 1310

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

1. All extraction and analysis holding times were met.

- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise gualified, the following guality control criteria have been met for the F2-F4 hydrocarbon ranges:

1. All extraction and analysis holding times were met.

- 2. Instrument performance showing C10. C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.

4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

PB-MUST-SK Lead (Pb) Soil

Lead in soil is converted to soluble form by wet oxidation using a combination of nitric acid, hydrogen peroxide and hydrochloric acid. Lead in the extract is determined using ICP-OES.

PREP-MOISTURE-SK Soil % Moisture

The weighed portion of soil is placed in a 105°C oven overnight. The dried soil is allowed to cooled to room temperature, weighed and the % moisture is calculated.

Reference: ASTM D2216-80

PSA-MUST-SK Soil

% Particles > 75um (Coarse/Fine)

ASTM D422-63-SIEVE

An air-dried sample is reduced to < 2 mm size and mixed with a dispersing agent (Calgon solution). The sample is washed through a 200 mesh (75 µm) sieve. The retained mass of sample is used to determine % sand fraction.

Reference: ASTM D422-63

TEH-TMB-SK

Soil

Extractable Hydrocarbons. Tumbler/GC-FID CWS-PHC DEC 2000 (SOIL)

This analysis is carried out in accordance with the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For C10 to C50 hydrocarbons (F2, F3, F4) and gravimetric heavy hydrocarbons (F4G-sg), a subsample of the sediment/soil is extracted with 1:1 hexane:acetone using a rotary extractor. The extract undergoes a silicagel clean-up to remove polar compounds. F2, F3 & F4 are analyzed by on-column GC/FID, and F4G-sg is analyzed gravimetrically.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

SW846/3050/6010B

Oven dry 105C-Gravimetric

Reference Information

L1460494 CONTD.... PAGE 10 of 10 Version: FINAL

Test Method References: ALS Test Code Matrix Test Description Method Reference**

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at <u>www.alsglobal.com</u>.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

1 of ____1

L L	1460494-COFC		www.a	Isglobal.com									Pa	је	<u>1</u> of	<u> </u>
Rep		Report Fo	ormat / Distril	bution		Serv	ice R	eque	sted (Ru	ush for r	outine	analys	is subj	ject to av	ailabilit	y)
Company: PIN	TER & Associates Ltd.	✓ Standard	d Other			🛈 R	egular	(Stand	ard Turna	round Ti	mes - B	usiness	Days)			
Contact: Jess	sica Cutter	PDF	✓ Excel	Digital	Fax	O Pi	riority (2-4 Bu	siness Day	/s) - 50%	6 Surcha	arge - C	ontact	ALS to Co	nfirm TA	т
Address: 710/	A 48th Street East	Email 1:	jessica.cutter@	pinter.ca		O E	merger	icy (1-:	Bus. Day	/s) - 100	% Surch	arge -	Contact	: ALS to C	onfirm T	AT
Sasl	katoon, SK S7K 5B4	Email 2:	lpinter@pinter.c	<u>a</u>		O S	ame Da	iy or W	eekend E	mergenc	y - Cont	act ALS	to Con	Ifirm TAT		
Phone: 306.	244.1710 Fax: 306.933.4986	Email 3:	dustin.hicke@p	inter.ca						Analy	/sis R	eques	st			
nvoice To Sam	ne as Report ? Ves No	Client / Pr	oject Information	on		Plea	ase in	dicat	e below	Filtere	d, Pre	serve	d or bo	oth (F, F	', F/P)	
Hardcopy of Invoic	e with Report? Yes Vo	Job #:	1544-2													
Company: SAN	ΛΕ	PO / AFE:														
Contact:		LSD:	Saskatoon, SK													•
Address:																
Phone:	Fax:	Quote #:	Q37502			- F4										
Lab Work ((lab use)	Order#	ALS Contact:	Brian Morgan	Sampler:	JC	PHC F1	ize								r E	
Sample #	Sample Identification (This description will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	BTEX, I	Grain S	Lead								
14-6)3		20-May-14	2:35	Soil	X		X								
14-6	and 14-7 Surface Sample		20-May-14	2:32	Soil	X		X								Ť
14-9)-4		20-May-14	2:37	Soil	X		X								t
14-9)-6		20-May-14	2:40	Soil	X		x								T
14-1	0-3		20-May-14	3:32	Soil	X	Х	X								t
14-1	0-6		20-May-14	4:32	Soil	X	Х	X								t
14-8	3-3		20-May-14	5:32	Soil	X		X								t
14-8	3-6		20-May-14	6:32	Soil	X		Х								T
14-1	1-3		20-May-14	7:32	Soil	X		X								Ī
14-1	1-4		20-May-14	7:33	Soil	X		Х								Τ
Dup	В		20-May-14	6:32	Soil	X		Х								
14-7	-3		20-May-14	9:32	Soil	X	Х	Х								
a view of the second																ſ
																T
		-									1				+	t
											1				1	t
											1					t

PINTER AND ASSOCIATES LTD. ATTN: JESSICA CUTTER 710A 48th Street East Saskatoon SK S7K 5B4

Date Received: 27-MAY-14 Report Date: 02-JUN-14 15:31 (MT) Version: FINAL

Client Phone: 306-244-1710

Certificate of Analysis

L1460722 Lab Work Order #:

Project P.O. #: NOT SUBMITTED Job Reference: C of C Numbers:

Legal Site Desc:

1544-2

SASKATOON, SK

1a

Brian Morgan Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: #819-58th St E., Saskatoon, SK S7K 6X5 Canada | Phone: +1 306 668 8370 | Fax: +1 306 668 8383 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-1 14-41-3							
Sampled By: JC on 24-MAY-14 @ 02:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Toluene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Ethylbenzene	<0.010		0.010	mg/kg	30-MAY-14	02-JUN-14	R2850477
Xylenes	<0.10		0.10	mg/kg	30-MAY-14	02-JUN-14	R2850477
	<0.050		0.050	mg/kg	30-IMAY-14	02-JUN-14	R2850477
П+р-дунене Surrogate: 1.4-Difluorobenzene	<0.050		0.050	тту/ку %	30-MAY-14	02-JUN-14	R2000477
Surrogate: 4-Bromofluorobenzene	106.3		70-130	/0 %	30-MAY-14	02-30N-14	R2850477
Surrogate: 3 4-Dichlorotoluene	75.0		70-130	%	30-MAY-14	02-JUN-14	R2850477
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		02-JUN-14	
F1-BTEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	<50		50	mg/kg		02-JUN-14	
F4 (C34-C50)	<50		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID	-50		50	malka	20 MAY 14	02 11 10 14	D2850200
TEH (C23-C60)	<50		50 100	mg/kg	29-MAY-14	02-JUN-14	R2000300
Chrom to baseline at nC50	VES		0	iiig/kg	29-MAY-14	02-30N-14	R2850300
Surrogate: 2-Bromobenzotrifluoride	99.0		70-130	%	29-MAY-14	02-JUN-14	R2850300
Miscellaneous Parameters				, .			
% Moisture	4.4		1.0	%	29-MAY-14	30-MAY-14	R2848760
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
L1460722-2 14-42-3							
Sampled By: JC on 24-MAY-14 @ 02:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
	0.0050		0.0050		20 MAX 44	00 1111 44	D0050477
	<0.0050		0.0050	mg/kg	30-IMAY-14	02-JUN-14	R2850477
Ethylbenzene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2000477
Xvlenes	<0.010		0.010	mg/kg	30-MAY-14	02-30N-14	R2850477
o-Xvlene	<0.10		0.10	mg/kg	30-MAY-14	02-JUN-14	R2850477
m+p-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Surrogate: 1,4-Difluorobenzene	108.5		70-130	%	30-MAY-14	02-JUN-14	R2850477
Surrogate: 4-Bromofluorobenzene	98.8		70-130	%	30-MAY-14	02-JUN-14	R2850477
Surrogate: 3,4-Dichlorotoluene	82.8		70-130	%	30-MAY-14	02-JUN-14	R2850477
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		02-JUN-14	
	<10		10	mg/kg		02-JUN-14	
F2 (U10-U10) F3 (C16 C24)	<30		30	mg/kg		02-JUN-14	
F3 (C10-C34) F4 (C34-C50)	<50		50 50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	<00 <50		50	mg/kg		02-3011-14 02-,111N-14	
Extractable Hydrocarbons. Tumbler/GC-FID			50				
TEH (C11-C22)	<50		50	mg/kg	29-MAY-14	02-JUN-14	R2850300
TEH (C23-C60)	<100		100	mg/kg	29-MAY-14	02-JUN-14	R2850300
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850300
Surrogate: 2-Bromobenzotrifluoride	93.1		70-130	%	29-MAY-14	02-JUN-14	R2850300

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-2 14-42-3							
Sampled Bv: JC on 24-MAY-14 @ 02:32							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	6.0		1.0	%	29-MAY-14	30-MAY-14	R2848760
Lead (Pb)	6.1		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
1460722-3 14-12-3				0.0			
Sampled By: JC on 21-MAY-14 @ 02:37							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
III+p-Aylene Surrogate: 1.4-Difluorobenzene	<0.050		0.050	тg/кg	28-MAV 14	30-IVIAY-14	R2848655
Surrogate: 1,4-Dinuorobenzene	83.4		70-130	70 0/2	20-IMA 1-14	30-MAY-14	R2040000 R2848655
Surrogate: 3.4-Dichlorotoluene	83.8		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons	0010		10.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20	00 110 11	
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	63		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	63		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	84.1		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	7.9		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-4 14-12-6							
Sampled By: JC on 21-MAY-14 @ 02:40							
Matrix: SOIL							
COME RTEY							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	106.3		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	88.7		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	80.6		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons	-10		10	ma/ka		30-MAV 11	
F1-BTEX	~10		10	ma/ka		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	58		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
l 1460722-4 14-12-6							
Sampled By: JC on 21-MAY-14 @ 02:40							
CCME Total Hydrocarbons							
Total Hydrocarbons (C6-C50)	58		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	110		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	95.6		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	9.6		1.0	%	28-MAY-14	29-MAY-14	R2847860
MUST PSA % > 75um	42.0		0.10	%	28-MAY-14	28-MAY-14	R2848294
Lead (Pb)	5.2		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-5 14-13-3							
Sampled By: JC on 21-MAY-14 @ 03:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Aylene	<0.050		0.050	mg/kg	28-IVIA Y - 14	30-IVIA Y-14	R2848655
Surrogate: 1 4-Difluorobenzene	<0.050		0.050	тту/ку %	20-IVIA 1-14	30-MAY-14	R2040000 D2949655
Surrogate: 4-Bromofluorobenzene	107.3		70-130	/0 %	28-MAY-14	30-MAY-14	R2040000 R2848655
Surrogate: 3 4-Dichlorotoluene	86.6		70-130	/0 %	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons	00.0		10-100	70	2010/11 14	00 10/11 14	112040000
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	63		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	63		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID						~~ • • • • • •	
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	mg/kg	28-IVIA Y-14	30-IVIA Y-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	123		U 70 120	0/_	20-IVIA 1-14	30-MAY-14	R2040002
Miscellaneous Parameters	32.1		10-100	70	20 10/21-14	00 MAT-14	112040002
% Moisture	6.6		10	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	ma/ka wwt	29-MAY-14	29-MAY-14	R2848343
	40.0		0.0	ing/kg init	2010/01/11	20 100 11	112040040
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
Gampicu Dy. 50 011 21-10/A1-14 @ 04.32							
CCMF BTFX							
Benzene	<0.0050		0.0050	mg/ka	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-6 14-13-6							
Sampled By: JC on 21-MAY-14 @ 04:32							
CCME BTEY							
Surrogate: 1.4-Difluorobenzene	108.6		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	85.7		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	84.1		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons	-						
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	81		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	81		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	~50		50	ma/ka	28-MAV-14	30-MAV-14	D2040052
TEH (C23-C60)	< <u>50</u>		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom to baseline at nC50	VES		0	iiig/ikg	28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	104.4		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters	104.4		10 100	,,,	20 10/11	00 100 11	112040002
% Moisture	9.9		10	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	5.0		5.0	ma/ka wwt	29-MAY-14	29-MAY-14	R2848343
	0.1		0.0	ing/kg init	2010/11	2010/111	1120-100-10
L 1400722-7 14-14-3							
Sampled By: JC on 21-MAY-14 @ 05:32							
Matrix: SOIL							
BIEX, F1-F4 and SK Reg. PHC S.							
	~0.0050		0.0050	ma/ka	28-MAY-14	30-MAV-14	P2848655
Toluene	<0.0000		0.0000	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.000		0.000	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	106.9		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	99.9		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	88.8		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID TEH (C11-C22)	<50		50	ma/ka	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	87.4		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	9.8		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-8 14-14-8							
Sampled By: JC on 21-MAY-14 @ 06:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-8 14-14-8							
Sampled By: JC on 21-MAY-14 @ 06:32							
Matrix: SOII							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Toluene	< 0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	110.2		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	96.5		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	81.3		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-B1EX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C10) F3 (C16 C34)	<30		30	mg/kg		30-IVIA Y-14	
$F_4 (C_{34}C_{50})$	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-FID	<00		50	iiig/kg		00 10/11 14	
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	88.9		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	11.8		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-9 14-15-3							
Sampled By: JC on 21-MAY-14 @ 07:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
III+p-Aylene	<0.050		0.050	mg/кg	28-IMAY-14	30-IVIA Y-14	R2848655
Surrogate: 1,4-Diluolobenzene	90.4		70-130	70 0/	20-IVIA 1-14	30-MAY-14	R2040000
Surrogate: 3 4-Dichlorotoluene	83.8		70-130	70 %	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons	00.0		10-100	70	20 10// 14	00 10/11 14	112040000
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	85.1		70-130	%	28-IVIAY-14	30-IMAY-14	R2848852
miscellaneous rafameters							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-9 14-15-3							
Sampled By:							
Matrix: SOIL							
% Moisture	9.7		1.0	%	28-MAY-14	29-MAY-14	P2847860
Lead (Pb)	-5.0		5.0	ma/ka wwt	20-MAY-14	20-MAY-14	R2848343
	<5.0		5.0	iiig/kg wwt	23-WAT-14	23-WAT-14	N2040343
L1400/22-10 14-13-0							
Sampled By. JC on 21-MA1-14 @ 07.33							
Matrix: SOIL PTEX E1 E1 and SK Pag PHC's							
CCME BTEX							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	30-MAY-14	R2848655
Toluene	< 0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	110.8		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	90.8		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	86.1		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C10-C34) F4 (C34 C50)	<50		50	mg/kg		30-IMAY-14	
F4 (C34-C30) Total Hydrocarbons (C6-C50)	<50		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-EID	<50		50	iiig/kg		30-IMA 1-14	
TEH (C11-C22)	<50		50	ma/ka	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	ma/ka	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	85.5		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	7.9		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-11 14-16-2							
Sampled By: JC on 21-MAY-14 @ 06:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	< 0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
I oluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-IVIA Y-14	30-IMAY-14	R2848655
Aylenes	<0.10		0.10	mg/kg	20 -IVIA I - 14	30-IVIA 1-14	R2848655
m+n-Xvlene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2040000
Surrogate: 1 4-Difluorobenzene	112 3		70-130	//////////////////////////////////////	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	103.0		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3.4-Dichlorotoluene	84.4		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-11 14-16-2							
Sampled By: JC on 21-MAY-14 @ 06:32							
Matrix: SOIL							
CCME Total Hydrocarbons							
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60) Chrom to bosoling at pCE0	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	YES 07.5		U 70 120	0/	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters	97.5		70-130	70	20-1017 1-14	30-IIIA I - 14	N2040032
% Moisture	5.4		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	ma/ka wwt	29-MAY-14	29-MAY-14	R2848343
11460722-12 14-16-5				5.5	-	-	
Sampled By:							
Matrix: SOIL							
BTEX. F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-xyiene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1.4-Difluorobenzene	<0.050		0.050	тт <u>д</u> /кд	28-MAV-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	114.7		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	86.9		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons					-		
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	66		50	mg/kg		30-MAY-14	
F4 (C34-C50) Total Hydrocarbons (C6-C50)	<50		50 50	mg/kg		30-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-EID	00		50	iiig/kg		30-IVIA 1-14	
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	98.7		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	7.8		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	6.3		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-13 14-32-4							
Sampled By: JC on 23-MAY-14 @ 10:35							
Matrix: SOIL							
BIEX, F1-F4 and SK Reg. PHC's.							
Benzene	<0 0050		0 0050	ma/ka	30-MAY-14	02-,II IN-14	R2850477
Toluene	<0.050		0.050	mg/ka	30-MAY-14	02-JUN-14	R2850477
Ethylbenzene	<0.010		0.010	mg/kg	30-MAY-14	02-JUN-14	R2850477
Xylenes	<0.10		0.10	mg/kg	30-MAY-14	02-JUN-14	R2850477
o-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
m+p-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Surrogate: 1,4-Difluorobenzene	115.5		70-130	%	30-MAY-14	02-JUN-14	R2850477
	L						L

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-13 14-32-4							
Sampled By: JC on 23-MAY-14 @ 10:35							
Surrogate: 4-Bromofluorobenzene	97.8		70-130	%	30-MAY-14	02-JUN-14	R2850477
Surrogate: 3,4-Dichlorotoluene	80.1		70-130	%	30-MAY-14	02-JUN-14	R2850477
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		02-JUN-14	
F1-BTEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	290		50	mg/kg		02-JUN-14	
F4 (C34-C50)	149		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	439		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	204		50	mg/kg	29-MAY-14	02-JUN-14	R2850300
TEH (C23-C60)	260		100	mg/kg	29-MAY-14	02-JUN-14	R2850300
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850300
Surrogate: 2-Bromobenzotrifluoride	112.7		70-130	%	29-MAY-14	02-JUN-14	R2850300
Miscellaneous Parameters							
% Moisture	14.7		1.0	%	29-MAY-14	30-MAY-14	R2848760
Lead (Pb)	5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
L1460722-14 14-32-5							
Sampled By: JC on 23-MAY-14 @ 11:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Toluene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Ethylbenzene	<0.010		0.010	mg/kg	30-MAY-14	02-JUN-14	R2850477
Xylenes	<0.10		0.10	mg/kg	30-MAY-14	02-JUN-14	R2850477
o-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
m+p-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Surrogate: 1,4-Difluorobenzene	116.6		70-130	%	30-MAY-14	02-JUN-14	R2850477
Surrogate: 4-Bromotiuorobenzene	94.1		70-130	%	30-MAY-14	02-JUN-14	R2850477
	82.3		70-130	%	30-MAY-14	02-JUN-14	R2850477
EL (C6 C10)	-10		10	ma/ka		02 11 10 14	
F1_BTEY	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<10		30	mg/kg		02-30N-14	
F3 (C16-C34)	<50 97		50 50	mg/kg		02-30N-14	
F4 (C34-C50)	66		50 50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	163		50	ma/ka		02-JUN-14	
Extractable Hydrocarbons, Tumbler/GC-FID	100						
TEH (C11-C22)	<50		50	mg/kg	29-MAY-14	02-JUN-14	R2850300
TEH (C23-C60)	150		100	mg/kg	29-MAY-14	02-JUN-14	R2850300
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850300
Surrogate: 2-Bromobenzotrifluoride	93.6		70-130	%	29-MAY-14	02-JUN-14	R2850300
Miscellaneous Parameters							
% Moisture	7.6		1.0	%	29-MAY-14	30-MAY-14	R2848760
Lead (Pb)	5.2		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
L1460722-15 14-32-6							
Sampled By: JC on 23-MAY-14 @ 12:35							
Matrix: SOII							
BTEX, F1-F4 and SK Reg. PHC's							
CCME BTEX							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-15 14-32-6							
Sampled By:							
Benzene	<0.0050		0.0050	ma/ka	30-MAY-14	02-JUN-14	R2850477
Toluene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Ethylbenzene	< 0.010		0.010	mg/kg	30-MAY-14	02-JUN-14	R2850477
Xylenes	<0.10		0.10	mg/kg	30-MAY-14	02-JUN-14	R2850477
o-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
m+p-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Surrogate: 1,4-Difluorobenzene	108.4		70-130	%	30-MAY-14	02-JUN-14	R2850477
Surrogate: 4-Bromofluorobenzene	100.2		70-130	%	30-MAY-14	02-JUN-14	R2850477
Surrogate: 3,4-Dichlorotoluene	82.7		70-130	%	30-MAY-14	02-JUN-14	R2850477
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		02-JUN-14	
F1-BIEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34) F4 (C34 C50)	95		50	mg/kg		02-JUN-14	
F4 (C34-C30) Total Hydrocarbons (C6-C50)	97		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons, Tumbler/GC-EID	192		50	iiig/kg		02-3011-14	
TEH (C11-C22)	<50		50	ma/ka	29-MAY-14	02-JUN-14	R2850300
TEH (C23-C60)	180		100	mg/kg	29-MAY-14	02-JUN-14	R2850300
Chrom. to baseline at nC50	YES		0	5.5	29-MAY-14	02-JUN-14	R2850300
Surrogate: 2-Bromobenzotrifluoride	94.3		70-130	%	29-MAY-14	02-JUN-14	R2850300
Miscellaneous Parameters							
% Moisture	7.6		1.0	%	29-MAY-14	30-MAY-14	R2848760
Lead (Pb)	5.1		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
L1460722-16 14-31-3							
Sampled By: JC on 23-MAY-14 @ 13:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Toluene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Ethylbenzene	<0.010		0.010	mg/kg	30-MAY-14	02-JUN-14	R2850477
Xylenes	<0.10		0.10	mg/kg	30-MAY-14	02-JUN-14	R2850477
o-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
m+p-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Surrogate: 1,4-Difluorobenzene	115.3		70-130	%	30-MAY-14	02-JUN-14	R2850477
Surrogate: 4-Biomonuorobenzene	98.9		70-130	%	30-MAY 14	02-JUN-14	R2850477
	82.0		70-130	70	30-IVIA 1-14	02-JUN-14	R2000477
F1 (C6-C10)	<10		10	ma/ka		02-JUN-14	
F1-BTEX	<10		10	ma/ka		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	56		50	mg/kg		02-JUN-14	
F4 (C34-C50)	<50		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	56		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	29-MAY-14	02-JUN-14	R2850300
TEH (C23-C60)	100		100	mg/kg	29-MAY-14	02-JUN-14	R2850300
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850300
Surrogate: 2-Bromobenzotrifluoride	89.2		70-130	%	29-MAY-14	02-JUN-14	R2850300
MISCEIIANEOUS Parameters							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-16 14-31-3							
Sampled By: JC on 23-MAY-14 @ 13:35							
Matrix: SOIL							
% Moisture	10.3		1.0	%	29-MAY-14	30-MAY-14	R2848760
Lead (Pb)	5.3		5.0	ma/ka wwt	30-MAY-14	30-MAY-14	R2849013
1460722-17 14-31-4				5.5			
Sampled By: JC on 23-MAY-14 @ 14:35							
Matrix: SOIL							
BTEX. F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Toluene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Ethylbenzene	<0.010		0.010	mg/kg	30-MAY-14	02-JUN-14	R2850477
Xylenes	<0.10		0.10	mg/kg	30-MAY-14	02-JUN-14	R2850477
o-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
III+p-Aylene Surrogate: 1.4-Diffuorobenzene	<0.050		0.050	тт <u>у</u> /ку %	30-MAY-14	02-JUN-14	R2850477
Surrogate: 4-Bromofluorobenzene	81.8		70-130	%	30-MAY-14	02-JUN-14	R2850477
Surrogate: 3.4-Dichlorotoluene	82.5		70-130	%	30-MAY-14	02-JUN-14	R2850477
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		02-JUN-14	
F1-BTEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	86		50	mg/kg		02-JUN-14	
F4 (C34-C50)	64		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	150		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID	~50		50	ma/ka	20-MAV-14		P2950200
TEH (C23-C60)	130		100	ma/ka	29-MAY-14	02-30N-14	R2850300
Chrom. to baseline at nC50	YES		0	iiig/iig	29-MAY-14	02-JUN-14	R2850300
Surrogate: 2-Bromobenzotrifluoride	88.7		70-130	%	29-MAY-14	02-JUN-14	R2850300
Miscellaneous Parameters							
% Moisture	8.3		1.0	%	29-MAY-14	30-MAY-14	R2848760
Lead (Pb)	5.3		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
L1460722-18 14-20-4							
Sampled By: JC on 21-MAY-14 @ 15:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX						~~ • • • • • •	
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/кg mg/kg	$28 - MA \times 14$	30-MAY-14	R2848655
Xvlenes	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xvlene	<0.10		0.10	ma/ka	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	115.2		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	99.2		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	85.7		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-B1EX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C10) F3 (C16-C34)	<30		30	mg/kg		30-IVIA Y-14 30-MAV 14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
(/						50	

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-18 14-20-4							
Sampled By: JC on 21-MAY-14 @ 15:35							
Matrix: SOIL							
CCME Total Hydrocarbons							
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	92.1		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters						~	
% Moisture	10.1		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-19 14-20-6							
Sampled By: JC on 21-MAY-14 @ 16:35							
Matrix: SOIL							
DIEA, FI-FA AND SN REG. PHU'S.							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Difluorobenzene	114.0		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	99.2		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	84.9		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons	-10		10	malka		20 MAY 14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	ma/ka		29-MAY-14	
F3 (C16-C34)	134		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	134		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	140		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0	0/	28-MAY-14	29-MAY-14	R2848150
Miscellanoous Barameters	72.5		70-130	70	20-IVIA I - 14	29-101A 1-14	K2040150
% Moisture	67		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	<5.0		5.0	ma/ka wwt	29-MAY-14	29-MAY-14	R2848343
	10.0		0.0			20	
Sampled By: JC on 21-MAY-14 @ 17:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
	< 0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
III+p-Aylene Surrogate: 1 4-Difluorobenzene	< 0.050		0.050	mg/kg %	28-MAV 14	29-MAY-14	R2848049
	100.5		10-130	70	2010/21-14	2010/21114	112040043

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722.20 14.21.2							
L1460/22-20 14-21-2							
Sampled By. JC on 21-MAY-14 @ 17.35							
Matrix: SOIL							
CCME BTEX	00.0		70 400	0/	20 MAV 14	20 MAV 14	D0040040
Surrogate: 4-Biomonuorobenzene	89.3	SOLIMI	70-130	% 0/	20-IVIA 1-14	29-IVIA 1-14	R2848049
CCME Total Hydrocarbons	02.7	SOL.MI	70-130	/0	20-1VIA 1 - 14	29-IVIA 1-14	K2040049
F1 (C6-C10)	~10		10	ma/ka		29-MAY-14	
F1-BTEX	<10		10	ma/ka		29-MAY-14	
F2 (C10-C16)	89		30	mg/kg		29-MAY-14	
F3 (C16-C34)	17700		50	ma/ka		29-MAY-14	
F4 (C34-C50)	268		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	18100		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	175		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	18000		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	75.3		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters							
% Moisture	11.1		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	128		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-21 14-21-6							
Sampled By: JC on 21-MAY-14 @ 18:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Difluorobenzene	111.7		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	95.0		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	82.2		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons	10		40			00 MAX 44	
F1 (C6-C10)	<10		10	mg/kg		29-MAY 14	
F1-DIEA E2 (C10 C16)	<10		10	mg/kg		29-IVIA 1-14	
$F_2 (C10 - C10)$ $F_3 (C16 - C24)$	<30		30 50	mg/kg		29-MAY-14	
F4 (C34-C50)	~50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	124		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-FID	127		00	iiig/kg		20 10/11 11	
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	150		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	74.7		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters							
% Moisture	8.8		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	5.2		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-22 14-22-3							
Sampled By: JC on 21-MAY-14 @ 19:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-22 14-22-3							
Sampled By: JC on 21-MAY-14 @ 19:35							
Matrix: SOII							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Difluorobenzene	107.5		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	87.0		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	69.8	SOL:MI	70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-B1EX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C10) F3 (C16 C34)	<30		30	mg/kg		29-MAY-14	
$F_4 (C_{34}C_{50})$	15700		50 50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	15900		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons Tumbler/GC-FID	10000		50	iiig/kg		20 10/11 14	
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	16000		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	78.1		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters							
% Moisture	8.5		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-23 14-22-6							
Sampled By: JC on 21-MAY-14 @ 20:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1 4-Difluorobenzene	<0.050		0.050	тт <u>д</u> /кд	20-IVIA 1-14	29-IMA 1-14	R2848049
Surrogate: 1,4-Dinuolobenzene	114.4		70-130	/0 9/	28-MAV-14	29-MAV-14	R2040049
Surrogate: 3 4-Dichlorotoluene	84.4		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCMF Total Hydrocarbons	0-1-		10-100	70	2010/0114	20 10/11 14	112040045
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (C16-C34)	215		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	215		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	52		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
IEH (C23-C60)	200		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Unrom. to baseline at nC50	YES		0	0/	28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	/1.6		70-130	70	2ŏ-IVIA¥-14	29-IVIA Y-14	K2848150
miscellaneous Falanieleis							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-23 14-22-6							
Sampled By: JC on 21-MAY-14 @ 20:35							
Matrix: SOII							
% Moisture	74		10	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	5.1		5.0	ma/ka wwt	29-MAY-14	29-MAY-14	R2848370
	0.1		0.0	ing/kg thit	20 100 11	20 10 11	1120-1007 0
Sampled By: IC on 22-MAV-14 @ 02:35							
Matrix: SOU							
BTEX F1-F4 and SK Reg PHC's							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Difluorobenzene	108.0		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	93.5		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	81.8		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons	-10		10	ma/ka		20 MAV 14	
F1 (CO-CTO)	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<10		30	ma/ka		29-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	ma/ka		29-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID				00			
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	71.0		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters							
% Moisture	15.1		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	5.1		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-25 14-25-3							
Sampled By: JC on 22-MAY-14 @ 02:32							
Matrix: SOIL							
BIEX, F1-F4 and SK Reg. PHC's.							
	<0.0050		0.0050	ma/ka	28-MAV-14	20-MAV-14	D2949040
	<0.0050		0.0050	mg/kg	20-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.030		0.030	ma/ka	28-MAY-14	29-MAY-14	R2848049
Xvlenes	<0.10		0.10	ma/ka	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Difluorobenzene	112.7		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	105.0		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	83.5		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (U16-U34)	480		50	mg/kg		29-MAY-14	
r + (U34-U3U)	104		50	тід/кд		29-IVIA Y-14	

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1460722-25 14-25-3 Sampled By: JC on 22-MAY-14 (# 02:32 Matrix: SOIL Total Hydrocarbons: Total Hydrocarbon: Tot	Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch	
Electronizado FLASO 3 Sampled By: JL Con 22-MAY-14 42 02:32 Jampled By: JL Con 22-MAY-14 42 02:32 Jampled By: JL Con 22-MAY-14 42 02:32 Matrix: SOLL CCME Total Hydrocarbons (Co-C50) 584 50 mg/kg 29-MAY-14 29-MAY-14 CCME Total Hydrocarbons Tumbler/GC-FID 70 50 mg/kg 28-MAY-14 29-MAY-14	1460722-25 14-25-3								
Comparison Control Control Status S	Sampled By: IC on 22-MAV-14 @ 02:32								
Mailon OUL CME Total Hydrocarbons Sea 584 50 mg/kg 29-MAY-14 29-MAY-14 CCME Total Hydrocarbons. Tumble//GC-FID 70 50 mg/kg 28-MAY-14 29-MAY-14 R284150 TEH (C22-C60) 520 100 mg/kg 28-MAY-14 29-MAY-14 R284150 Surrogate: -250mobenzoriflovide 74.0 70-130 % 28-MAY-14 29-MAY-14 R2848150 Miscellaneous Parameters 8.8 1.0 % 28-MAY-14 29-MAY-14 R2847962 Ladd (Pb) <50									
CLME total hydrocarbons (G-C30) 584 50 mgkg 29-MAY-14 Extractable hydrocarbons (G-C30) 50 mgkg 28-MAY-14 29-MAY-14 R2848150 TEH (C1-C2) 70 50 mgkg 28-MAY-14 29-MAY-14 R2848150 Chrom. to baseline at nC50 YES 0 28-MAY-14 29-MAY-14 R2848150 Miscelianeous Parameters 8.8 1.0 % 28-MAY-14 29-MAY-14 R2848150 Miscelianeous Parameters 4.0 70-130 % 28-MAY-14 29-MAY-14 R2848150 Marcia (Ph) <5.0									
Extractable Hydrocarbons. Tumbler/GC-FID TEH (C1-C22) Solution Baseline at InC50 Test (C1-C22) Solution Baseline at InC50 Test (C22-C60) Solution Baseline at InC50 YES D Baseline at InC50 Test (C22-C60) Solution Baseline at InC50 YES D ZB-MAY-14 ZB-MAY-14 <thzb-may-14< th=""> ZB-MAY-14 ZB-MAY-14<td>Total Hydrocarbons (C6-C50)</td><td>584</td><td></td><td>50</td><td>mg/kg</td><td></td><td>29-MAY-14</td><td></td></thzb-may-14<>	Total Hydrocarbons (C6-C50)	584		50	mg/kg		29-MAY-14		
TEH (C11-C22) 70 50 mg/kg 28-MAY-14 28-MAY-14 R2848150 Chrom. to baseline at nC50 YES 0 70.130 % 28-MAY-14 28-MAY-14 R2848150 Surrogate: 2-Bronobenzotrifluoride 74.0 70.130 % 28-MAY-14 29-MAY-14 R2848150 Miscellaneous Parameters 8.8 1.0 % 28-MAY-14 29-MAY-14 R2848150 Lead (Pb) <5.0	Extractable Hydrocarbons. Tumbler/GC-FID								
TEH (C23-C60) 520 100 mg/kg 28-MAY-14 29-MAY-14 R2848150 Chrom. to baseline at C50 YES 0 70-130 % 28-MAY-14 29-MAY-14 R2848150 Miscellaneous Parameters 74.0 70-130 % 28-MAY-14 29-MAY-14 R2848150 Miscellaneous Parameters 8.8 1.0 % 28-MAY-14 29-MAY-14 R2847862 Lead (Pb) <5.0	TEH (C11-C22)	70		50	mg/kg	28-MAY-14	29-MAY-14	R2848150	
Chrom. to baseline at nC50 YES 0 28-MAY-14 29-MAY-14 R2848150 Miscellaneous Parameters 74.0 70-130 % 28-MAY-14 29-MAY-14 R2848150 Miscellaneous Parameters 8.8 1.0 % 28-MAY-14 29-MAY-14 R2848150 Lead (Pb) <5.0	TEH (C23-C60)	520		100	mg/kg	28-MAY-14	29-MAY-14	R2848150	
Surrogate: 24Formobenzentiliuonde 74,0 70-130 % 28-MAY-14 29-MAY-14 R2848150 % Moisture 8.8 1.0 % 28-MAY-14 29-MAY-14 R2848150 Laad (Pb) <5.0	Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150	
Miscellaneous Prameters 8.8 1.0 % 28-MAY-14 29-MAY-14 R2847862 Lead (Pb) <5.0	Surrogate: 2-Bromobenzotrifluoride	74.0		70-130	%	28-MAY-14	29-MAY-14	R2848150	
2 Monsture 8.8 1.0 % 28-MAY-14 29-MAY-14 29-MAY-14 29-MAY-14 29-MAY-14 29-MAY-14 29-MAY-14 29-MAY-14 29-MAY-14 29-MAY-14 R2848370 L1460722-26 14-25-6 Sampled By: JC on 22-MAY-14 @ 02:37 Matrix: SOIL Sol mg/kg 28-MAY-14 29-MAY-14 R2848049 Sompled By: JC on 22-MAY-14 0:0:50 0.0050 mg/kg 28-MAY-14 29-MAY-14 R2848049 Toluene <0:0:00	Miscellaneous Parameters				0/	00 1403/ 44	00 1441/ 44	D00 (7000	
Lada (Pb)	% Moisture	8.8		1.0	%	28-MAY-14	29-MAY-14	R2847862	
L1460722-26 14-25-6 Sampled By: JC on 22-MAY-14 @ 02:37 Matrix: SOIL BTEX, FI-F4 and SK Reg. PHC's. CCME BTEX Benzene CCME TetX Benzene COULD 00050 Dituene Ethylbenzene -0.0500 -0.0500 0.0100 0.0100 mg/kg 28-MAY-14 29-MAY-14 29-MAY-14 29-MAY-14 R2848049 28-MAY-14 29-MAY-14 29-MAY-14 R2848049 29-MAY-14 29-MAY-14 R2848049 29-MAY-14 29-MAY-14 	Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370	
Sampled By: JC on 22-MAY-14 @ 02:37 Matrix: SOIL BTEX, F1-F4 and SK Reg. PHC's.	L1460722-26 14-25-6								
Matrix: SOLL BTEX, F1-F4 and SK Reg. PHC's. CCME BTEX Benzene <0.0550	Sampled By: JC on 22-MAY-14 @ 02:37								
BTEX, F1-F4 and SK Reg. PHC's. -0.0050 0.0050 mg/kg 28-MAY-14 29-MAY-14 R2848049 Toluene -0.050 0.0050 mg/kg 28-MAY-14 29-MAY-14 R2848049 Stylenes -0.010 0.010 mg/kg 28-MAY-14 29-MAY-14 R2848049 Xylenes -0.010 0.10 mg/kg 28-MAY-14 29-MAY-14 R2848049 o-Xylene -0.050 0.050 mg/kg 28-MAY-14 29-MAY-14 R2848049 Surrogate: 1.4-Difluorobenzene -0.050 0.050 mg/kg 28-MAY-14 29-MAY-14 R2848049 Surrogate: 3.4-Dichlorobluene 79.2 70-130 % 28-MAY-14 29-MAY-14 R2848049 CCME Total Hydrocarbons -10 10 mg/kg 29-MAY-14 R2848049 29-MAY-14 R2848049 F1 (C6-C10) <10	Matrix: SOIL								
CCME BTEX Benzene -0.0050 0.0050 mg/kg 28-MAY-14 29-MAY-14 R2848049 Toluene -0.010 0.010 mg/kg 28-MAY-14 29-MAY-14 R2848049 Ethylbenzene -0.010 0.010 mg/kg 28-MAY-14 29-MAY-14 R2848049 Xylenes -0.010 0.010 mg/kg 28-MAY-14 29-MAY-14 R2848049 o-Xylene -0.050 0.050 mg/kg 28-MAY-14 29-MAY-14 R2848049 surrogate: 14-Difluorobenzene -0.050 0.050 mg/kg 28-MAY-14 29-MAY-14 R2848049 Surrogate: 34-Dichlorobenzene 90.6 70-130 % 28-MAY-14 29-MAY-14 R2848049 Surrogate: 34-Dichlorobenzene 90.6 70-130 % 28-MAY-14 29-MAY-14 R2848049 Surrogate: 34-Dichlorobluene 79.2 70-130 % 28-MAY-14 29-MAY-14 R2848049 COME Total Hydrocarbons 10 mg/kg 29-MAY-14 R2848049 F1 (C6-C10) </td <td>BTEX, F1-F4 and SK Reg. PHC's.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	BTEX, F1-F4 and SK Reg. PHC's.								
Deficience c0.0050 0.0050 mg/kg 28-MAY-14 29-MAY-14 R2848049 Ethylbenzene <0.010		-0.0050		0.0050	malka	29 MAV 14	20 MAV 14	D2040040	
Totalie COUD OUSD Ingrkg Zehmin TH Readous Kylenes <0.010		<0.0050		0.0050	mg/kg	20-IVIA 1-14	29-IMA 1-14	R2848049	
Xylenes 40.10 0.10 mg/kg 28-MAY-14 29-MAY-14 R2848049 o-Xylene <0.050	Ethylbenzene	<0.030		0.050	mg/kg	28-MAY-14	29-MAY-14	R2040049	
Aryonolog Sch 0 0.10 Ing/kg 29-MAY-14 29-MAY-14 R2848049 m+p-Xylene <0.050	Xvlenes	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049	
map-Xylene c0.050 0.050 mg/kg 28-MAY-14 29-MAY-14 R2848049 Surrogate: 1,4-Difluorobenzene 90.6 70-130 % 28-MAY-14 29-MAY-14 R2848049 Surrogate: 3,4-Dichlorotoluene 79.2 70-130 % 28-MAY-14 29-MAY-14 R2848049 CCME Total Hydrocarbons 70-130 % 28-MAY-14 29-MAY-14 R2848049 F1 (C6-C10) <10	o-Xvlene	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049	
Surrogate: 1,4-Difluorobenzene 107.9 70.130 % 28-MAY-14 29-MAY-14 R248049 Surrogate: 4-Bromofluorobenzene 90.6 70-130 % 28-MAY-14 29-MAY-14 R248049 Surrogate: 3.4-Dichlorotoluene 79.2 70-130 % 28-MAY-14 29-MAY-14 R2848049 CCME Total Hydrocarbons 710 10 mg/kg 29-MAY-14 R2848049 F1 (C6-C10) <10	m+p-Xvlene	<0.050		0.050	ma/ka	28-MAY-14	29-MAY-14	R2848049	
Surrogate: 4-Bromofluorobenzene 90.6 70-130 % 28-MAY-14 29-MAY-14 R2848049 Surrogate: 3,4-Dichlorotoluene 79.2 70-130 % 28-MAY-14 29-MAY-14 R2848049 CCME Total Hydrocarbons <10	Surrogate: 1,4-Difluorobenzene	107.9		70-130	%	28-MAY-14	29-MAY-14	R2848049	
Surrogate: 3,4-Dichlorotoluene 79.2 70-130 % 28-MAY-14 29-MAY-14 R2848049 CCME Total Hydrocarbons <10	Surrogate: 4-Bromofluorobenzene	90.6		70-130	%	28-MAY-14	29-MAY-14	R2848049	
CCME Total Hydrocarbons /// // <th <="" th=""> // // //<td>Surrogate: 3,4-Dichlorotoluene</td><td>79.2</td><td></td><td>70-130</td><td>%</td><td>28-MAY-14</td><td>29-MAY-14</td><td>R2848049</td></th>	// // // <td>Surrogate: 3,4-Dichlorotoluene</td> <td>79.2</td> <td></td> <td>70-130</td> <td>%</td> <td>28-MAY-14</td> <td>29-MAY-14</td> <td>R2848049</td>	Surrogate: 3,4-Dichlorotoluene	79.2		70-130	%	28-MAY-14	29-MAY-14	R2848049
F1 (C6-C10) <10	CCME Total Hydrocarbons								
F1-BTEX <10	F1 (C6-C10)	<10		10	mg/kg		29-MAY-14		
F2 (C10-C16) <30	F1-BTEX	<10		10	mg/kg		29-MAY-14		
F3 (C16-C34) 67 50 mg/kg 29-MAY-14 F4 (C34-C50) <50	F2 (C10-C16)	<30		30	mg/kg		29-MAY-14		
F4 (C34-C50) <50	F3 (C16-C34)	67		50	mg/kg		29-MAY-14		
Total Hydrocarbons (C6-C50) 67 50 mg/kg 29-MAY-14 Extractable Hydrocarbons. Tumbler/GC-FID <50	F4 (C34-C50)	<50		50	mg/kg		29-MAY-14		
Extractable Hydrocarbons. Tumbler/GC-FID <50	Total Hydrocarbons (C6-C50)	67		50	mg/kg		29-MAY-14		
TEH (CT1-C22) 50 mg/kg 28-MAY-14 29-MAY-14 R2848150 TEH (C23-C60) <100	Extractable Hydrocarbons. Tumbler/GC-FID	50		50	···· ··· // · ···	00 MAX 44	00 MAX 44	D0040450	
1En (623-660) 100 1100 1100 1100 28-MAY-14 29-MAY-14 R2846150 Chrom. to baseline at nC50 YES 0 28-MAY-14 29-MAY-14 R2848150 Surrogate: 2-Bromobenzotrifluoride 75.0 70-130 % 28-MAY-14 29-MAY-14 R2848150 Miscellaneous Parameters 8.1 1.0 % 28-MAY-14 29-MAY-14 R2847862 Lead (Pb) 5.3 5.0 mg/kg wwt 29-MAY-14 R2848370 L1460722-27 14-27-3 Sampled By: JC on 22-MAY-14 @ 02:40 R2848370 Matrix: SOIL SOIL REFY, E1-E4 and SK Peg, PHC's F1-E4 and SK Peg, PHC's	ТЕН (С11-С22)	<50		50	mg/kg	20 -IVIA I - 14	29-IVIA 1-14	R2848150	
Surrogate: 2-Bromobenzotrifluoride 75.0 70-130 % 28-MAY-14 29-MAY-14 R2848150 Miscellaneous Parameters 8.1 1.0 % 28-MAY-14 29-MAY-14 R2847862 Lead (Pb) 5.3 5.0 mg/kg wwt 29-MAY-14 R2848370 L1460722-27 14-27-3 Sampled By: JC on 22-MAY-14 @ 02:40 R2848370 Matrix: SOIL SOIL F1-E4 and SK Peg. PHC's	Chrom to baseline at nC50	<100 VES		100	nig/kg	20-IVIA 1-14	29-MAY-14	R2040150	
Miscellaneous Parameters 8.1 1.0 % 28-MAY-14 29-MAY-14 R2847862 Lead (Pb) 5.3 5.0 mg/kg wwt 29-MAY-14 R2848370 L1460722-27 14-27-3 Sampled By: JC on 22-MAY-14 @ 02:40 A	Surrogate: 2-Bromobenzotrifluoride	75.0		0 70-130	%	28-MAY-14	29-MAY-14	R2848150	
% Moisture 8.1 1.0 % 28-MAY-14 29-MAY-14 R2847862 Lead (Pb) 5.3 5.0 mg/kg wwt 29-MAY-14 R2847862 L1460722-27 14-27-3 14-27-3 R2847862 R2848370 Sampled By: JC on 22-MAY-14 @ 02:40 JC on 22-MAY-14 @ 02:40 IC on 22-MAY-14 @ 02:40 Matrix: SOIL SOIL SOIL IC on 22-MAY-14 @ 02:40	Miscellaneous Parameters	10.0		10 100	,0			1.20-0100	
Lead (Pb) 5.3 5.0 mg/kg wwt 29-MAY-14 29-MAY-14 R2848370 L1460722-27 14-27-3 3 5.0 mg/kg wwt 29-MAY-14 R2848370 Sampled By: JC on 22-MAY-14 @ 02:40 JC JC JC JC JC Matrix: SOIL SOIL SOIL JC JC JC JC	% Moisture	8.1		1.0	%	28-MAY-14	29-MAY-14	R2847862	
L1460722-27 14-27-3 Sampled By: JC on 22-MAY-14 @ 02:40 Matrix: SOIL BTEX_E1=E4 and SK Peg_BHC's	Lead (Pb)	5.3		5.0	ma/ka wwt	29-MAY-14	29-MAY-14	R2848370	
Sampled By: JC on 22-MAY-14 @ 02:40 Matrix: SOIL BTEX F1-E4 and SK Reg. PHC's	1460722-27 14-27-3				3.3	-	-		
Matrix: SOIL BTEX E1-E4 and SK Reg. PHC's	Sampled By: IC on 22-MAY-14 @ 02:40								
RTEY F1-F4 and SK Pag DHC's									
	BTEX. F1-F4 and SK Reg. PHC's.								
CCME BTEX	CCME BTEX								
Benzene <0.0050 0.0050 mg/kg 28-MAY-14 29-MAY-14 R2848049	Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049	
Toluene <0.050 0.050 mg/kg 28-MAY-14 29-MAY-14 R2848049	Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049	
Ethylbenzene <0.010 mg/kg 28-MAY-14 29-MAY-14 R2848049	Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049	
Xylenes <0.10 mg/kg 28-MAY-14 29-MAY-14 R2848049	Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049	
o-Xylene <0.050 0.050 mg/kg 28-MAY-14 29-MAY-14 R2848049	o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049	
m+p-Xylene <0.050 0.050 mg/kg 28-MAY-14 29-MAY-14 R2848049	m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049	
Surrogate: 1,4-Difluorobenzene 110.3 70-130 % 28-MAY-14 29-MAY-14 R2848049	Surrogate: 1,4-Difluorobenzene	110.3		70-130	%	28-MAY-14	29-MAY-14	R2848049	

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-27 14-27-3							
Sampled By:							
Surrogate: 4-Bromofluorobenzene	100 1		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3.4-Dichlorotoluene	87.7		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCMF Total Hydrocarbons	01.1		10 100	70	20	20	112010010
F1 (C6-C10)	<10		10	ma/ka		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID				0.0			
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	70.4		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters							
% Moisture	10.4		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-28 14-27-6							
Sampled By: JC on 22-MAY-14 @ 03:32							
Matrix: SOII							
BTEX F1-F4 and SK Reg. PHC's							
CCMF BTEX							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	ma/ka	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	ma/ka	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Difluorobenzene	109.3		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	112.6		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	87.4		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	73.0		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters							
% Moisture	8.1		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-29 14-28-3							
Sampled By: JC on 22-MAY-14 @ 04:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-29 14-28-3							
Sampled By: JC on 22-MAY-14 @ 04:32							
Matrix: SOII							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	29-MAY-14	R2848049
Toluene	< 0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Difluorobenzene	110.5		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	98.9		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	81.2		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons	10		10			00 MAX 44	
F1 (C0-C10)	<10		10	mg/kg		29-MAY-14	
F1-D1EA F2 (C10-C16)	<10		10	mg/kg		29-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-FID	100						
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	70.4		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters							
% Moisture	5.5		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-30 14-28-6							
Sampled By: JC on 22-MAY-14 @ 02:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Etnyibenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Aylenes	<0.10		0.10	mg/kg	28-IMAY-14	29-MAY-14	R2848049
m+n-Xylene	<0.050		0.050	mg/kg	20-IVIA 1-14	29-MAY-14	R2040049
Surrogate: 1 4-Difluorobenzene	112.9		70-130	//////////////////////////////////////	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	93.4		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	83.6		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (C16-C34)	318		50	mg/kg		29-MAY-14	
F4 (C34-C50)	252		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	570		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID TEH (C11-C22)	113		50	mg/ka	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	480		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	72.5		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters							
		I					

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-30 14-28-6							
Sampled Bv: JC on 22-MAY-14 @ 02:35							
Matrix: SOIL							
% Moisture	92		10	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	5.6		5.0	ma/ka wwt	29-MAY-14	29-MAY-14	R2848370
1460722-31 14-29-2	0.0		0.0				
Sampled By: IC on 22-MAY-14 @ 02:32							
Matrix: SOII							
BTEX. F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
m+p-Xylene	<0.050		0.050	mg/кg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Dilluorobenzene	105.9		70-130	% %	20-IVIA 1-14 28-MAV-14	29-MAY-14	R2848049
Surrogate: 3 4-Dichlorotoluene	76.9		70-130	/0 %	28-MAY-14	29-MAY-14	R2848049
CCMF Total Hydrocarbons	10.0		10 100	70	20 10/11	20 10 11	112040040
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	.50		50	~~~//.~	20 MAV 14	20 MAX 14	D0040450
TEH (C23-C60)	<50		50 100	mg/kg	28-MAV-14	29-MAY-14	R2848150
Chrom to baseline at nC50	VES		0	iiig/kg	28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	72.0		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters					-	-	
% Moisture	14.4		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-32 14-29-6							
Sampled By: JC on 22-MAY-14 @ 02:37							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
	<0.10		0.10	mg/kg	20-IVIA 1-14	29-MAY-14	R2040049
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1 4-Difluorobenzene	111 4		70-130	//////////////////////////////////////	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	96.4		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	82.5		70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		29-MAY-14	
F3 (C16-C34)	95		50	mg/kg		29-MAY-14	
F4 (U34-U3U)	<50		50	mg/ĸg		29-IVIAY-14	

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-32 14-29-6							
Sampled By: IC on 22-MAV-14 @ 02:37							
Total Hydrocarbons (C6-C50)	95		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	130		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0		28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	71.0		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters						00 1407444	Dec (1996
% Moisture	7.8		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-33 14-17-3							
Sampled By: JC on 21-MAY-14 @ 02:40							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BIEX Benzene	<0.0050		0.0050	ma/ka	28-MAV-14	30-MAV-14	D2949655
Toluene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.030		0.030	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xvlenes	<0.010		0.010	ma/ka	28-MAY-14	30-MAY-14	R2848655
o-Xvlene	<0.050		0.050	ma/ka	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	< 0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	107.5		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	83.0		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	54.0	SOL:MI	70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	119		30	mg/kg		30-MAY-14	
F3 (C16-C34)	10700		50	mg/kg		30-MAY-14	
F4 (C34-C50)	3210		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	14000		50	mg/ĸg		30-IVIA Y-14	
TEH (C11-C22)	1260		50	ma/ka	28-MAY-14	30-MAY-14	P2848852
TEH (C23-C60)	13400		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0	iiig/itg	28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	116.9		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	8.9		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-34 14-17-6							
Sampled By: JC on 21-MAY-14 @ 03:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
0-Xylene	< 0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
III+p-Aylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surroyate. 1,4-Dinuorobelizelle	113.4		70-130	70	∠o-iviA ĭ - 14	30-IVIA I - 14	⊼∠040000

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-34 14-17-6							
Sampled By: IC on 21-MAV-14 @ 03.32							
Surrogate: 4-Bromofluorobenzene	97 9		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3.4-Dichlorotoluene	73.0		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons			10.00				
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	1650		50	mg/kg		30-MAY-14	
F4 (C34-C50)	455		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	2110		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID TEH (C11-C22)	185		50	ma/ka	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	1970		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	97.4		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	9.6		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-35 14-17-8							
Sampled By: JC on 21-MAY-14 @ 04:32							
Matrix: SOII							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	107.7		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	99.5		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	79.9		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons	-10		10	ma/ka		20 MAV 14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	ma/ka		30-MAY-14	
F3 (C16-C34)	80		50	ma/ka		30-MAY-14	
F4 (C34-C50)	53		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	133		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	50		50	ma/ka	00 MAX 44	20 MAX 14	D0040050
TEH (C23-C60)	<0U		5U 100	mg/kg	20-IVIA 1-14 28-MAV 14	30-101A Y - 14 30-MAV 14	R2848852
Chrom to baseline at nC50	VES		0	iiig/kg	28-MAY-14	30-MAY-14	R2040032
Surrogate: 2-Bromobenzotrifluoride	91.8		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters	01.0		10 100	70	2010/01/11		112040002
% Moisture	8.4		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/ka wwt	29-MAY-14	29-MAY-14	R2848370
1460722-36 14-18-5			•	5.5			
Sampled By: IC on 21-MAV-14 @ 00.35							
BTEX F1-F4 and SK Reg. PHC's							
CCME BTEX							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-36 14-18-5							
Sampled By: JC on 21-MAY-14 @ 09:35							
Matrix: SOII							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	30-MAY-14	R2848655
Toluene	< 0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	106.8		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	91.7		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	83.3		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons	40		10			00 1401/ 44	
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-D1EA E2 (C10 C16)	<10		10	mg/kg		30-IMAY-14	
F2 (C10 - C10) F3 (C16 C24)	<30		30	mg/kg		30-IVIA 1-14	
$F_4 (C_{34}C_{50})$	60 51		50 50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	116		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-FID	110		50	iiig/kg		00 10/11 14	
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	130		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	93.2		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	8.2		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-37 14-18-6							
Sampled By: JC on 21-MAY-14 @ 10:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Dilluorobenzene	115.6		70-130	%	28-IMAY-14	30-IMAY-14	R2848655
Surrogate: 3 4-Dichlorotoluene	102.3		70-130	70 0/	20-IVIA 1-14	30-MAY-14	R2040000 D2949655
CCME Total Hydrocarbons	70.7		70-130	70	20-1017 1 - 14	30-IMA 1-14	K2040033
F1 (C6-C10)	<10		10	ma/ka		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	98		50	mg/kg		30-MAY-14	
F4 (C34-C50)	74		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	172		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	180		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	118.7		70-130	%	28-MAY-14	30-MAY-14	R2848852
miscellaneous Parameters							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
11460722 27 14 19 6							
Sampled By:							
Matrix: SOIL							
% Moisture	9.7		1.0	0/	28-MAV-14	20-MAV-14	P2947960
Lead (Ph)	5.6		5.0	ma/ka wwt	20-MAV-14	29-MAV-14	R2047000
	5.0		5.0	mg/kg wwt	23-IVIA I - 14	29-WAT-14	K2040370
L1460722-38 14-19-3							
Sampled By: JC on 21-MAY-14 @ 11:35							
Matrix: SOIL RTEX F4 F4 and SK Page PHC's							
COME PTEX							
Benzene	<0.0050		0 0050	ma/ka	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	ma/ka	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	113.8		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	100.2		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	78.7		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-B1EX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/кg mg/kg		30-MAY-14	
$F_3 (C16-C34)$	84		50	mg/kg		30-IMAY-14	
Total Hydrocarbons (C6-C50)	145		50 50	mg/kg		30-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-EID	145		50	iiig/kg		30-IMA 1-14	
TEH (C11-C22)	<50		50	ma/ka	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	170		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0	5.5	28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	118.0		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	10.7		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-39 14-19-4							
Sampled By: JC on 21-MAY-14 @ 12:35							
Matrix: SOIL							
BIEX, F1-F4 and SK Reg. PHC's.							
	-0.0050		0.0050	ma/ka	29 MAV 14	20 MAV 14	D2040655
	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2040000 R2848655
Ethylbenzene	<0.030		0.030	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xvlenes	<0.10		0.10	ma/ka	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	110.0		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	91.1		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	82.7		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		30-MAY-14	
F4 (U34-U3U)	<50		50	тg/кg		3U-IVIAY-14	

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-30 14-19-4							
Sampled By: IC on 21-MAY-14 @ 12:35							
Matrix: SOU							
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	85.0		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	9.0		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848370
L1460722-40 14-26-3							
Sampled By: JC on 22-MAY-14 @ 13:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2849221
I oluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	<0.010		0.010	mg/kg	28-IVIA Y - 14	30-IVIA Y-14	R2849221
Aylenes	<0.10		0.10	mg/kg	20-IVIA 1-14	30-IVIA 1-14	R2849221
m+n-Xvlene	<0.050		0.050	mg/kg	28-MAV-14	30-MAV-14	R2049221
Surrogate: 1 4-Difluorobenzene	<0.050 106 6		70-130	//////////////////////////////////////	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	92.2		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3.4-Dichlorotoluene	99.8		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons	00.0		10 100	70	20		
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	315		30	mg/kg		30-MAY-14	
F3 (C16-C34)	3050		50	mg/kg		30-MAY-14	
F4 (C34-C50)	770		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	4140		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	647		50	mg/kg	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	3490		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at hCoo	YES		0	9/	20 -IVIA I - 14	30-IVIA 1-14	R2848863
Miscellaneous Parameters	90.4		10-130	/0	20-IVIA I - 14	30-IVIA I - 14	12040003
% Moisture	13 3		1.0	%	28-MAY-14	29-MAV-14	P28/8210
Lead (Pb)	-5.0		5.0	na/ka wwt	20 MAY-14	29-MAY-14	R2848370
	<5.0		5.0	iiig/kg wwt	23 10/41 14	20 10/41 - 14	112040370
L 1400/22-41 14-20-4 Sampled By: IC on 22 MAX 14 @ 14:25							
Malinx. SOIL BTEX E1-E4 and SK Peg. PHC's							
CCME BTEX							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Toluene	< 0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	113.4		70-130	%	28-MAY-14	30-MAY-14	R2849221

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-41 14-26-4							
Sampled By: JC on 22-MAY-14 @ 14:35							
Matrix: SOII							
Surrogate: 4-Bromofluorobenzene	105.5		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	80.9		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	84		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	84		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID TEH (C11-C22)	<50		50	ma/ka	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0	0.0	28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	96.1		70-130	%	28-MAY-14	30-MAY-14	R2848863
Miscellaneous Parameters							
% Moisture	8.0		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-42 14-30-3							
Sampled By: JC on 22-MAY-14 @ 15:35							
Matrix: SOII							
BTEX. F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	118.4		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	93.2		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	84.5		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons	.40		10	malka		20 MAY 14	
	<10		10	mg/kg		30-IVIA 1-14	
F1-B1EA F2 (C10-C16)	<10		10	mg/kg		30-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	ma/ka		30-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	ma/ka		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID				0.0			
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	94.5		70-130	%	28-MAY-14	30-MAY-14	R2848863
Miscellaneous Parameters							
% Moisture	10.6		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-43 14-30-5							
Sampled By: JC on 22-MAY-14 @ 16:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-43 14-30-5							
Sampled By: IC on 22-MAY-14 @ 16:35							
Benzene	<0.0050		0 0050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Toluene	<0.050		0.050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	< 0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	114.2		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	87.2		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	79.4		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BIEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C10-C34)	85		50	mg/kg		30-IVIA Y-14	
F4 (C34-C30) Total Hydrocarbons (C6-C50)	6Z		50	mg/kg		30-IVIA 1-14	
Extractable Hydrocarbons, Tumbler/GC-EID	147		50	iiig/kg		30-IVIA I - 14	
TEH (C11-C22)	<50		50	ma/ka	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	130		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0	0.0	28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	95.8		70-130	%	28-MAY-14	30-MAY-14	R2848863
Miscellaneous Parameters							
% Moisture	8.3		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-44 14-33-3							
Sampled By: JC on 23-MAY-14 @ 17:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Toluene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Ethylbenzene	<0.010		0.010	mg/kg	30-MAY-14	02-JUN-14	R2850477
Xylenes	<0.10		0.10	mg/kg	30-MAY-14	02-JUN-14	R2850477
o-Xylene	<0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
rri+p-Xylene	< 0.050		0.050	mg/kg	30-MAY-14	02-JUN-14	R2850477
Surrogate: 1,4-Dilluorobenzene	112.2		70-130	%	30-MAY 14	02-JUN-14	R2850477
Surrogate: 3 4-Dichlorotoluene	90.9		70-130	% %	30-IMAY-14	02-JUN-14	R2850477
CCME Total Hydrocarbons	02.4		70-130	/0	30-IVIA 1-14	02-3011-14	K2030477
F1 (C6-C10)	<10		10	ma/ka		02-JUN-14	
F1-BTEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	93		50	mg/kg		02-JUN-14	
F4 (C34-C50)	<50		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	93		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	29-MAY-14	02-JUN-14	R2850300
TEH (C23-C60)	130		100	mg/kg	29-MAY-14	02-JUN-14	R2850300
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850300
Surrogate: 2-Bromobenzotrifluoride	94.0		70-130	%	29-MAY-14	02-JUN-14	R2850300
miscellaneous rarameters							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-44 14-33-3							
Sampled Bv: JC on 23-MAY-14 @ 17:35							
Matrix: SOIL							
% Moisture	18.0		1.0	%	29-MAY-14	30-MAY-14	P2848760
Lead (Ph)	-5.0		5.0	ma/ka wwt	30-MAY-14	30-MAY-14	R2840013
	<5.0		5.0	iiig/kg wwt	30-WAT-14	30-WAT-14	112049013
L1400/22-45 14-34-1							
BTEX F1-F4 and SK Reg PHC's							
CCMF BTEX							
Benzene	<0.0050		0.0050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Toluene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Ethylbenzene	<0.010		0.010	mg/kg	29-MAY-14	30-MAY-14	R2849224
Xylenes	<0.10		0.10	mg/kg	29-MAY-14	30-MAY-14	R2849224
o-Xylene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
m+p-Xylene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Surrogate: 1,4-Difluorobenzene	108.6		70-130	%	29-MAY-14	30-MAY-14	R2849224
Surrogate: 4-Bromofluorobenzene	101.5		70-130	%	29-MAY-14	30-MAY-14	R2849224
	75.1		70-130	70	29-IVIA Y-14	30-IVIA Y-14	K2849224
EL (C6-C10)	<10		10	ma/ka		02IUN-14	
F1-BTEX	<10		10	ma/ka		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	139		50	mg/kg		02-JUN-14	
F4 (C34-C50)	64		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	203		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	112		50	mg/kg	29-MAY-14	02-JUN-14	R2850260
TEH (C23-C60)	110		100	mg/kg	29-MAY-14	02-JUN-14	R2850260
Chrom. to baseline at nC50	YES		0	0/	29-MAY-14	02-JUN-14	R2850260
Surrogale. 2-Bromobenzolimuonde	92.2		70-130	%	29-IVIA Y-14	02-JUN-14	R2850260
Moisture	10.9		1.0	0/	20-MAV-14	30-MAV-14	D2949762
Lead (Pb)	42.8		5.0	/o ma/ka wwt	30-MAY-14	30-MAY-14	R2849013
1460722-46 14-34-3	42.0		0.0	ing/kg titt	00 10 11	00 10 11	1120-10010
Sampled By: JC on 23-MAY-14 @ 19:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Toluene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Ethylbenzene	<0.010		0.010	mg/kg	29-MAY-14	30-MAY-14	R2849224
Xylenes	<0.10		0.10	mg/kg	29-MAY-14	30-MAY-14	R2849224
o-Xylene	<0.050		0.050	mg/kg	29-IVIA Y-14	30-IMAY-14	R2849224
III+p-Aylene	<0.050		0.050	тт <u>д</u> /кд	29 - 101 + 14	30-IVIA 1-14	R2849224
Surrogate: 4-Bromofluorobenzene	86.2		70-130	/0 %	29-MAY-14	30-MAY-14	R2840224
Surrogate: 3.4-Dichlorotoluene	51.3	SOL:MI	70-130	%	29-MAY-14	30-MAY-14	R2849224
CCME Total Hydrocarbons	01.0		10 100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		55	
F1 (C6-C10)	<10		10	mg/kg		02-JUN-14	
F1-BTEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	3480		50	mg/kg		02-JUN-14	
F4 (C34-C50)	582		50	mg/kg		02-JUN-14	

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-46 14-34-3							
Sampled By:							
Matrix: SOIL							
Total Hydrocarbons (C6-C50)	4060		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID	40.4		50		00 MAX 44	00 11 10 4 4	Dooroooo
ТЕН (С11-С22) ТЕН (С23 С60)	464		50	mg/kg	29-IVIA Y - 14	02-JUN-14	R2850260
Chrom to baseline at nC50	3620		100	mg/kg	29 - MAY - 14	02-JUN-14	R2000200
Surrogate: 2-Bromobenzotrifluoride	88.8		0 70-130	%	29-MAY-14	02-JUN-14	R2050200
Miscellaneous Parameters	00.0		70-150	70	20 10/11 14	02 0011 14	112030200
% Moisture	13.2		1.0	%	29-MAY-14	30-MAY-14	R2848763
Lead (Pb)	<5.0		5.0	ma/ka wwt	30-MAY-14	30-MAY-14	R2849013
			0.0	ing/kg init			1120-100 10
L1460722-47 14-30-3 Sompled By: IC on 22 MAX 14 @ 02:25							
Sampled By. JC 01 23-WAT-14 @ 02.55							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	0.245		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	0.77		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	0.454		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	0.316		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	110.2		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	99.5		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	140.4	SOL:WI	70-130	%	28-IMAY-14	30-IVIA Y-14	R2849221
EL (C6-C10)	140		10	ma/ka		30-MAV-14	
F1-BTFX	149		10	ma/ka		30-MAY-14	
F2 (C10-C16)	4000		30	mg/kg		30-MAY-14	
F3 (C16-C34)	21500		50	ma/ka		30-MAY-14	
F4 (C34-C50)	388		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	26000		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	6460		50	mg/kg	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	19400		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	142.6	SOL:MI	70-130	%	28-MAY-14	30-MAY-14	R2848863
Miscellaneous Parameters							
% Moisture	15.4		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	5.4		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-48 14-35-6							
Sampled By: JC on 23-MAY-14 @ 02:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
	0.0050		0 0050		00 1401/ 44	00 1401/ 44	D0040004
	<0.0050		0.0050	mg/кg	20-IVIAY-14	3U-IVIAY-14	R2849221
Fthulbenzene	<0.050		0.050	mg/kg	20-IVIA 1-14	30-101A 1 - 14 30-MAV 14	RZ049221
Xvlenes	~0.010		0.010	mg/kg	20-101A 1 - 14 28-ΜΔV-11	30-MAV-14	R28/0221
o-Xvlene	-0.10		0.10	ma/ka	28-MAY-14	30-MAY-14	R2849221
m+p-Xvlene	<0.050		0.050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	115.8		70-130	%	28-MAY-14	30-MAY-14	R2849221
ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-48 14-35-6							
Sampled By: IC on 23-MAY-14 @ 02:32							
Matrix: SOII							
Surrogate: 4-Bromofluorobenzene	118.8		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3.4-Dichlorotoluene	81.6		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons	01.0		10 100	,,,	20		112010221
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	105		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	105		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	<50		50	ma/ka	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	150		100	ma/ka	28-MAY-14	30-MAY-14	R2848863
Chrom, to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	95.2		70-130	%	28-MAY-14	30-MAY-14	R2848863
Miscellaneous Parameters							
% Moisture	7.7		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	5.1		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
1460722-49 14-36-1	-						
Sampled By: IC on 23-MAV-14 $@$ 02:37							
BTEX F1-F4 and SK Reg. PHC's							
CCME BTEX							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	110.7		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	96.0		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	77.6		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C10-C34)	<50		50	mg/kg		30-IMAY-14	
F4 (C34-C30) Total Hydrocarbons (C6 C50)	<50		50	mg/kg		30-IMA 1-14	
Extractable Hydrogerbone, Tumbler/CC EID	<50		50	iiig/kg		30-INA 1-14	
TFH (C11-C22)	<50		50	ma/ka	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0	0.0	28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	102.5		70-130	%	28-MAY-14	30-MAY-14	R2848863
Miscellaneous Parameters							
% Moisture	15.7		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-50 14-36-3				-			
Sampled By: JC on 23-MAY-14 @ 02.40							
Matrix: SOII							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-50 14-36-3							
Sampled By: JC on 23-MAY-14 @ 02.40							
Matrix: SOII							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Toluene	<0.050		0.050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	0.110		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	0.61		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	0.333		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	0.278		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	106.9		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	101.1		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	196.0	SOL:MI	70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons							
F1 (C6-C10)	111		10	mg/kg		30-MAY-14	
F1-BTEX	110		10	mg/kg		30-MAY-14	
F2 (C10-C16)	12900		30	mg/kg		30-MAY-14	
F3 (C16-C34)	3850		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
I otal Hydrocarbons (C6-C50)	16900		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	45500		50	···· •·//····	00 MAX 44	20 MAX 44	D0040000
TEH (C11-C22)	15500		50	mg/кg mg/kg	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60) Chrom to bosoling at nCE0	1350		100	mg/kg	28-IVIA Y-14	30-IVIA Y-14	R2848863
Chrom. to baseline at hCoo	YES		0	9/	20-IVIA 1-14	30-IVIA 1-14	R2848863
Missellenseus Beremeters	115.0		70-130	70	20-1VIA 1-14	30-IVIA 1-14	R2040003
Whisterio	11.2		1.0	0/	29 MAV 14	20 MAV 14	D2040240
	11.5		1.0	/0	20-IVIA 1-14	29-IVIA 1-14	R2040219
MUST FSA % > /Sulli	91.8		0.10	70	20-IVIA 1-14	20-IVIA 1-14	R2040294
	<5.0		5.0	mg/kg wwt	30-IVIA Y-14	30-IVIA Y-14	R2849014
L1460722-51 14-36-6							
Sampled By: JC on 23-MAY-14 @ 03:32							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
	0.0050		0.0050	m a/k a	20 MAV 14	20 MAY 14	D0040004
Teluene	<0.0050		0.0050	mg/kg	20-IVIA 1-14	30-IVIA 1-14	R2849221
Ethylbonzono	<0.050		0.050	mg/kg	20-IVIA 1-14	30-IVIA 1-14	R2049221
Zylenes	<0.010		0.010	mg/kg	28-MAV-14	30-MAV-14	R2049221
	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1.4-Difluorobenzene	114 5		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	104.0		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	85.6		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	140		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	140		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	52		50	mg/kg	28-MAY-14	30-MAY-14	R2848863
IEH (C23-C60)	140		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0	<i></i>	28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	96.2		70-130	%	28-MAY-14	30-MAY-14	R2848863

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-51 14-36-6							
Sampled By:							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	8.7		1.0	%	28-MAY-14	29-MAY-14	R2848219
MUST PSA % > 75um	64.4		0.10	%	28-MAY-14	28-MAY-14	R2848294
Lead (Pb)	5.4		5.0	ma/ka wwt	30-MAY-14	30-MAY-14	R2849014
1460722-52 14-37-3	0.1		0.0				112010011
Sampled By:							
Matrix: SOII							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	0.022		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	104.7		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	91.2	001 14	70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	224.7	SOL:MI	70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons	50		10	malka		20 MAV 14	
F1-BTEX	58		10	mg/kg		30-MAV-14	
F2 (C10-C16)	10200		30	mg/kg		30-MAY-14	
F3 (C16-C34)	2950		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	ma/ka		30-MAY-14	
Total Hydrocarbons (C6-C50)	13200		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-FID				5.5			
TEH (C11-C22)	12400		50	mg/kg	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	700		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	121.5		70-130	%	28-MAY-14	30-MAY-14	R2848863
Miscellaneous Parameters							
% Moisture	13.0		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-53 14-37-5							
Sampled By: JC on 23-MAY-14 @ 02:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2849221
loluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
	<0.050		0.050	mg/kg	20-IVIAY-14	30-IVIAY-14	R2849221
Surrogate: 1 4-Difluorobenzono			0.000	тту/ку «	20-IVIA I - 14 28-MAV 14	30-101AT - 14 30-MAV 44	RZ049221
Surrogate: 4-Bromofluorobenzene	92.5		70-130	/0 %	20-1VIA 1-14 28-MAV-1/	30-MAV-14	R2840221
Surrogate: 3.4-Dichlorotoluene	92.5 80 7		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons	00.7		10 100	,0	-0 10//11 1-1	55 1001 14	
F1 (C6-C10)	<10		10	ma/ka		30-MAY-14	
F1-BTEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
				_			

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-53 14-37-5							
Sampled By: IC on 23-MAV-14 @ 02:35							
Motrix: SOU							
E3 (C16-C34)	<50		50	ma/ka		30-MAY-14	
F4 (C34-C50)	<50		50	ma/ka		30-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	89.9		70-130	%	28-MAY-14	30-MAY-14	R2848863
Miscellaneous Parameters							
% Moisture	7.7		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-54 14-38-3							
Sampled By: JC on 22-MAY-14 @ 03:35							
Matrix: SOIL BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Difluorobenzene	113.4		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	86.2		70-130	%	28-MAY-14	29-MAY-14	R2848049
	85.7		70-130	%	28-IVIA Y-14	29-IVIA Y-14	R2848049
ECME Total Hydrocardons	<10		10	ma/ka		29-MAY-14	
F1-BTEX	<10		10	mg/kg		29-MAY-14	
F2 (C10-C16)	<30		30	ma/ka		29-MAY-14	
F3 (C16-C34)	<50		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Chrom. to baseline at nC50	YES		0	04	28-MAY-14	29-MAY-14	R2848150
Surrogate: 2-Bromobenzotrifluoride	76.0		70-130	%	28-MAY-14	29-MAY-14	R2848150
Miscellaneous Parameters	10.0		4.0	0/	00 MAX 44	00 1441/ 44	D0047000
% Moisture	12.9		1.0	%	28-MAY-14	29-MAY-14	R2847862
	6.8		5.0	mg/kg wwi	30-IVIA I - 14	30-IVIA 1-14	R2849014
Sampled By: JC on 22-MAY-14 @ 04:35							
Matrix: SOIL RTEX E1 E4 and SK Bar, DUC's							
BIEX, FI-F4 and SK Reg. PHC S.							
	<0.0050		0 0050	ma/ka	28-MAY-14	29-MAY-14	R2848040
Toluene	<0.0000		0.0000	ma/ka	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	0.065		0.010	mg/ka	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-55 14-23-3							
Sampled By: JC on 22-MAY-14 @ 04:35							
Matrix: SOII							
CCME BTEX							
m+p-Xylene	<0.050		0.050	mg/ka	28-MAY-14	29-MAY-14	R2848049
Surrogate: 1,4-Difluorobenzene	118.9		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 4-Bromofluorobenzene	100.8		70-130	%	28-MAY-14	29-MAY-14	R2848049
Surrogate: 3,4-Dichlorotoluene	230.8	SOL:MI	70-130	%	28-MAY-14	29-MAY-14	R2848049
CCME Total Hydrocarbons							
F1 (C6-C10)	351		10	mg/kg		29-MAY-14	
F1-BTEX	351		10	mg/kg		29-MAY-14	
F2 (C10-C16)	7040		30	mg/kg		29-MAY-14	
F3 (C16-C34)	1360		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	8750		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID	0040		50	malle	DO MANY 44	20 MAX 44	D0040450
	8310		50	mg/kg	20-1VIAY-14 28-MAV 44	29-IVIA Y-14	RZ040150
$\begin{array}{c} IEH (C23\text{-}C60) \\ Chrom to \; baseline \; at \; nC50 \\ \end{array}$	130		100	тід/кд	20-IVIA 1-14	29-MAY-14	R2848150
Surrogate: 2-Bromohenzotrifluoride	1176		U 70-120	0/2	20-101AT-14	29-MAV-14	R28/8150
Miscellaneous Parameters	0.111		10-130	/0	2010/71-14	2010/01-14	112040130
% Moisture	16.3		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	10.5		5.0	ma/ka wwt	30-MAY-14	30-MAY-14	R2840014
	10.0		5.0	iiig/kg wwt	30-101A 1 - 14	30-IVIA I - 14	K2049014
L1460722-56 14-23-5							
Sampled By: JC on 22-MAY-14 @ 05:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC S.							
	<0.0050		0.0050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Toluene	<0.0000		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	<0.010		0.010	ma/ka	28-MAY-14	30-MAY-14	R2849221
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	< 0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	114.0		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	99.7		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	79.2		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-BIEX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C16)	<30		30	mg/kg		30-MAY-14	
F3 (C16-C34)	144		50	mg/кg mg/kg		30-MAY-14	
F4 (C34-C30) Total Hydrocarbons (C6 C50)	<00		50	mg/kg		30-IVIA 1-14	
Extractable Hydrogerbone, Tumbler/CC EID	144		50	iiig/kg		30-IVIA I - 14	
TFH (C11-C22)	<50		50	ma/ka	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	160		100	ma/ka	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0	5.5	28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	94.5		70-130	%	28-MAY-14	30-MAY-14	R2848863
Miscellaneous Parameters							
% Moisture	7.9		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	5.3		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-57 14-24-4				-			
Sampled By: JC on 22-MAY-14 @ 06:35							
Matrix: SOII							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-57 14-24-4							
Sampled By: IC on 22-MAV-14 @ 06.35							
Sampled By. 50 01 22-10A 1-14 @ 00.35							
Matrix: SOIL BTEX E1-E4 and SK Peg, PHC's							
COME DTEY							
Benzene	<0.0050		0.0050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Toluene	<0.050		0.050	ma/ka	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	0.022		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	117.6		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	110.6		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 3,4-Dichlorotoluene	99.4		70-130	%	28-MAY-14	30-MAY-14	R2849221
CCME Total Hydrocarbons							
F1 (C6-C10)	31		10	mg/kg		30-MAY-14	
F1-BTEX	31		10	mg/kg		30-MAY-14	
F2 (C10-C16)	545		30	mg/kg		30-MAY-14	
F3 (C16-C34)	155		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		30-MAY-14	
Total Hydrocarbons (C6-C50)	731		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID			50		00 1401/ 44	00 1441/ 44	D00 (0000
ТЕН (С11-С22) ТЕН (С22-С60)	662		50	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrometer (C23-C00)	<100		100	тід/кд	20-IVIA 1-14	30-IVIA 1-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	115.6		U 70 120	0/	20-IVIA 1-14	30-IVIA 1-14	R2040000
Miscellaneous Parameters	115.0		70-130	/0	20-IVIA 1-14	30-IVIA I - 14	N2040003
% Moisture	7 1		1.0	0/_	28-MAV-14	20-MAV-14	P28/8210
Lead (Pb)	<5.0		5.0	/o ma/ka wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-58 14-24-6				0.0			
Sampled By: JC on 22-MAY-14 @ 07:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2849221
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2849221
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2849221
Surrogate: 1,4-Difluorobenzene	114.8		70-130	%	28-MAY-14	30-MAY-14	R2849221
Surrogate: 4-Bromofluorobenzene	118.6		70-130	%	28-MAY-14	30-MAY-14	R2849221
	85.4		70-130	%	28-MAY-14	30-IVIA Y-14	R2849221
EL (C6 C10)	-10		10	malka		20 MAV 14	
F1_BTEY	<10		10	mg/kg		30-IVIA 1-14	
F2 (C10-C16)	<10		20	mg/kg		30-MAV-14	
F3 (C16-C34)	92 Q1		50	ma/ka		30-MAY-14	
F4 (C34-C50)	56		50	ma/ka		30-MAY-14	
Total Hydrocarbons (C6-C50)	199		50	ma/ka		30-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-FID						50 IT IT	
TEH (C11-C22)	86		50	mg/kg	28-MAY-14	30-MAY-14	R2848863
TEH (C23-C60)	110		100	mg/kg	28-MAY-14	30-MAY-14	R2848863
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848863
Surrogate: 2-Bromobenzotrifluoride	98.8		70-130	%	28-MAY-14	30-MAY-14	R2848863
		I					L

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
l 1460722-58 14-24-6							
Sampled Bv: JC on 22-MAY-14 @ 07:35							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	10.7		1.0	%	28-MAY-14	29-MAY-14	R2848219
Lead (Pb)	5.1		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849014
L1460722-59 14-39-2							
Sampled By: JC on 24-MAY-14 @ 08:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Toluene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Ethylbenzene	<0.010		0.010	mg/kg	29-MAY-14	30-MAY-14	R2849224
Xylenes	<0.10		0.10	mg/kg	29-MAY-14	30-MAY-14	R2849224
o-Xylene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
m+p-Aylene	<0.050		0.050	mg/кg	29-MAY-14	30-MAY-14	R2849224
Surrogate: 1,4-Diliuorobenzene	106.8		70-130	% 0/	29 - MAY - 14	30-IVIA 1-14	R2849224
Surrogate: 3 4-Dichlorotoluene	80.2		70-130	/0 %	29-MAY-14	30-MAY-14	R2849224
CCME Total Hydrocarbons	00.2		10 100	70	20 10/11 14	00 10/11 14	112043224
F1 (C6-C10)	<10		10	mg/kg		02-JUN-14	
F1-BTEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	<50		50	mg/kg		02-JUN-14	
F4 (C34-C50)	<50		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID TEH (C11-C22)	<50		50	mg/kg	29-MAY-14	02-JUN-14	R2850260
TEH (C23-C60)	<100		100	mg/kg	29-MAY-14	02-JUN-14	R2850260
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850260
Surrogate: 2-Bromobenzotrifluoride	84.2		70-130	%	29-MAY-14	02-JUN-14	R2850260
Miscellaneous Parameters							
% Moisture	5.6		1.0	%	29-MAY-14	30-MAY-14	R2848763
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
L1460722-60 14-39-4							
Sampled By: JC on 24-MAY-14 @ 09:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
	0.0050		0.0050		00 MAX 44	20 MAX 44	D0040004
Teluene	<0.0050		0.0050	mg/kg	29-IVIA Y-14	30-IVIA Y-14	R2849224
Ethylbenzene	<0.050		0.050	mg/kg	29-IVIA 1-14	30-MAY-14	R2049224
Xylenes	<0.010		0.010	ma/ka	29-MAY-14	30-MAY-14	R2849224
o-Xvlene	<0.050		0.050	ma/ka	29-MAY-14	30-MAY-14	R2849224
m+p-Xylene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Surrogate: 1,4-Difluorobenzene	114.4		70-130	%	29-MAY-14	30-MAY-14	R2849224
Surrogate: 4-Bromofluorobenzene	95.5		70-130	%	29-MAY-14	30-MAY-14	R2849224
Surrogate: 3,4-Dichlorotoluene	79.2		70-130	%	29-MAY-14	30-MAY-14	R2849224
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		02-JUN-14	
F1-BTEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	274		50	mg/kg		02-JUN-14	
F4 (U34-U50)	125		50	mg/kg		02-JUN-14	

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-60 14-39-4							
Sampled By: IC on $24 \text{-MAV} = 14 \text{-} 09 \text{-} 4$							
Matrix: SOU							
Total Hydrocarbons (C6-C50)	399		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	29-MAY-14	02-JUN-14	R2850260
TEH (C23-C60)	390		100	mg/kg	29-MAY-14	02-JUN-14	R2850260
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850260
Surrogate: 2-Bromobenzotrifluoride	94.5		70-130	%	29-MAY-14	02-JUN-14	R2850260
Miscellaneous Parameters				0/	00 1403/ 44	00 14414 44	D0040700
% Moisture	6.6		1.0	%	29-MAY-14	30-MAY-14	R2848763
Lead (PD)	5.3		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
L1460722-61 14-40-4							
Sampled By: JC on 24-MAY-14 @ 10:35							
Matrix: SOIL BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Toluene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Ethylbenzene	<0.010		0.010	mg/kg	29-MAY-14	30-MAY-14	R2849224
Xylenes	<0.10		0.10	mg/kg	29-MAY-14	30-MAY-14	R2849224
o-Xylene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
m+p-Xylene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Surrogate: 1,4-Difluorobenzene	108.6		70-130	%	29-MAY-14	30-MAY-14	R2849224
Surrogate: 4-Bromofluorobenzene	104.8	001 14	70-130	%	29-MAY-14	30-MAY-14	R2849224
	229.9	SOL:MI	70-130	%	29-MAY-14	30-MAY-14	R2849224
EL (C6-C10)	1 4 7		10	ma/ka		02 11 10 14	
F1-BTEX	147		10	mg/kg		02-30N-14	
F2 (C10-C16)	1750		30	ma/ka		02-JUN-14	
F3 (C16-C34)	543		50	ma/ka		02-JUN-14	
F4 (C34-C50)	<50		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	2440		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	2220		50	mg/kg	29-MAY-14	02-JUN-14	R2850260
TEH (C23-C60)	<100		100	mg/kg	29-MAY-14	02-JUN-14	R2850260
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850260
Surrogate: 2-Bromobenzotrifluoride	120.0		70-130	%	29-MAY-14	02-JUN-14	R2850260
Miscellaneous Parameters							
% Moisture	13.8		1.0	%	29-MAY-14	30-MAY-14	R2848763
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
L1460722-62 14-40-6							
Sampled By: JC on 24-MAY-14 @ 11:35							
Matrix: SOIL							
BIEX, F1-F4 and SK Reg. PHC's.							
			0.0050	ma/ka	20 MAV 14	20 MAV 14	D2040224
Toluene	<0.0000 <0.050		0.0000	ma/ka	29-MAY-14	30-MAY-14	R2840224
Ethylbenzene	<0.000		0.030	mg/kg	29-MAY-14	30-MAY-14	R2849224
Xylenes	<0.10		0.10	mg/ka	29-MAY-14	30-MAY-14	R2849224
o-Xylene	<0.050		0.050	mg/ka	29-MAY-14	30-MAY-14	R2849224
m+p-Xylene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Surrogate: 1,4-Difluorobenzene	114.7		70-130	%	29-MAY-14	30-MAY-14	R2849224

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-62 14-40-6							
Sampled By: IC on 24-MAY-14 @ 11:35							
Matrix COL							
CCME BIEX Surrogate: 4-Bromofluorobenzene	96.9		70-130	%	29-MAY-14	30-MAY-14	P2840224
Surrogate: 3 4-Dichlorotoluene	90.9 80.0		70-130	/0 %	29-MAY-14	30-MAY-14	R2849224
CCMF Total Hydrocarbons	00.0		10-100	70	20 10/11 14	00 10/11 14	112045224
F1 (C6-C10)	<10		10	ma/ka		02-JUN-14	
F1-BTEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	77		50	mg/kg		02-JUN-14	
F4 (C34-C50)	<50		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	77		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	<50		50	mg/kg	29-MAY-14	02-JUN-14	R2850260
TEH (C23-C60)	120		100	mg/kg	29-MAY-14	02-JUN-14	R2850260
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850260
Surrogate: 2-Bromobenzotrifluoride	84.4		70-130	%	29-MAY-14	02-JUN-14	R2850260
Miscellaneous Parameters							
% Moisture	7.9		1.0	%	29-MAY-14	30-MAY-14	R2848763
Lead (Pb)	5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013
L1460722-63 DUP C							
Sampled By: JC on 21-MAY-14 @ 02:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Toluene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	114.3		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	100.6		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	83.3		70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons	-10		10	malka		20 MAV 14	
	<10		10	mg/kg		30-IMA 1-14	
F1-B1EX F2 (C10-C16)	<10		20	mg/kg		30-MAV-14	
F3 (C16-C34)	<50		50	mg/kg		30-MAY-14	
F4 (C34-C50)	<50		50 50	ma/ka		30-MAY-14	
Total Hydrocarbons (C6-C50)	<50		50	ma/ka		30-MAY-14	
Extractable Hydrocarbons Tumbler/GC-FID	100		00			00 110 11	
TEH (C11-C22)	<50		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	<100		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	85.1		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	6.1		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-64 DUP D				-		<u> </u>	
Sampled By: JC on 21-MAY-14 @ 03:35							
Matrix: SOII							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1460722-64 DUP D							
Sampled By:							
Matrix: SOIL							
Benzene	< 0.0050		0.0050	ma/ka	28-MAY-14	30-MAY-14	R2848655
Toluene	< 0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Ethylbenzene	<0.010		0.010	mg/kg	28-MAY-14	30-MAY-14	R2848655
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	30-MAY-14	R2848655
o-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
m+p-Xylene	<0.050		0.050	mg/kg	28-MAY-14	30-MAY-14	R2848655
Surrogate: 1,4-Difluorobenzene	108.3		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 4-Bromofluorobenzene	92.5		70-130	%	28-MAY-14	30-MAY-14	R2848655
Surrogate: 3,4-Dichlorotoluene	52.9	SOL:MI	70-130	%	28-MAY-14	30-MAY-14	R2848655
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		30-MAY-14	
F1-B1EX	<10		10	mg/kg		30-MAY-14	
F2 (C10-C10) F3 (C16 C34)	123		30	mg/kg		30-IVIA Y-14	
F3(C10-C34) F4(C34-C50)	8880		50	mg/kg		30-IVIA 1-14	
Total Hydrocarbons (C6-C50)	2090		50	mg/kg		30-MAY-14	
Extractable Hydrocarbons, Tumbler/GC-EID	11700		50	iiig/kg		50 WAT-14	
TEH (C11-C22)	1100		50	mg/kg	28-MAY-14	30-MAY-14	R2848852
TEH (C23-C60)	11000		100	mg/kg	28-MAY-14	30-MAY-14	R2848852
Chrom. to baseline at nC50	YES		0		28-MAY-14	30-MAY-14	R2848852
Surrogate: 2-Bromobenzotrifluoride	103.0		70-130	%	28-MAY-14	30-MAY-14	R2848852
Miscellaneous Parameters							
% Moisture	10.3		1.0	%	28-MAY-14	29-MAY-14	R2847860
Lead (Pb)	<5.0		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-65 DUP E							
Sampled By: JC on 22-MAY-14 @ 04:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Toluene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Ethylbenzene	0.025		0.010	mg/kg	28-MAY-14	29-MAY-14	R2848049
Xylenes	<0.10		0.10	mg/kg	28-MAY-14	29-MAY-14	R2848049
o-xylene	<0.050		0.050	mg/kg	28-MAY-14	29-MAY-14	R2848049
Surragate: 1.4 Difluerabonzono	<0.050		0.050	тт <u>д</u> /кд	20-IVIA 1-14	29-IVIA 1-14	R2848049
Surrogate: 1,4-Dinuolobenzene	105.2		70-130	/0 %	28-MAY-14	29-MAY-14	R2040049
Surrogate: 3.4-Dichlorotoluene	229.5	SOL:MI	70-130	%	28-MAY-14	29-MAY-14	R2848049
CCMF Total Hydrocarbons	220.0		10 100	70	20 100 11 11	20 10/11 11	112040040
F1 (C6-C10)	210		10	mg/kg		29-MAY-14	
F1-BTEX	210		10	mg/kg		29-MAY-14	
F2 (C10-C16)	12400		30	mg/kg		29-MAY-14	
F3 (C16-C34)	12000		50	mg/kg		29-MAY-14	
F4 (C34-C50)	<50		50	mg/kg		29-MAY-14	
Total Hydrocarbons (C6-C50)	24600		50	mg/kg		29-MAY-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	24400		50	mg/kg	28-MAY-14	29-MAY-14	R2848150
IEH (C23-C60)	<100		100	mg/kg	28-MAY-14	29-MAY-14	R2848150
Unrom. to baseline at NU50	YES		0	0/	28-IMAY-14	29-MAY-14	R2848150
Surrogale: 2-Bromobenzottilluoride	120.6		70-130	70	20-IVIA ¥-14	29-1VIA 1-14	K∠848150

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-65 DUP E							
Sampled By: JC on 22-MAY-14 @ 04:35							
Matrix: SOIL							
% Moisture	16.3		1.0	%	28-MAY-14	29-MAY-14	R2847862
Lead (Pb)	11.7		5.0	mg/kg wwt	29-MAY-14	29-MAY-14	R2848343
L1460722-66 DUP F							
Sampled By: JC on 23-MAY-14 @ 05:35							
Matrix: SOIL							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Toluene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Ethylbenzene	0.230		0.010	mg/kg	29-MAY-14	30-MAY-14	R2849224
Xylenes	0.81		0.10	mg/kg	29-MAY-14	30-MAY-14	R2849224
o-Xylene	0.466		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
III+p-Aylene Surrogate: 1.4-Difluorobenzene	0.339		0.050 70-130	тту/ку %	29-MAY-14	30-MAY-14	R2049224 R2840224
Surrogate: 4-Bromofluorobenzene	109.1		70-130	/0 %	29-MAY-14	30-MAY-14	R2049224
Surrogate: 3 4-Dichlorotoluene	176.6	SOL:MI	70-130	%	29-MAY-14	30-MAY-14	R2849224
CCME Total Hydrocarbons	110.0		10 100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20		
F1 (C6-C10)	163		10	mg/kg		02-JUN-14	
F1-BTEX	162		10	mg/kg		02-JUN-14	
F2 (C10-C16)	4110		30	mg/kg		02-JUN-14	
F3 (C16-C34)	13300		50	mg/kg		02-JUN-14	
F4 (C34-C50)	5270		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	22800		50	mg/kg		02-JUN-14	
Extractable Hydrocarbons. Tumbler/GC-FID							
TEH (C11-C22)	6510		50	mg/kg	29-MAY-14	02-JUN-14	R2850260
TEH (C23-C60)	16200		100	mg/kg	29-MAY-14	02-JUN-14	R2850260
Surrogate: 2 Bromohonzetrifluoride	YES	SOLIMI	0	0/	29-IVIA Y - 14	02-JUN-14	R2850260
Miscellaneous Parameters	139.0	OOL.MI	70-130	/0	29-IVIA I - 14	02-3011-14	R2030200
% Moisture	16.3		10	%	29-MAY-14	30-MAY-14	R2848763
Lead (Pb)	<5.0		5.0	ma/ka wwt	30-MAY-14	30-MAY-14	R2849013
11460722-67 14-12-2	1010		0.0				
Sampled By: IC on 21-MAY-14 @ 08:35							
Matrix: SOII							
Miscellaneous Parameters							
MUST PSA % > 75um	46.0		0.10	%	28-MAY-14	28-MAY-14	R2848294
1460722-68 14-15-7							
Sampled Bv: JC on 24-MAY-14 @ 14:35							
Matrix: SOII							
BTEX, F1-F4 and SK Reg. PHC's.							
CCME BTEX							
Benzene	<0.0050		0.0050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Toluene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Ethylbenzene	<0.010		0.010	mg/kg	29-MAY-14	30-MAY-14	R2849224
Xylenes	<0.10		0.10	mg/kg	29-MAY-14	30-MAY-14	R2849224
o-Xylene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
m+p-Xylene	<0.050		0.050	mg/kg	29-MAY-14	30-MAY-14	R2849224
Surrogate: 1,4-Difluorobenzene	108.8		70-130	%	29-MAY-14	30-MAY-14	R2849224
Surrogate: 4-Bromotiuorobenzene	80.0		70-130	%	29-MAY-14	30-MAY-14	K2849224
	79.4		70-130	%	29-IVIAY-14	30-IVIA Y-14	K2849224
COME TOTAL HYDROCARDONS							

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1460722-68 14-15-7							
Sampled By: JC on 24-MAY-14 @ 14:35							
Matrix: SOII							
CCME Total Hydrocarbons							
F1 (C6-C10)	<10		10	mg/kg		02-JUN-14	
F1-BTEX	<10		10	mg/kg		02-JUN-14	
F2 (C10-C16)	<30		30	mg/kg		02-JUN-14	
F3 (C16-C34)	<50		50	mg/kg		02-JUN-14	
F4 (C34-C50)	<50		50	mg/kg		02-JUN-14	
Total Hydrocarbons (C6-C50)	<50		50	mg/kg		02-JUN-14	
TEH (C11-C22)	~50		50	ma/ka	29-MAY-14	02- 11 INI-14	P2850260
TEH (C23-C60)	<100		100	ma/ka	29-MAY-14	02-JUN-14	R2850260
Chrom. to baseline at nC50	YES		0		29-MAY-14	02-JUN-14	R2850260
Surrogate: 2-Bromobenzotrifluoride	92.0		70-130	%	29-MAY-14	02-JUN-14	R2850260
Miscellaneous Parameters							
% Moisture	7.1		1.0	%	29-MAY-14	30-MAY-14	R2848763
Lead (Pb)	<5.0		5.0	mg/kg wwt	30-MAY-14	30-MAY-14	R2849013

Reference Information

Qualifiers for S	Sample S	Submissio	n Listed:						
Qualifier	Description								
EXTEMP	Samples Received with temperature >15 Degrees C								
Sample Parame	eter Qua	lifier Key:							
Qualifier	Descript	ion							
SOL:MI	Surrogate	e recovery o	utside acceptable limits due to matrix interfere	ence					
Test Method Re	eference	s:							
ALS Test Code		Matrix	Test Description	Method Reference**					
ETL-BTX,TVH-C	CME-SK	Soil	CCME BTEX	CCME CWS-PHC DEC-2000 - PUB 1310					
Fraction F1, C6 - adding the metha 100% poly(dimet	C10 Hyd anol extrac hylsiloxan	rocarbons, is ct to a purge ie)column, w	s determined by extracting a 5 gram soil samp -and-trap unit for release of volatile organics. ith BTEX components quantified by MSD and	le with methanol, separating the methanol from the soil, then The volatile organics are separated by gas chromatography using a the F1 range quantified using a flame ionization detector.					
Note: The result	of a BTEX	(analysis is	subtracted to give the final result.						
Reference: Modi	fied EPA \$	SW846 Meth	ods 5030/ 8260, CCME CSW PHC Dec 2000						
ETL-TVH,TEH-C	CME-SK	Soil	CCME Total Hydrocarbons	CCME CWS-PHC DEC-2000 - PUB 1310					
Analytical metho	ds used fo	or analysis o	f CCME Petroleum Hydrocarbons have been	validated and comply with the Reference Method for the CWS PHC.					
Hydrocarbon res	ults are ex	pressed on	a dry weight basis.						
In cases where re the gravimetric h In samples where been subtracted	esults for l eavy hydr e BTEX ar from F1.	both F4 and ocarbons ca nd F1 were a	F4G are reported, the greater of the two resu nnot be added to the C6 to C50 hydrocarbons nalyzed, F1-BTEX represents a value where	ts must be used in any application of the CWS PHC guidelines and b. e the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has					
In samples where represents a resu Fluoranthene, Inc	e PAHs, F ult where t deno(1,2,3	2 and F3 we the sum of B 3-cd)pyrene,	ere analyzed, F2-Naphth represents the result enzo(a)anthracene, Benzo(a)pyrene, Benzo(t Phenanthrene, and Pyrene has been subtrac	where Naphthalene has been subtracted from F2. F3-PAH)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, ted from F3.					
Unless otherwise 1. All extraction a 2. Instrument per 3. Linearity of ga	e qualified, and analys formance soline res	, the followin sis holding tin showing res ponse within	g quality control criteria have been met for the nes were met. ponse factors for C6 and C10 within 30% of t 15% throughout the calibration range.	F1 hydrocarbon range: he response factor for toluene.					
Unless otherwise 1. All extraction a 2. Instrument per 3. Instrument per 4. Linearity of die	e qualified, and analys formance formance esel or mo	, the followin sis holding tin showing C1 showing the tor oil respon	g quality control criteria have been met for the nes were met. 0, C16 and C34 response factors within 10% c C50 response factor within 30% of the avera nse within 15% throughout the calibration rang	PE-F4 hydrocarbon ranges: of their average. ge of the C10, C16 and C34 response factors. ge.					
PB-MUST-SK		Soil	Lead (Pb)	SW846/3050/6010B					
Lead in soil is co is determined us	nverted to ing ICP-O	soluble forn ES.	n by wet oxidation using a combination of nitri	c acid, hydrogen peroxide and hydrochloric acid. Lead in the extract					
PREP-MOISTUR	E-SK	Soil	% Moisture	Oven dry 105C-Gravimetric					
The weighed por is calculated.	tion of soi	l is placed in	a 105°C oven overnight. The dried soil is all	owed to cooled to room temperature, weighed and the % moisture					
Reference: AST	VI D2216-8	30							
PSA-MUST-SK		Soil	% Particles > 75um (Coarse/Fine)	ASTM D422-63-SIEVE					
An air-dried sam μm) sieve. The re	ple is redu etained ma	uced to < 2 n ass of samp	nm size and mixed with a dispersing agent (C le is used to determine % sand fraction.	algon solution). The sample is washed through a 200 mesh (75					
Reference: AST	M D422-63	3							
TEH-TMB-SK		Soil	Extractable Hydrocarbons. Tumbler/GC-FI	CWS-PHC DEC 2000 (SOIL)					

This analysis is carried out in accordance with the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method, Canadian Council of Ministers of the Environment, December 2000." For C10 to C50 hydrocarbons (F2, F3, F4) and gravimetric heavy hydrocarbons (F4G-sg), a subsample of the sediment/soil is extracted with 1:1 hexane:acetone using a rotary extractor. The extract undergoes a silicagel clean-up to remove polar compounds. F2, F3 & F4 are analyzed by on-column GC/FID, and F4G-sg is analyzed gravimetrically.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**			
** ALS test methods may incorporate modifications from specified reference methods to improve performance.						
The last two letters of the	e above test co	ode(s) indicate the labor	ratory that performed analytical analysis for that test. Refer to the list below:			

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS Sample ID: L1460722-3

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-4

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-5

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-6

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-12

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-14

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-15

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-16

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-19

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-21

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-22 Client ID: 14-22-3

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-23

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-25

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-26

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-30

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-32

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-33 Client ID: 14-17-3

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID:

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-36

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-37

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-38

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-40

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-43

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-44

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-46

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-47

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-48

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-50

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-51

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-55

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-56

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-58

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-61

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-62

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-64

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1460722-65

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com COC # _____

Page <u>1</u> of <u>1</u>

		Report Format / Distribution				Serv	ice R	eque	sted	(Rush for	routine	analysia	s subject	to availał	oility)
Company:	PINTER & Associates Ltd.	Standard	d 🗌 Other			🛈 R	Regular	(Stanc	lard Tu	rnaround ⁻	Times - B	usiness [ays)		
Contact:	Jessica Cutter	✓ PDF	✓ Excel	Digital	🗌 Fax	O P	riority (2-4 Bu	siness	D ays) - 50	% Surcha	arge - Co	ntact ALS I	o Confirm	TAT
Address:	710A 48th Street East	Email 1:	jessica.cutter@r	<u>pinter.ca</u>			mergen	cy (1-:	2 Bus.	Days) - 10	0% Surch	arge - C	ontact ALS	to Confirr	n TAT
	Saskatoon, SK S7K 5B4	Email 2:	lpinter@pinter.c	<u>a</u>		O s	ame Da	y or W	/eeken	d Emerger	icy - Cont	act ALS I	o Confirm	TAT	
Phone:	306.244.1710 Fax: 306.933.4986	Email 3:	dustin.hicke@pi	nter.ca						Ana	lysis R	equest	:		
Invoice To	Same as Report ?	Client / Pr	oject Informatio	on		Ple	ase in	dicat	e belo	ow Filter	ed, Pres	served	or both (F, P, F/	P)
Hardcopy of I	nvoice with Report? Yes V No	Job #:	1544-2	<u></u>		\mathbf{X}		X	Ø	\sim					
Company:	SAME	PO / AFE:				$\sum_{i=1}^{n}$		ふ	2	$\sqrt{7}$					
Contact:		LSD:	Saskatoon, SK			M		5	Ę,	g					
Address:						free		Ľ	8	5 S					nen
Phone:	Fax:	Quote #:	Q37502	······			12	¢	٦	Ś					ntai
Lab W (lab	/ork Order#use only)	ALS Contact:	Brian Morgan	Sampler:	JC	A CAM	12575	Se	PB	Ř					r of Co
Sample	Sample Identification		Date	Time	Somple Tune	X	τ Γ Γ Γ Γ Γ	A.	X	B					nbe
#	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	යා	Cł	Ŵ	\sim	Æ					N
	14-41-3		24-May-14	2:35	Soil	X		Х	_						2
	14-42-3		24-May-14	2:32	Soil	Х		Х							2
	14-12-3	· · · · · · · · · · · · · · · · · · ·	21-May-14	2:37	Soil	Х		Х							2
	14-12-6		21-May-14	2:40	Soil	Х	X	Х							3
	14-13-3		21-May-14	3:32	Soil	Х		Х							2
	14-13-6		21-May-14	4:32	Soil	Х		X							2
	14-14-3		21-May-14	5:32	Soil	Х		Х							2
	14-14-8		21-May-14	6:32	Soil	Х		Х							2
	14-15-3		21-May-14	7:32	Soil	Х		Х							2
state base	14-15-8		21 -M ay-14	7:33	Soil	Х		Х							2
	14-16-2		21-May-14	6:32	Soil	X		X							2
	14-16-5		21-May-14	9:32	Soil	Х		Х							2
	14-32-4		23-May-14	10:35	Soil	Х		Х				ļ		ļ	2
	14-32-5		23-May-14	11:35	Soil	Х		Х							2
	14-32-6		23-May-14	12:35	Soil	X		Х			_				2
	14-31-3		23-May-14	13:35	Soil	X		Х							2
ioan na chuirte ann an t-	14-31-4		23-May-14	14:35	Soil	X		Х							2
	14-20-4		21-May-14	15:35	Soil	Х		X						 	2
	14-20-6		21-May-14	16:35	Soil	X		X				 		\downarrow	2
and the second sec	14-21-2		21-May-14	17:35	Soil	Х		X		analy in					2

the second second second second second second															
14-21-6	5 11 /1 /#//##/#####################	21-May-14	18:35	Soil	X		x	Ì	's						2
14-22-3		21-May-14	19:35	Soil	X		X								2
14-22-6		21-May-14	20:35	Soil	X		X								2
14-25-2		22-May-14	2:35	Soil	X		X								2
14-25-3	}	22-May-14	2:32	Soil	X		X								2
14-25-6)	22-May-14	2:37	Soil	X		X								2
14-27-3	}	22-May-14	2:40	Soil	Х		X								2
14-27-6)	22-May-14	3:32	Soil	Х		X	Π							2
14-28-3	}	22-May-14	4:32	Soil	X		X								2
14-28-6)	22-May-14	2:35	Soil	X		x								2
14-29-2	2	22-May-14	2:32	Soil	Х		X								2
14-29-6)	22-May-14	2:37	Soil	Х		X								2
14-17-3	3	21-May-14	2:40	Soil	Х		X								2
14-17-6	6	21-May-14	3:32	Soil	Х		X	1							2
14-17-8	3	21-May-14	4:32	Soil	Х		x							-	2
14-18-5	5	21-May-14	9:35	Soil	X		X							-	2
14-18-6)	21-May-14	10:35	Soil	X		Х		oranda o						" 2
14-19-3	3	21-May-14	11:35	Soil	Х		X								2
14-19-4	•	21-May-14	12:35	Soil	X		X								2
14-26-3	}	22-May-14	13:35	Soil	X		X						15		2
14-26-4	ŀ	22-May-14	14:35	Soil	X		X		The second					ŕ	2
14-30-3	3	22-May-14	15:35	Soil	Х		X								2
14-30-5	j	22-May-14	16:35	Soil	Х		X		and the second						2
14-33-3	3	23-May-14	17:35	Soil	Х		X		and the second second						2
14-34-1		23-May-14	18:35	Soil	Х		X					<u>ب</u> و			2
14-34-3	3	23-May-14	19:35	Soil	Χ		X								2
14-35-3	}	23-May-14	2:35	Soil	X		X						8		2
14-35-6)	23-May-14	2:32	Soil	X		X						a.		2
14-36-1		23-May-14	2:37	Soil	X		X								2
14-36-3	5	23-May-14	2:40	Soil	X	X	X								3
14-36-6	3	23-May-14	3:32	Soil	X	X	X								3
14-37-3	}	23-May-14	4:32	Soil	X		x						2		2
14-37-5	; ;	23-May-14	2:35	Soil	Х		X								2
14-38-3		22-May-14	3:35	Soil	Х		x								2
14-23-3	· .	22-May-14	4:35	Soil	X		x								2
14-23-5	·	22-May-14	5:35	Soil	Х		x	1	-						2

2000 MM		-		_											
	14-24-4	22-May-14	6:35	Soil	x		x		1						2
	14-24-6	22-May-14	7:35	Soil	X		X								2
a factor and	14-39-2	24-May-14	8:35	Soil	X		x								2
	14-39-4	24-May-14	9:35	Soil	X		x								2
	14-40-4	24 - May-14	10:35	Soil	X		x	Τ			-	+			2
	14-40-6	24-May-14	11:35	Soil	X		x								2
	DUP C	21-May-14	2:35	Soil	X		x								2
	DUP D	21-May-14	3:35	Soil	x		x	ĺ			-				2
	DUP E	22-May-14	4:35	Soil	X		x	1			-				2
	DUP F	23-May-14	5:35	Soil	X		X	X	X						2
	14-12-2	21-May-14	8:35	Soil		x									1
	Special Instructions / Regulations with water or land use (CCM	E-Freshwater A	quatic Life/BC	CSR - Commerci	al/AB	Tier 1	- Na	tura	l. etc)	/ Haza	rdous	Details			
			••••••••••••••••••••••••••••••••••••••						,,						-
Grain size: PS	GA-MUST-SK														÷,
	Failure to complete all portions of	f this form may c	lelay analysis.	Please fill in thi	s form	1 LEGI	BLY								
	By the use of this form the user acknowledges a	nd agrees with t	he Terms and (Conditions as pr	ovide	d on a	sep	arat	e Exc	el tab.					
	Also provided on another Excel tab are the ALS location addresses	s, phone number	s and sample o	container / prese	rvatio	n / ho	Idino	ı tim	e tab	le for c	ommor	n analvse	IS.		
e transfer af station	SHIPMENT RELEASE (client use) SHIP	MENT RECEPTIO	DN (lab use only	()			SHI	, PME	NTV	ERIEIC	ATION	(labuse)	niv)		
Released by:	Date (dd-mmm-yy) Time (hh-mm) Received by:	PDate:	Time:	Temperature:	Verifi	ied hv [.]	rteesellisis		Date:		Tim	e:	Obse	rvatio	ns:
	h	0-14	0.0	0	1	, I				110.11	U 11	02	Yes /	0	
Jessica Cutter	27-May-14 10:00 12-2-	1-1-14-14	10:10.AM	<i>_0.6</i> ℃	4	μ τ		4	<i>74/</i>	wyn	9/1-		If Yes	s add !	SIF

NA-FM-0326d v06 Front / 22 May 2013

PINTER AND ASSOCIATES LTD. ATTN: JESSICA CUTTER 710A 48th Street East Saskatoon SK S7K 5B4 Date Received: 06-JUN-14 Report Date: 18-JUN-14 15:18 (MT) Version: FINAL

Client Phone: 306-244-1710

Certificate of Analysis

Lab Work Order #:

: L1466799 NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Project P.O. #:

1544-2

SASKATOON, SK

1ar

Brian Morgan Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: #819-58th St E., Saskatoon, SK S7K 6X5 Canada | Phone: +1 306 668 8370 | Fax: +1 306 668 8383 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1466799-1 D1 Sempled Pyr. IC on 05 IUN 14 @ 12:05							
Matrix							
Matrix: OTHER Miscellaneous Parameters							
F1 (C6-C10)	~50		50	ца	10- II IN-14	10- II IN-14	R2856407
F2-F4 (O Reg 153/04)	<00		50	ug	10 0010 14	10 0010 14	112030407
F2 (C10-C16)	<150		150	ug	18-JUN-14	18-JUN-14	R2867352
F3 (C16-C34)	3640	DLM	450	ug	18-JUN-14	18-JUN-14	R2867352
F4 (C34-C50)	610	RRR	250	ug	18-JUN-14	18-JUN-14	R2867352
Chrom. to baseline at nC50	YES				18-JUN-14	18-JUN-14	R2867352
Surrogate: 2-Bromobenzotrifluoride	88.6		50-150	%	18-JUN-14	18-JUN-14	R2867352
Note: F4 results may be biased high.							
L1466799-2 D2							
Sampled By: JC on 05-JUN-14 @ 13:15							
Matrix: OTHER							
Miscellaneous Parameters							
F1 (C6-C10)	<50		50	ug	10-JUN-14	10-JUN-14	R2856407
F2-F4 (O.Reg.153/04)	-450		150		10 11 10 44	10 11 161 4 4	DOGETOR
$F_2(C16-C10)$ $F_3(C16-C34)$	<100	ЫМ	150	ug	18-JUN-14	18-JUN-14	R2007302
F4 (C34-C50)	380	RRR	450 250	ug	18-JUN-14	18-JUN-14	R2867352
Chrom, to baseline at nC50	YES		200	ug	18-JUN-14	18-JUN-14	R2867352
Surrogate: 2-Bromobenzotrifluoride	73.2		50-150	%	18-JUN-14	18-JUN-14	R2867352
Note: F4 results may be biased high.							
L1466799-3 D3							
Sampled By: JC on 05-JUN-14 @ 13:25							
Matrix: OTHER							
Miscellaneous Parameters							
F1 (C6-C10)	<50		50	ug	10-JUN-14	10-JUN-14	R2856407
F2-F4 (O.Reg.153/04)							
F2 (C10-C16)	170		150	ug	18-JUN-14	18-JUN-14	R2867352
F3 (C16-C34)	4520	DLM	450	ug	18-JUN-14	18-JUN-14	R2867352
F4 (C34-C50) Chrom to beceling at nCE0	690 XEO	RKK	250	ug	18-JUN-14	18-JUN-14	R2867352
Chrom. to baseline at hC50	YES		50 450	0/	18-JUN-14	18-JUN-14	R2867352
Note: E4 results may be biased high	69.6		50-150	70	10-JUN-14	10-JUN-14	R2007302
Sampled By: IC on 05-11 IN-14 @ 13:35							
Matrix: OTHER							
Miscellaneous Parameters							
F1 (C6-C10)	<50		50	ug	10-JUN-14	10-JUN-14	R2856407
F2-F4 (O.Reg.153/04)				Ŭ			
F2 (C10-C16)	170		150	ug	18-JUN-14	18-JUN-14	R2867352
F3 (C16-C34)	15600	DLM	450	ug	18-JUN-14	18-JUN-14	R2867352
F4 (C34-C50)	830	RRR	250	ug	18-JUN-14	18-JUN-14	R2867352
Chrom. to baseline at nC50	YES				18-JUN-14	18-JUN-14	R2867352
Surrogate: 2-Bromobenzotrifluoride	87.3		50-150	%	18-JUN-14	18-JUN-14	R2867352
INOTE: F4 results may be blased high.							
L1400/99-5 U5 Sompled By: IC on 05 UN 44 @ 40:45							
Maux: UTHER Miscellaneous Parameters							
F1 (C6-C10)	~50		50	ша	10-, ILINI-14	10-, II INI₋1 <i>4</i>	R2856407
F2-F4 (O Reg 153/04)	<00		50	uy	10-3011-14	10-3011-14	112030407
1 2-1 7 (U.NCY.133/04)							

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
11466700-5 D5							
Sampled By: IC on 05-11 IN-14 @ 13:45							
Matrix OTUED							
F2-F4 (O.Reg.153/04) F2 (C10-C16)	<150		150	ua	18IUN-14	18IUN-14	R2867352
F3 (C16-C34)	2720	DLM	450	ua	18-JUN-14	18-JUN-14	R2867352
F4 (C34-C50)	410	RRR	250	ua	18-JUN-14	18-JUN-14	R2867352
Chrom. to baseline at nC50	YES				18-JUN-14	18-JUN-14	R2867352
Surrogate: 2-Bromobenzotrifluoride	78.7		50-150	%	18-JUN-14	18-JUN-14	R2867352
Note: F4 results may be biased high.							
L1466799-6 D6							
Sampled By: JC on 05-JUN-14 @ 13:55							
Matrix: OTHER							
Miscellaneous Parameters							
F1 (C6-C10)	<50		50	ug	10-JUN-14	10-JUN-14	R2856407
F2-F4 (O.Reg.153/04)				-			
F2 (C10-C16)	<150		150	ug	18-JUN-14	18-JUN-14	R2867352
F3 (C16-C34)	2630	DLM	450	ug	18-JUN-14	18-JUN-14	R2867352
F4 (C34-C50)	640	RRR	250	ug	18-JUN-14	18-JUN-14	R2867352
Chrom. to baseline at nC50	YES				18-JUN-14	18-JUN-14	R2867352
Surrogate: 2-Bromobenzotrifluoride	81.8		50-150	%	18-JUN-14	18-JUN-14	R2867352
Note: F4 results may be biased high.							
L1466799-7 D7							
Sampled By: JC on 05-JUN-14 @ 14:05							
Matrix: OTHER							
Miscellaneous Parameters							
F1 (C6-C10)	<50		50	ug	10-JUN-14	10-JUN-14	R2856407
F2-F4 (O.Reg.153/04)							
F2 (C10-C16)	<150		150	ug	18-JUN-14	18-JUN-14	R2867352
F3 (C16-C34)	2960	DLM	450	ug	18-JUN-14	18-JUN-14	R2867352
F4 (C34-C50)	680	ккк	250	ug	18-JUN-14	18-JUN-14	R2867352
Chrom. to baseline at nC50	YES		50 450	0/	18-JUN-14	18-JUN-14	R2867352
Surrogate. 2-biomoberizotimuonde	//./		50-150	%	18-JUN-14	18-JUN-14	R2867352
L 1400799-0 D0							
Sampled By. JC 01 05-JON-14 @ 14.15							
Matrix: OTHER Missellaneous Persmeters							
	-50		50		10 11 11 14	10 11 11 14	D0056407
F1(C0-C10) F2 F4 (O Pog 152/04)	<00		50	ug	10-3011-14	10-3011-14	R2000407
F2 (C10-C16)	260		150	ua	18-, II INI-14	18- II IN-14	R2867352
F3 (C16-C34)	5370	DLM	450	ug	18-JUN-14	18-JUN-14	R2867352
F4 (C34-C50)	540	RRR	250	uq	18-JUN-14	18-JUN-14	R2867352
Chrom. to baseline at nC50	YES			0	18-JUN-14	18-JUN-14	R2867352
Surrogate: 2-Bromobenzotrifluoride	77.8		50-150	%	18-JUN-14	18-JUN-14	R2867352
Note: F4 results may be biased high.							
L1466799-9 PB 1							
Sampled By: JC on 05-JUN-14 @ 13:00							
Matrix: OTHER							
Miscellaneous Parameters							
Lead (Pb)	2090		5.0	mg/kg	11-JUN-14	11-JUN-14	R2858291
1466799-10 PB 2						<u> </u>	
Sampled By: JC on 05-11 IN-14 @ 14:45							
Matrix: OTHER							
					1	1	

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1466799-10 PB 2 Sampled By: JC on 05-JUN-14 @ 14:45 Matrix: OTHER Miscellaneous Parameters Lead (Pb)	1410		5.0	ma/ka	11II IN-14	11- II IN-14	R2858291
	1710		0.0				

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Parameter Qualifier Key:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
RRR	Refer to Report Remarks for issues regarding this analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
F2-F4-WT	Swab	F2-F4 (O.Reg.153/04)	MOE DECPH-E3421/CCME TIER 1	
PB-PAINT-SK	Bulk	Lead (Pb) in Paint	SW846-6010	
** ALS test methods ma	ay incorporate m	odifications from specified reference r	nethods to improve performance.	

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

Page 1 of 1

RK

Repu		Report F	ormat / Distri	bution		Serv	ice R	eque	sted	(Rush for I	outine	analys	sis sub	ject to a	availabili	ity)
Company:	PINTER & Associates Ltd.	🗹 Standar	rd 🗌 Other		7687 8 -11	• F	Regular	(Stand	dard Tu	rnaround Ti	mes - B	usiness	Days)			
Contact:	Jessica Cutter	PDF	🖌 Excel	🔲 Digita	al 🗌 Fax	Оp	riority	(2 - 4 Bi	isiness I	Days) - 50%	6 Surch	arge - (Contact	ALS to C	Confirm T	AT
Address:	710A 48th Street East	Email 1:	jessica.cutter@	pinter.ca		OE	mergei	1cy (1-	2 Bus, [Days) - 100	% Surch	narge -	Contac	t ALS to	Confirm "	TAT
	Saskatoon, SK S7K 5B4	Email 2:	lpinter@pinter.	<u>ca</u>		O s	ame D	ay or V	Veekenc	f Emergenc	y - Cont	act ALS	S to Cor	nfirm TA	-	
Phone:	306.244.1710 Fax: 306.933.4986	Email 3:	ryan.riess@pin	<u>ter.ca</u>						Analy	/sis R	eque	st			
Invoice To	Same as Report ?	Client / P	roject Informati	on		Ple	ase ir	ndicat	e belo	w Filtere	d, Pre	serve	d or b	oth (F,	P, F/P)	,
Hardcopy of I	Invoice with Report? Yes Vo	Job #:	1544-2	10.00												7
Company:	SAME	PO / AFE	•													7
Contact:		LSD:	Saskatoon, SK								1					
Address:						1										Jers
Phone:	Fax:	Quote #:	Q37502	·												ntair
Lab W (lab	Vork Order #) use only)	ALS Contact:	Brian Morgan	Sampler:	JC		5	NT-SK								r of Col
Sample #	Sample Identification (This description will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	F1-WT	F2-F4-V	PB-PAI								Numbe
	D1		05-Jun-14	1:05	Other	X	Х									2
	D2		05-Jun-14	1:15	Other	X	Х									2
	D3		05-Jun-14	1:25	Other	X	Х			-	1					2
	D4		05-Jun-14	1:35	Other	X	Х									2
	D5		05-Jun-14	1:45	Other	X	Х									2
	D6		05-Jun-14	1:55	Other	X	Х									2
	D7		05-Jun-14	2:05	Other	X	Х									2
	D8		05-Jun-14	2:15	Other	X	Χ									2
	Pb 1		05-Jun-14	1:00	Other			Χ								1
	Pb 2		05-Jun-14	2:45	Other			Χ								1
and and a second second																
	Special Instructions / Regulations with water or land	l use (CCM	IE-Freshwater A	quatic Life/BC	CSR - Commerc	ial/AE	Tier	1 - N	atural	, etc) / H	azard	ous D	Details	3		

Methanol used for all swabs

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.

By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab.

Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses.

SHIPMENT RELE	ASE (client use))	S	HIPMENT RECEPTION	ON (lab use only	()	SHIPM	ENT VERIFICA	TON (lab use o	nly)
Released by:	Date (dd-mmm-yy)	Time (hh-mm)	Received by:	Date:	Time:	Temperature:	Verified by:	Date:	Time:	Observations:
hre			[i \$]]		non	\mathcal{O}		10:25	1 N. ILI	Yes / No-?
Jesşica Cutter	6-Jun-14	10:30	Inna	> PINEN	N. Dan	18°C	47	(-	6 JAN 1	If Yes add SIF
1		U							NA-FN	-0326d v06 Front / 22 May 2013

PINTER AND ASSOCIATES LTD. ATTN: Lawrence Pinter 710A 48th Street East Saskatoon SK S7K 5B4 Date Received: 27-JUN-14 Report Date: 07-JUL-14 10:17 (MT) Version: FINAL

Client Phone: 306-244-1710

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1478162 NOT SUBMITTED 1544-2

SASKATOON,SK

lar

Brian Morgan Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: #819-58th St E., Saskatoon, SK S7K 6X5 Canada | Phone: +1 306 668 8370 | Fax: +1 306 668 8383 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1 1 4 7 9 1 6 9 1 1 4 1 9							
Sampled By: IC on 26-II IN-14 @ 10.20							
Matrix: WATER							
Maurix. WATER BTEX E1 (C6-C10) and E2 (>C10-C16)							
BTEX and E1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Toluene	< 0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	107.5		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	115.6		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	79.1		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)	0.00		0.00		20 11 11 4 4	00 11 1 4 4	D0070000
F2 (C10-C16)	<0.20		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate. 2-Bromoberizotimuonde	79.0		50-150	%	30-JUN-14	02-JUL-14	R2876960
L1478162-2 14-15							
Sampled By: JC on 26-JUN-14 @ 10:47							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
FI-BIEA Surrogate: 1.4 Difluorobonzono	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Diliuorobenzene	110.2		70-130	% 0/	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3.4 Dichlorotoluono	110.5		70-130	70 0/.	04-JUL-14	05-JUL-14	R2079200
$\mathbf{F}_{2} = \mathbf{F}_{2} = \mathbf{F}_{2}$	05.7		70-130	70	04-302-14	03-301-14	12079233
F2 (C10-C16)	<0.20		0.20	ma/l	30-JUN-14	02-JUI -14	R2876960
Surrogate: 2-Bromobenzotrifluoride	78.9		50-150	%	30-JUN-14	02-JUL-14	R2876960
L1478162-3 14-12							
Sampled By: JC on 26-JUN-14 @ 11:20							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)	0.00050		0.00050				Deeree
	<0.00050		0.00050	mg/L	04-JUL-14		R28/9253
Fthy/Benzene			0.00050	mg/L	04-JUL-14	05-JUL-14	RZ019253
Xylenes			0.00000	mg/L	04-301-14 04-111-14	05-301-14	R2019200
o-Xvlene	<0.0020		0.0020	ma/l	04-111-14	05-111-14	R2870253
m+p-Xvlene	<0.0010		0.0010	ma/l	0411.11 -14	0511.11 -14	R2879253
F1(C6-C10)	<0.20		0.20	ma/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	ma/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	110.0		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	99.8		70-130	%	04-JUL-14	05-JUL-14	R2879253

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
11170162 2 11 12							
L1478102-3 14-12 Sampled By: IC on 26-111N-14 @ 11:20							
Matrix: WATED							
PTEX and E1 (C6 C10)							
Surrogate: 3,4-Dichlorotoluene	82.7		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16)	<0.20		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrinuonde	83.8		50-150	%	30-JUN-14	02-JUL-14	R2876960
Sampled By: JC on 26-JUN-14 @ 11:54							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
l oluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	ma/l	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	ma/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	109.3		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	117.2		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	80.1		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16)	<0.20		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	93.0		50-150	%	30-JUN-14	02-JUL-14	R2876960
L1478162-5 MWB							
Sampled By: JC on 26-JUN-14 @ 00:25							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
I oluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Zulenes	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xvlene	<0.0020		0.0020	ma/l	04-JUI -14	05-JUII -14	R2879253
m+p-Xylene	<0.0010		0.0010	ma/l	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	109.1		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	110.5		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	80.5		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)			0.00			00	Deemas
F2 (C10-C16)	<0.20		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	85.1		50-150	%	30-JUN-14	02-JUL-14	R2876960
L1478162-6 14-41							
Sampled By: JC on 26-JUN-14 @ 00:45							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)	0.00050		0.00050				D0070050
Denzene	<0.00050		0.00050	rng/∟	04-JUL-14	UD-JUL-14	R2879253

* Refer to Referenced Information for Qualifiers (if any) and Methodology.
ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
l 1478162-6 14-41							
Sampled By: JC on 26-JUN-14 @ 00:45							
Matrix: WATER							
BTEX and F1 (C6-C10)							
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BIEX Surregete: 1.4 Diffuerebenzene	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Dilluorobenzene	111.3		70-130	% 0/	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3 4-Dichlorotoluene	708.0		70-130	% 0/.	04-JUL-14	05-JUL-14	R2879253
$\mathbf{F}_{2} = \mathbf{F}_{1} \mathbf{F}_{2} \mathbf{F}_{2}$	15.2		70-130	70	04-302-14	03-301-14	12079255
F2 (C10-C16)	<0.20		0.20	ma/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	79.5		50-150	g, _ %	30-JUN-14	02-JUL-14	R2876960
L1478162-7 14-42							
Sampled By: JC on 26-JUN-14 @ 01:10							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)	0 00050		0.00050	~~~~/l	04 11 14	05 11 14	D0070050
Toluono	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Toluelle EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xvlenes	<0.00030		0.00030	mg/L	04-301-14	05-101-14	R2879253
o-Xvlene	<0.0020		0.0020	mg/L	04-JUJI-14	05-JUI -14	R2879253
m+p-Xvlene	<0.0010		0.0010	ma/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	105.9		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	105.3		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	77.3		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16)	<0.20		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	80.7		50-150	%	30-JUN-14	02-JUL-14	R2876960
L1478162-8 14-7							
Sampled By: JC on 26-JUN-14 @ 01:32							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	K2879253
FI-DIEA Surragata: 1.4 Difluorabanzana	<0.20		0.20	rng/L	04-JUL-14	05-JUL-14	R28/9253
Surrogate: 4-Bromofluorobenzene	107.0		70-130	70 0/	04-JUL-14	05-JUL-14	R2019253
Surrogate: 3.4-Dichlorotoluene	77 5		70-130	/0 %	04-,1111 -14	05-00-14	R2870252
F2 (>C10 -C16)	11.5		10-130	70	0+ 301-14	00-00L-14	112019200

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L14/0102-0 14-7 Sampled By: IC on 26 1111 14 @ 04:22							
Sampled By. JC 01 26-JUN-14 @ 01.32							
Matrix: WATER							
F2 (>C10 -C16) F2 (C10-C16)	-0.20		0.20	ma/l	20 IUN 14	02 11 14	D 2976060
Surrogate: 2-Bromobenzotrifluoride	<0.20 86 5		0.20 50-150	mg/∟ %	30-JUN-14	02-301-14	R2876960
Single Metal in Water by ICPMS (Diss.)	00.0		50 150	70	00 0011 14	02 002 14	112070300
Dissolved Metals in Water by CRC ICPMS							
Lead (Pb)-Dissolved	<0.000050		0.000050	mg/L		05-JUL-14	R2878781
L1478162-9 14-5							
Sampled By: JC on 26-JUN-14 @ 02:05							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)	0 00050		0.00050	~~~/l	04 11 14	05 11 14	D0070050
	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene			0.00050	mg/L	04-101-14	05-001-14	R2870253
Xylenes	<0.0020		0.0020	ma/l	04-JUL-14	05-JUL-14	R2879253
o-Xvlene	< 0.0010		0.0010	ma/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	< 0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	108.1		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	102.4		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	85.0		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16)	0.23		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifiuoride	91.5		50-150	%	30-JUN-14	02-JUL-14	R2876960
L1478162-10 14-3							
Sampled By: JC on 26-JUN-14 @ 02:34							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Euryidenzene	<0.00050		0.00050	mg/∟	04-JUL-14	05-JUL-14	R2879253
	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2079203
m+p-Xvlene	<0.0010		0.0010	ma/l	04-111-14	05-JUI -14	R2879253
F1(C6-C10)	<0.20		0.20	ma/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	107.6		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	119.5		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	78.6		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16)	<0.20		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	81.4		50-150	%	30-JUN-14	02-JUL-14	R2876960
Single Metal in Water by ICPMS (Diss.)							
Lissolved metals in water by CRC ICPMS	0 000067		0 000050	ma/l		0511 -14	R2878781
	0.000007		0.000000	g/∟			1.2010101

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1478162-11 14-1							
Sampled By: IC on 26-11 IN-14 @ 15:00							
BTEX E1 (C6-C10) and E2 (>C10-C16)							
BTEX and E1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	110.0		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	96.8		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	74.9		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16)	<0.20		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	91.1		50-150	%	30-JUN-14	02-JUL-14	R2876960
Single Metal in Water by ICPMS (Diss.)							
Dissolved Metals in Water by CRC ICPMS	0 000050		0 000050				D0070704
Lead (PD)-Dissolved	<0.000050		0.000050	mg/L		05-JUL-14	R2878781
L1478162-12 14-33							
Sampled By: JC on 26-JUN-14 @ 15:20							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BIEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	109.3		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromotiuorobenzene	112.9		70-130	%	04-JUL-14	05-JUL-14	R2879253
	(7.1		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>U1U -U16) F2 (C10-C16)	-0.00		0.20	ma/l	30-11111 44	02-1111 44	DOBTEDED
Surrogate: 2-Bromobenzotrifluoride	<0.20 99 5		0.20	mg/∟ %	30- IUN-14	02-301-14	R2070900
Canagato. 2 Diomobolizotimuonue	00.0		50-150	/0	50-50N-14	02-30L-14	112010300
L1478162-13 14-37							
Sampled By: JC on 26-JUN-14 @ 15:42							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1478162-13 14-37							
Sampled By: JC on 26-JUN-14 @ 15:42							
Matrix: WATER							
BTEX and E1 (C6-C10)							
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	107.2		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	110.0		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	78.0		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16) Surragata: 2 Bromohonzatrifluorida	0.60		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Sunogale. z-biomobenzolimuonue	00.0		50-150	70	30-30N-14	02-301-14	R2070900
L1478162-14 14-18							
Sampled By: JC on 26-JUN-14 @ 04:05							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10) Benzene			0.00050	ma/l		05-1111 44	D0070050
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-001-14	R2870253
EthylBenzene	<0.00050		0.00050	ma/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	106.2		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	99.1		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	74.0		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10-C16) F2 (C10-C16)	<0.20		0.20	ma/l	30-JUN-14	02-1111-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	87.7		50-150	%	30-JUN-14	02-JUL-14	R2876960
L1478162-15 14-27							
Sampled By: JC on 26-JUN-14 @ 04:25							
Matrix: WATER							
BTEX, F1 (C0-C10) and F2 (>C10-C10) BTEX and E1 (C6-C10)							
Benzene	<0.00050		0.00050	ma/L	04-JUL-14	05-JUL-14	R2879253
Toluene	< 0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
FI-DIEA Surrogate: 1.4-Difluorobenzene	<0.20		0.20	mg/∟ ∞∠	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	107.8		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	80.4		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16)	<0.20		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	91.0		50-150	%	30-JUN-14	02-JUL-14	R2876960
1478162-16 14-25							
Sampled By: JC on 26-JUN-14 @ 04.47							
Matrix: WATER							

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1478162-16 14-25							
Sampled By: JC on 26-JUN-14 @ 04:47							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6 C10)	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-101-14	R2079203
Surrogate: 1.4-Difluorobenzene	107.8		70-130	//////////////////////////////////////	04-JUJI-14	05-JUI -14	R2879253
Surrogate: 4-Bromofluorobenzene	85.2		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3.4-Dichlorotoluene	71.1		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16)	0.32		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	94.9		50-150	%	30-JUN-14	02-JUL-14	R2876960
L14/8162-1/ 14-20							
Sampled By: JC on 26-JUN-14 @ 05:15							
Matrix: WATER							
BTEX, FT (C6-C10) and F2 (>C10-C10)							
Benzene	<0.00050		0 00050	ma/l	04-JUI -14	05-JUI -14	R2879253
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	108.6		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromonuorobenzene	99.4		70-130	%	04-JUL-14	05-JUL-14	R2879253
	77.8		70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (C10-C16)	0.26		0.20	ma/l	30-JUN-14	02-1111-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	85.1		50-150	%	30-JUN-14	02-JUL-14	R2876960
L1478162-18 14-23							
Sampled By: JC on 26-JUN-14 @ 05:34							
Matrix: WATER							
BIEX, F1 (C6-C10) and F2 (>C10-C16)							
BIEX and F1 (C6-C10) Benzene	<0.00050		0.00050	ma/l	04-1111-14	05- -14	P2970252
Toluene			0.00050	mg/L	04-JUL-14	05-001-14	R2870253
EthylBenzene	<0.00050		0.00050	ma/L	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	3.52		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	3.52		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	112.8		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	115.9		70-130	%	04-JUL-14	05-JUL-14	R2879253

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

1544-2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
11170160 10 11 00							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
Matrix: WATER							
BTEY and E1 (C6-C10)							
Surrogate: 3,4-Dichlorotoluene	158.7	SOL:MI	70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16)							
F2 (C10-C16)	136		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	129.6		50-150	%	30-JUN-14	02-JUL-14	R2876960
Single Metal in Water by ICPMS (DISS.)							
Lead (Pb)-Dissolved	0.000155		0.000050	ma/L		05-JUL-14	R2878781
				5			
L1478162-19 DUP A							
Sampled By: JC on 26-JUN-14 @ 03:42							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)	0 00050		0.00050	m c //			D0070050
Toluene			0.00050	mg/L	04-JUL-14 04- II II -14	05-JUL-14 05- II II -14	R2870252
EthylBenzene	<0.00050		0.00050	ma/l	04-JUL-14	05-JUL-14	R2879253
Xylenes	<0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R2879253
o-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	110.0		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3 4-Dichlorotoluene	113.2		70-130	% %	04-JUL-14	05-JUL-14	R2879253 R2879253
F2 (>C10 -C16)	03.4		70-130	70	04-302-14	03-302-14	12079255
F2 (C10-C16)	0.64		0.20	mg/L	30-JUN-14	02-JUL-14	R2876960
Surrogate: 2-Bromobenzotrifluoride	94.8		50-150	%	30-JUN-14	02-JUL-14	R2876960
Sampled By: IC on 26-11 IN-14 @ 04:47							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)							
BTEX and F1 (C6-C10)							
Benzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Toluene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
EthylBenzene	<0.00050		0.00050	mg/L	04-JUL-14	05-JUL-14	R2879253
Aylenes	< 0.0020		0.0020	mg/L	04-JUL-14	05-JUL-14	R28/9253
m+p-Xylene	<0.0010		0.0010	mg/L	04-JUL-14	05-JUL-14	R2879253
F1(C6-C10)	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
F1-BTEX	<0.20		0.20	mg/L	04-JUL-14	05-JUL-14	R2879253
Surrogate: 1,4-Difluorobenzene	107.6		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 4-Bromofluorobenzene	118.0		70-130	%	04-JUL-14	05-JUL-14	R2879253
Surrogate: 3,4-Dichlorotoluene	63.4	SOL:MI	70-130	%	04-JUL-14	05-JUL-14	R2879253
F2 (>C10 -C16) F2 (C10-C16)	0.21		0.20	ma/l		02 . ₋ 1 <i>4</i>	P2876060
Surrogate: 2-Bromobenzotrifluoride	96.9		50-150	% %	30-JUN-14	02-JUL-14	R2876960

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

	Description	1	
SFPL	Sample was	s Filtered and Preserved at the laboratory	
Sample Para	ameter Qualifier Key	:	
Qualifier	Description		
DLM	Detection Limit Adj	usted due to sample matrix effects.	
SOL:MI	Surrogate recovery	outside acceptable limits due to matrix interferer	ce
Test Method	References:		
ALS Test Co	de Matrix	Test Description	Method Reference**
BTX F1-SK	Water	BTEX and F1 (C6-C10)	EPA 5012A/8260B HS/GC/FID/MSD
Bind, Filon			
Samples are headspace is an FID detect	transferred to glass vial injected into a gas chro or where hydrocarbons	s with salt and methanol. The vial is then heated matograph where sample flow is split into 2 direct in the F1 range are quantified.	and agitated in a headspace auto-sampler. An aliquot of the tions. One split of the sample is passed through a DB-1 column to
Samples are headspace is an FID detect References: EPA Method EPA Method	transferred to glass vial injected into a gas chro or where hydrocarbons 8260B, Volatile Organic 5012A, Volatile Organic	s with salt and methanol. The vial is then heated matograph where sample flow is split into 2 direct in the F1 range are quantified. Compounds by Gas Chromatography / Mass Sp Compounds in Various Sample Matrices Using I	and agitated in a headspace auto-sampler. An aliquot of the tions. One split of the sample is passed through a DB-1 column to ectrometry (GC/MS), Revision 2, December 1996. Equilibrium Headspace Analysis, Revision 1, June 2003.
Samples are headspace is an FID detect References: EPA Method EPA Method F2-SK	transferred to glass vial injected into a gas chro or where hydrocarbons 8260B, Volatile Organic 5012A, Volatile Organic Water	s with salt and methanol. The vial is then heated matograph where sample flow is split into 2 direct in the F1 range are quantified. Compounds by Gas Chromatography / Mass Sp Compounds in Various Sample Matrices Using I F2 (>C10 -C16)	and agitated in a headspace auto-sampler. An aliquot of the tions. One split of the sample is passed through a DB-1 column to ectrometry (GC/MS), Revision 2, December 1996. Equilibrium Headspace Analysis, Revision 1, June 2003. EPA 3510/8000-GC-FID
Samples are headspace is an FID detect References: EPA Method EPA Method F2-SK MET-D-CCMS	transferred to glass vial injected into a gas chro or where hydrocarbons 8260B, Volatile Organic 5012A, Volatile Organic Water S-ED Water	s with salt and methanol. The vial is then heated matograph where sample flow is split into 2 direct in the F1 range are quantified. Compounds by Gas Chromatography / Mass Sp Compounds in Various Sample Matrices Using I F2 (>C10 -C16) Dissolved Metals in Water by CRC ICPMS	and agitated in a headspace auto-sampler. An aliquot of the tions. One split of the sample is passed through a DB-1 column to ectrometry (GC/MS), Revision 2, December 1996. Equilibrium Headspace Analysis, Revision 1, June 2003. EPA 3510/8000-GC-FID APHA 3030 B&E / EPA SW-846 6020A

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1478162-18

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1478162-19

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L1478162-20

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC #

Page <u>1</u> of <u>1</u>

			() /)						1.1.0					<u> </u>	
Report Io		Report F	ormat / Distri	bution		Service Requested (Rush for routine analysis subject to avai						availab	oility)		
Company:	PINTER & Associates Ltd.	Standar	d Other	[====]		Regular (Standard Turnaround Times - Business Days)						0.5			
Contact:		PDF	✓ Excel		Fax	Control Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirmed a Control C					Confirm	AI			
Address:	/10A 48th Street East	Email 1:	jessica.cutter@	pinter.ca			nergen	cy (1-2	Bus. Day	/s) - 100º	% Surcha	rge - Cont	act ALS t	o Confirm	n TAT
	Saskatoon, SK S/K 5B4	Email 2:	Ipinter@pinter.d			\cup s	ame Da	y or w	eekend E	mergency	/ - Contac	T ALS to C	Lonrirm L	Al	
Phone:	306.244.1/10 Fax: 306.933.4986	Email 3:	Wesley.wizniuk	@pinter.ca						Analy		quest	. l /		<u> </u>
Invoice To	Same as Report ? Ves No	Client / P	roject Informati	on		Piea	ase in	dicate		Filtered	a, Prese	erved or		·, P, F/F	-)
Hardcopy of			1544-2												_
Company:	SAME	PU/AFE	Sackataan SK												
Contact:		LOD.	Saskaloon, SK												1
Address.	Eav	0	037502				ved								
Frione.	F dx.		07002	1		1-F2	ssol								
Lab (la	ib use only)	Contact:	Brian Morgan	Sampler:	JC	PHC F	iD - (d								-
Sample	Sample Identification		Date	Time	Sample Type	Ц	d (F								
:#	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)		Ш	Ľe								╧
	14-13		26-Jun-14	10:20	Water	X									
	14-15		26-Jun-14	10:47	Water	X									
	14-12		26-Jun-14	11:20	Water	Х									
	MWA		26-Jun-14	11:54	Water	X									
	MWB		26-Jun-14	12:26	Water	X									
	14-41		26-Jun-14	12:45	Water	X									
onar a se	14-42		26-Jun-14	1:10	Water	X									
	14-7		26-Jun-14	1:32	Water	X	X								
	14-5		26-Jun-14	2:05	Water	X									
	14-3		26-Jun-14	2:34	Water	X	X								
	14-1		26-Jun-14	3:00	Water	X	X								
	14-33	-	26-Jun-14	3:20	Water	X									
	14-37		26-Jun-14	3:42	Water	X									
	14-18		26-Jun-14	4:05	Water	X									
	14-27		26-Jun-14	4:25	Water	X									
	14-25		26-Jun-14	4:47	Water	X					<u> </u>			⊢	
	14-20		26-Jun-14	5:15	Water	X									\perp
	14-23		26-Jun-14	5:34	Water	X	X								
	DUP A		26-Jun-14	3:42	Water	X								$ \land \downarrow$	
	DUP B		26-Jun-14	4:47	Water	X								¥1	
													H)	

Special Instructions / Regulations with	water or land use (CC	ME-Freshwate	r Aquatic Life/BC	CSR - Commerc	ial/AB Tier 1 - N	latural, etc) / Haz	ardous Details	
Samples for dissolved lead analysis were not field filtered.								
Failure to	complete all portions	of this form ma	ay delay analysis	. Please fill in thi	is form LEGIBL	Y.		
By the use of this form the	e user acknowledges	and agrees wi	th the Terms and	Conditions as p	rovided on a se	parate Excel tab		
Also provided on another Excel tab are the	ALS location addresse	s, phone num	bers and sample	container / prese	ervation / holdi	ng time table for	common analys	es.
SHIPMENT RELEASE (client use)	SHI	PMENT RECER	TION (lab use on	ly).	ା	HIPMENT VERIFIC	CATION (lab use	only)
Released by: Date (dd-mmm-yy) Time (hh-mm) Received by	Date:	Time:	Temperature:	Verified by:	Date:	Time:	Observations:
	9/11/	97 1 1	411.71	8				Yes / No ?
Jessiga Cutter 27-Jun-14 11:	30 m	OF JUN-1	T II JIAM					If Yes add SIF
l l							N	-FM-0326d v06 Front / 22 May 2013

 $\overline{}$

Appendix H

Site Monitoring Report

Site Monitoring Report

Project Number:1544-2Site Location:Caswell Transit SiteDate Monitored:26 June 2014Weather:18 °C, Wind NNW 20 kph

	Well Screen	Surface	Groundwater	Depth to	Depth to	Well							
Monitoring Well ID	Interval (m.bgs)	Elevation (m)	Elevation (m)	LNAPL (m.bgs)	Groundwater (m bgs)	Depth ^a (m.btoc)	WVCRs ^D (nnm)	DO (mg/L)	ORP (mV)	рН	Temp (°C)	EC (mS/cm)	Sample Comments
Weinib	(11.063)	(11)	(11)	(11.063)	(11.063)	(11 5100)	(ppiii)	(116/1)	(110)		(6)	(115) (11)	Sumple comments
14-01	2.7 to 4.2	488.754	486.474	-	2.28	4.12	200	3.4	251	7.04	6.7	1.89	-
14-03	2.7 to 4.2	488.976	486.646	-	2.33	4.14	790	3.02	247	7.19	9.5	0.994	-
14-05	2.2 to 3.6	488.863	486.703	-	2.16	3.55	80	0.62	206	7.03	7.9	1.19	-
14-06	3.3 to 4.2	488.503	486.323	-	2.18	3.90	20	3.42	230	7.25	9.2	1.08	-
14-12	2.7 to 4.2	487.443	485.113	-	2.33	4.50	6450	0.85	282	7.39	10.4	2.52	-
14-13	2.7 to 4.2	487.350	485.260	-	2.09	3.62	4200	8.35	465	7.18	9.9	2.06	-
14-15	3.6 to 5.1	487.600	485.240	-	2.36	4.72	4350	8.34	500	7.78	8.1	1.61	-
14-18	3.0 to 4.5	-	-	-	3.19	4.37	10	2.66	221	7.12	17.6	2.04	-
14-20	2.0 to 3.5	-	-	-	2.34	3.18	25	2.66	221	7.12	17.6	2.04	-
14-23	2.0 to 3.5	487.804	485.394	-	2.41	3.53	65	1.95	-34	7.08	13.5	1.98	Strong PHC odour; murky
14-25	2.7 to 4.2	-	-	-	2.78	3.88	25	0.57	247	7.05	15.4	1.42	Light yellow color; oily
14-27	1.5 to 3.0	-	-	-	2.48	3.09	45	5.96	255	7.10	17.7	1.78	-
14-33	1.5 to 3.0	-	-	-	1.93	2.96	0	3.9	273	7.12	17.9	1.72	-
14-37	1.5 to 3.0	-	-	-	1.83	2.77	10	0.35	65	6.95	14.2	0.69	-
14-41	3.0 to 4.5	487.423	484.823	-	2.60	4.75	120	5.44	217	6.89	16.0	0.71	-
14-42	2.1 to 3.6	487.353	484.303	-	3.05	3.79	20	3.51	225	6.81	8.0	2.32	-
MWA	-	487.459	485.259	-	2.20	3.63	0	3.31	127	7.22	12.6	2.34	-
MWB	-	487.500	485.210	-	2.29	-	0	3.07	135	7.14	13.5	2.22	-
MWC	-	-	-	-	-	1.93	-	-	-	-	-	-	Dry
MWD	-	-	-	-	-	1.90	-	-	-	-	-	-	Dry

^a Well depth is measured from the top of the casing

^b Field screening results are measured using a combustible gas meter calibrated to a hexane standard.

All terms defined in body of PINTER report

m bgs - meters below ground surface

m botc - metres below top of casing

LNAPL - light non-aqueous phase liquid

WVCRs - well headspace vapour concentration

DO - dissolved oxygen

ORP - oxidation reduction potential

EC - electrical conductivity

ppm - parts per million

mg/L - milligrams per liter

mV - millivolts

mS/cm - millisiemens per centimeter

Appendix I

Bersch & Associates Asbestos Reports

TRANSIT STORAGE & ADMINISTRATION BUILDING ASBESTOS SURVEY REPORT

April 2014

Prepared For: City of Saskatoon – Infrastructure Services Department 1101 Avenue P North, Saskatoon SK, Canada S7L 7K6 Attn: Brent Anderson

Prepared By: Bersch & Associates Ltd. Project No. : B67SRD23

1.0 EXECUTIVE SUMMARY

The asbestos audit of the Transit Storage & Administration Building located at 301 - 24th Street West Saskatoon, SK. entailed the inspection of all accessible suspect asbestos-containing materials (ACM) located within the facility. Materials inspected included insulation materials, floor covering materials, mechanical insulation materials, ceiling tiles, sealant materials and gasket materials.

Bulk sample analysis results indicate the presence of "Chrysotile" asbestos within the Transit Storage & Administration Building located in Saskatoon, SK. Please refer to *Appendix I* for Bulk Sample Analysis results. The recommended actions to be implemented in reference to the ACM identified are Management. Please refer to section 5 Asbestos Abatement Discussion for definitions. It should be noted that the recommendation of "Management" as part of the asbestos action plan is based upon the premise that renovations are not scheduled throughout the area that would impact the asbestos containing material present. *Prior to any major renovation/demolition activity, a destructive investigation is recommended to identify any inaccessible ACM that is physically concealed or isolated in areas such as enclosed wall/ceiling/floor cavities and pipe chases*. Asbestos was detected in the following forms throughout the facility:

- Vinyl Asbestos Floor Tile is located within 244 and 103 Storage Rooms. The Asbestos Floor Tile has been identified on the Floor Plans included in *Appendix II* of this report.
- **Transite Roof Drain Pipe** is located in 201, 202, 203, 204, 208, 209, 114, 119 and 120. The Asbestos Drain Pipe has been identified with an "ASBESTOS" stencil signifying the entire pipe is to be considered ACM.
- The Block Walls were tested for Vermiculite Content throughout the facility. No Vermiculite was found to sample during our survey but further investigation should be done prior to demolition of the building. Although it is unlikely due to sample results and investigation, any material located within ceilings, wall cavities, pipe chases or other inaccessible areas or areas of limited access shall be considered asbestos-containing until testing of the material can determine the presence or absence of asbestos.

Bersch & Associates Ltd. implemented the use of doorjamb labels that are applied to all the doorjambs of the rooms containing asbestos within the facility. This permits anyone accessing the room to easily identify the ACM present without having to reference the written report. Legends providing explanation of the abbreviations used on doorjambs were placed on the backside of all maintenance/custodial doors within the facility. Employees and contractors will use the legend as a reference to identify ACM within the areas they are working.

2.0 INTRODUCTION

Bersch & Associates Ltd. was retained by the City of Saskatoon to conduct an Asbestos Survey and Hazard Assessment of the Transit Storage & Administration Building located at 301 24th Street West Saskatoon, SK. The survey entailed the inspection of all accessible areas of the facility; including ceiling spaces, pipe chases, and attics. The purpose of the survey was to locate, identify and assess the condition of all Asbestos Containing Materials (ACM) located throughout the facility. This report gives a detailed account of the inspection results and our firm's recommendations on control options to be implemented to bring the facility in compliance with the Province of Saskatchewan Occupational Health and Safety Act and Regulations. Bersch & Associates Ltd. conducted the survey in April 2014. A review of this report shall be conducted with all trades that are entering the facility to perform maintenance or renovation activity. This will ensure they are familiar with the types and locations of asbestos-containing materials present and prevent any uncontrolled disturbance and/or possible exposure to asbestos.

3.0 METHODOLOGY

Bersch & Associates Ltd. conducted the survey of the Transit Storage & Administration Building in April 2014. The primary documents for guidance and criteria in this survey were the Province of Saskatchewan "Occupational Health and Safety Act and Regulations, 1996", Province of Saskatchewan "Managing Asbestos", and the U.S. Environmental Protection Agency "Guidance for Controlling Asbestos Containing Materials in Buildings". The USEPA document identifies factors associated with the "condition" and the "potential for disturbance or erosion" of asbestos containing materials (ACM). These factors help to determine potential for exposure to ACM and were used to make a qualitative evaluation of the material. It should be noted that the recommendation of "Management" Asbestos Abatement Action is based upon the premise that renovations are not scheduled in that area that will require disturbing or violating the asbestos containing material. In the event that renovations are scheduled that impact upon the areas of asbestos containing material then pre-removal of the asbestos containing materials may be necessary.

In total, thirty-five (35) bulk samples of suspect asbestos-containing materials were collected within the Transit Storage & Administration Building. As a result Chrysotile asbestos was detected within the facility. Refer to Appendix I for a copy of the Bulk Sample Analysis Report. All bulk samples collected were analyzed by Bersch & Associates Ltd. laboratory in accordance with the current U.S. 40 CFR Part 763, Vol. 52, No.210 for the analysis of asbestos in building materials using polarized light microscopy and dispersion staining techniques. The detection limit of this method is listed as less than 1%.

4.0 RECOMMENDATIONS

1. 201 Corridor, 202, 203, 204, 208 and 209 Offices

Transite Drain Pipe is located within the Offices and Corridors above the suspended ceiling tile. This material is considered a non-friable material and will not produce an elevated airborne fibre release unless mechanically disturbed. Recommendation is for the management of this material until renovations warrant removal.

PRIORITY:	THREE
CONDITION:	GOOD
POTENTIAL FOR DISTURBANCE:	LOW
ACTION:	MANAGE

2. <u>244 Custodial Closet</u>

Vinyl Asbestos Floor Tile is located within the room. This material is considered a non-friable material and will not produce an elevated airborne fibre release unless mechanically disturbed. Recommendation is for the management of this material until renovations warrant removal.

PRIORITY:	THREE
CONDITION:	GOOD
POTENTIAL FOR DISTURBANCE:	LOW
ACTION:	MANAGE

3. <u>103 Storage</u>

Vinyl Asbestos Floor Tile is located within the room below the stair case. This material is considered a non-friable material and will not produce an elevated airborne fibre release unless mechanically disturbed. Recommendation is for the management of this material until renovations warrant removal.

PRIORITY:	THREE
CONDITION:	GOOD
POTENTIAL FOR DISTURBANCE:	LOW
ACTION:	MANAGE

4. 114, 119 and 120 Parking Garage

Transite Drain Pipe is located within the Parking Garage Area. The pipe runs overhead adjacent the east wall and between Bays 119 and 120. This material is considered a non-friable material and will not produce an elevated airborne fibre release unless mechanically disturbed. Recommendation is for the management of this material until renovations warrant removal.

PRIORITY:	THREE
CONDITION:	GOOD
POTENTIAL FOR DISTURBANCE:	LOW/MODERATE
ACTION:	MANAGE

5. B03a Men's Locker Room

Transite Drain Pipe is located within the Men's Locker Room. The pipe is located within the southwest corner. This material is considered a non-friable material and will not produce an elevated airborne fibre release unless mechanically disturbed. Recommendation is for the management of this material until renovations warrant removal.

PRIORITY:	THREE
CONDITION:	GOOD
POTENTIAL FOR DISTURBANCE:	LOW/MODERATE
ACTION:	MANAGE

5.0 ASBESTOS ABATEMENT DISCUSSION

Asbestos is a known carcinogen and is listed in the Province of Saskatchewan under the Occupational Health and Safety Appendix, Part V as a Hazardous Chemical Substance and any release of asbestos fibres into the atmosphere creates a potential health hazard. Although the mechanism and epidemiology of asbestos carcinogenisis is not yet well defined, accumulating evidence suggests the significance of exposure at even very low fibre concentrations and hence human exposure should be kept to a minimum. It should be noted however that asbestos is a natural mineral and a measurable background concentration can be detected in any location sampled (inside buildings, outside buildings, urban, rural, etc.). The recommendations of the report are therefore intended to keep the potential exposure to an absolute minimum with the knowledge that a zero exposure is not possible.

Asbestos containing materials have been used in a wide variety of applications. Of particular concern, is the group of so called friable products. A friable product is one which can be crumbled or reduced to powder or smaller fragments by hand pressure. Publications from the U.S.E.P.A. as early as 1977 have indicated the potential hazard of asbestos exposure in buildings containing these friable products. The two main uses of friable asbestos products are as spray insulation (thermal, acoustic or fireproofing) on deck and/or beams or as thermal insulation on piping or mechanical equipment. A large amount of non-friable asbestos-containing materials have also been used in building construction such as asbestos cement board and asbestos containing vinyl flooring.

The mere presence of a friable asbestos containing material does not imply that there is an actual presence of elevated airborne fibre. As numerous studies have indicated, elevated asbestos fibre levels are generally found when settled dust or the actual asbestos containing material itself is disturbed by maintenance, renovation, inadvertent contact or vibration. The factors considered in the Environmental Protection Agency (USEPA) exposure assessment (condition of material, water damage, activity, movement, exposed surface area, accessibility, friability and presence in an air stream) often give some indication of the likelihood of fibre release but are not in any way definitive in determining whether a hazard exists or not. That is, even if the most friable product exists in a building, elevated fibre levels will not likely occur unless there is some disturbance by physical contact, vibration or an air stream.

There are four possible approaches to control exposure to airborne asbestos once a friable material is identified in a building. These methods briefly are as follows:

- **A) Removal** Asbestos material is removed and disposed of by burial and replaced by non-asbestos materials.
- **B)** Encapsulation Asbestos material is coated with a bridging or penetrating sealant.
- **C) Enclosure** Asbestos containing materials are separated from the building environment by barriers such as suspended ceilings or cladding materials.
- **D) Deferred Action or Management and Custodial Control** The Province of Saskatchewan Human Resources, Labor and Employment Branch under the Occupational health and Safety Regulations publish a document outlining "The Management of Asbestos". In the guide for compliance, an action plan is outlined for management of the asbestos materials identified and in summary is:
 - 1. Identification, which has been accomplished by this report.
 - 2. Development of Written Handling Procedures for maintenance personnel or often arrangements are made for a qualified contractor to conduct the necessary removal or spot maintenance prior to the regular staff conducting maintenance.
 - 3. Asbestos Abatement Awareness and Process Training if the regular maintenance personnel are required to conduct asbestos related activities.
 - 4. Inspection on regular basis is conducted to determine the ongoing condition of the material.

6.0 **REFERENCES**

- .1 Province of Saskatchewan "The Occupational Health and Safety Act and The Occupational Health and Safety Regulations" Office Consolidation, December 1996.
- .2 Province of Saskatchewan Human Resources, Labor, and Employment "The Management of Asbestos" January, 1991.
- .3 USEPA, U.S. Environmental Protection Agency, "Guidance for Controlling Asbestos-Containing Materials in Buildings". Washington, DC: Office of Toxic Substances, USEPA.
- .4 Midwest Centre for Occupational Health & Safety St. Paul's, Minnesota Asbestos Training For Inspectors & Management Planners
- .5 McCrone Research Institute Course Hayward California " Asbestos Identification"
- .6 Environment Management and Protection Act, Saskatchewan Environment, October 2002
- .7 Hazardous Substances and waste Dangerous Goods Regulations, Saskatchewan Environment, April 1989

APPENDIX I

BULK SAMPLE ANALYSIS REPORT

BERSCH & ASSOCIATES LTD.

April 30, 2014

City of Saskatoon Infrastructure Services Department 1101 Avenue P North Saskatoon, Sk. S7L 7K6

ATTENTION: Brent Anderson

<u>SUBJECT: Transit Storage & Administration Building – Bulk Sample</u> Report

Please find attached our laboratory's results for the bulk material samples taken from the Transit Storage & Administration Building located at 301 - 24th Street West Saskatoon, SK. The samples were analyzed in our laboratory for the identification of asbestos.

The results for the samples submitted were obtained by examination in accordance with the current USEPA 600/R-93/116 Method for the analysis of asbestos in building materials using polarized light microscopy and dispersion staining techniques. The detection limit of this method is listed as less than 1% by volume.

This test report relates only to the materials sent for examination and any use or extension of the information by the client of these results is the responsibility of the client. If any questions arise on the results of the attached information please contact our office. Thank you for this opportunity of service to your firm.

Sincerely,

Wes Berschiminsky Bersch & Associates Ltd. File: B67BLD23

BERSCH & ASSOCIATES LTD.

BULK SAMPLE PHOTOS

#14 & #23) Floor Tile

#2) Transite Pipe

Box 3568 Humboldt, Sask. S0K 2A0

BULK SAMPLE ANALYSIS REPORT

PROJECT NO. B67.14

CLIENT: City of Saskatoon

Infrastructures Services- Facility Branch

Contact : Brent Anderson

LOCATION: Transit Administration & Maintenance Building South - 301 24th Street West, Saskatoon, SK.

NO.	DATE	SAMPLE INFORMATION	ASBESTOS	%	ANALYST
1	21-May-13	Room # 245 - Pipeline Fitting Compilation on light blue/green lines	None detected		WB
2	21-May-13	Room # 202 - Transite Drain Pipe above the suspended ceiling adjacent to entry door	Chrysotile	40%	WB
3	21-May-13	Room # 222 - Sheet Flooring, cream color with dark spec	None detected		WB
4	21-May-13	Room # 116 - Spray-applied Fireproofing on ceiling	None detected		WB
5	21-May-13	Room # 116 - Pipeline Fitting on overhead supply line adjacent to Room # 107 entry	None detected		WB
6	23-Apr-14	Room # 201 - Drywall Mud Compound above ceiling adjacent to Room # 205	None detected		WB
7	23-Apr-14	Room # 201 - Suspended Ceiling Tile	None detected		WB

B67BAD23

Box 3568 Humboldt, Sask. S0K 2A0

BULK SAMPLE ANALYSIS REPORT

PROJECT NO. B67.14

CLIENT: City of Saskatoon

Infrastructures Services- Facility Branch

Contact : Brent Anderson

LOCATION: Transit Administration & Maintenance Building South - 301 24th Street West, Saskatoon, SK.

NO.	DATE	SAMPLE INFORMATION	ASBESTOS	%	ANALYST
8	23-Apr-14	Room # 241 - Pipeline Fitting on small line under sink	None detected		WB
9	23-Apr-14	Room # 245 - Pipeline Fitting on small light green line adjacent to south wall	None detected		WB
10	23-Apr-14	Room # 245 - Pipeline Fitting on small light green DHW line in northwest corner adjacent to the water heater	None detected		WB
11	23-Apr-14	Room # 245 - Lineal Pipeline Insulation on small green supply line	None detected		WB
12	23-Apr-14	Room # 245 - Ducting Insulation in northwest corner	None detected		WB
13	23-Apr-14	Room # 245 - Drywall Mud Compound at conduit penetration into west wall	None detected		WB
14	23-Apr-14	Room # 244 - Custodian closet - 1' x 1' Floor Tile, beige with brown streak	Chrysotile	1-5%	WB

B67BAD23

Box 3568 Humboldt, Sask. S0K 2A0

BULK SAMPLE ANALYSIS REPORT

PROJECT NO. B67.14

CLIENT: City of Saskatoon

Infrastructures Services- Facility Branch

Contact : Brent Anderson

LOCATION: Transit Administration & Maintenance Building South - 301 24th Street West, Saskatoon, SK.

NO.	DATE	SAMPLE INFORMATION	ASBESTOS	%	ANALYST
15	23-Apr-14	Room # 231 - Red Duct Sealant above ceiling adjacent to 235	None detected		WB
16	23-Apr-14	Room # 228 - Drywall Mud Compound above ceiling tile	None detected		WB
17	23-Apr-14	Room # 102 - Sheet Flooring, green with white spec	None detected		WB
18	23-Apr-14	Room # 104 - Sheet Flooring, gray with white spec	None detected		WB
19	23-Apr-14	Room # 103 - Pipeline Fitting on small DCW line adjacent to radiant heater on north wall	None detected		WB
20	23-Apr-14	Room # 103 - Pipeline Fitting on small HWS line adjacent to north wall straight in from entry	None detected		WB
21	23-Apr-14	Room # 103 - Lineal Pipeline Insulation on DCW line adjacent to the north wall straight in from entry	None detected		WB

B67BAD23

Box 3568 Humboldt, Sask. S0K 2A0

BULK SAMPLE ANALYSIS REPORT

B67BAD23

PROJECT NO. B67.14

CLIENT: City of Saskatoon

Infrastructures Services- Facility Branch

Contact : Brent Anderson

LOCATION: Transit Administration & Maintenance Building South - 301 24th Street West, Saskatoon, SK.

NO.	DATE	SAMPLE INFORMATION	ASBESTOS	%	ANALYST
22	23-Apr-14	Room # 103 - Drywall Mud Compound below stairs	None detected		WB
23	23-Apr-14	Room # 103 - 1' x 1' Floor Tile below stairs, beige with brown streak	Chrysotile	1-5 %	WB
24	23-Apr-14	Room # 103 - Rope Gasket Material at water line penetration into floor, Brown	None detected		WB
25	23-Apr-14	Room # 108 - Pipeline Fitting on small line above radiant heater on south wall	None detected		WB
26	23-Apr-14	Room # 116 - Pipeline Fitting on small line adjacent to north wall adjacent to Wash Bay	None detected		WB
27	23-Apr-14	Room # 108 - Pipeline Fitting on small line in center of area in line with Wash Bay entry	None detected		WB
28	23-Apr-14	Room # 116 - Fireproofing in center of the area containing the fireproofing	None detected		WB

Page4

Box 3568 Humboldt, Sask. S0K 2A0

BULK SAMPLE ANALYSIS REPORT

B67BAD23

PROJECT NO. B67.14

CLIENT: City of Saskatoon

Infrastructures Services- Facility Branch

Contact : Brent Anderson

LOCATION: Transit Administration & Maintenance Building South - 301 24th Street West, Saskatoon, SK.

NO.	DATE	SAMPLE INFORMATION	ASBESTOS	%	ANALYST
29	23-Apr-14	Room # 116 - Mud Compound on Roof Drain Line adjacent to south wall	None detected		WB
30	23-Apr-14	Room # 118 - Insulation within south wall behind metal sheeting	None detected		WB
31	23-Apr-14	Room # 119 - Ceiling Insulation	None detected		WB
32	23-Apr-14	Room # 119 - Pipeline Fitting on small CWS line in southwest corner	None detected		WB
33	23-Apr-14	Room # 114 - Transite Pipe at vertical riser adjacent structural beams between Rooms 119 and 120	Chrysotile	30%	WB
34	23-Apr-14	Room # 114 - Pipeline Fitting at vertical riser adjacent structural beams between Rooms 119 and 120	None detected		WB
35	23-Apr-14	Room # 119 - Ducting Insulation on large ducting adjacent to structural pillars between Rooms 119 and 120	None detected		WB

Page5

APPENDIX II

FLOOR PLANS

	<i>City of</i> Saskatoon
	Infrastructure Services Department
	Facilities Branch 308-975-3300
	 GENERAL NOTES: All drawings to be read in conjunction with the specifications. Drawings are not to be scaled. All dimensions are in millimetres unless otherwise noted. Verify site conditions and location of all utilities prior to the start of construction. Report all discrepancies to the Consultant. If in doubt, ask.
	REV ISSUED FOR DATE A ASBUILT 852-7/03 08/11/07
	DESIGNED BY: DRAWN BY: CHECKED BY: REQUESTED BY: TO SCALE: DATE: 1:400 08/11/07
	Main Floor Base Plan
Floor Tile	PROJECT TITLE 852 Transit Admin Building
	852-7/03 SHEET

KEY Vinyl Asbestos Floor Tile

l	
ļ	
ļ	
I	
ļ	
h	

City of Saskatoon
Infrastructure Services Department
Facilities Branch
 GENERAL NOTES: All dimensions are in millimetres Drawings are not to be scaled. All drawings to be read in conjunction with the specifications. unless otherwise noted. Verify site conditions and location of all utilities prior to the start of construction. Report all discrepancies to the Consultant. If in doubt, ask.
REV ISSUED FOR DATE
DESIGNED BY: DRAWN BY: CHECKED BY: LG SCALE: LG 1:150 29/01/2004 SHEET NAME Asbuilt Second Floor Base Plan PROJECT TITLE 852 Transit Admin Building PROJECT NO. SHEET

TRANSIT REPAIR TERMINAL NORTH BUILDING ASBESTOS SURVEY REPORT

April 2014

Prepared For: City of Saskatoon – Infrastructure Services Department 1101 Avenue P North, Saskatoon SK, Canada S7L 7K6 Attn: Brent Anderson

Prepared By: Bersch & Associates Ltd. Project No. : B67SRD21

1.0 EXECUTIVE SUMMARY

The asbestos audit of the Transit Repair Terminal North Building located at 315 Avenue C North, Saskatoon, SK. entailed the inspection of all accessible suspect asbestos-containing materials (ACM) located within the facility. Materials inspected included insulation materials, floor covering materials, mechanical insulation materials, ceiling tiles, tool boards, sealant materials and gasket materials.

Bulk sample analysis results indicate the presence of "Chrysotile" asbestos within the Transit Repair Terminal North Building located in Saskatoon, SK. Please refer to *Appendix I* for Bulk Sample Analysis results. The recommended actions to be implemented in reference to the ACM identified are Management. Please refer to section 5 Asbestos Abatement Discussion for definitions. It should be noted that the recommendation of "Management" as part of the asbestos action plan is based upon the premise that renovations are not scheduled throughout the area that would impact the asbestos containing material present. *Prior to any major renovation/demolition activity, a destructive investigation is recommended to identify any inaccessible ACM that is physically concealed or isolated in areas such as enclosed wall/ceiling/floor cavities and pipe chases*. Asbestos was detected in the following forms throughout the facility:

- **Transite Roof Drain Pipe** is located in 104, 105, 108, 109, 111 and 117. The Asbestos Drain Pipe has been identified with an "ASBESTOS" stencil signifying the entire pipe is to be considered ACM.
- The Block Walls were tested for Vermiculite Content throughout the facility. No Vermiculite was found to sample during our survey but further investigation may be required prior to demolition of the building. Although it is unlikely due to sample results and investigation, any material located within ceilings, wall cavities, pipe chases or other inaccessible areas or areas of limited access shall be considered asbestos-containing until testing of the material can determine the presence or absence of asbestos.

Bersch & Associates Ltd. implemented the use of doorjamb labels that are applied to all the doorjambs of the rooms containing asbestos within the facility. This permits anyone accessing the room to easily identify the ACM present without having to reference the written report. Legends providing explanation of the abbreviations used on doorjambs were placed on the backside of all maintenance/custodial doors within the facility. Employees and contractors will use the legend as a reference to identify ACM within the areas they are working.

2.0 INTRODUCTION

Bersch & Associates Ltd. was retained by the City of Saskatoon to conduct an Asbestos Survey and Hazard Assessment of the Transit Repair Terminal North Building located at 315 Avenue C North, Saskatoon, SK. The survey entailed the inspection of all accessible areas of the facility; including ceiling spaces, pipe chases, and attics. The purpose of the survey was to locate, identify and assess the condition of all Asbestos Containing Materials (ACM) located throughout the facility. This report gives a detailed account of the inspection results and our firm's recommendations on control options to be implemented to bring the facility in compliance with the Province of Saskatchewan Occupational Health and Safety Act and Regulations. Bersch & Associates Ltd. conducted the survey in April 2014. A review of this report shall be conducted with all trades that are entering the facility to perform maintenance or renovation activity. This will ensure they are familiar with the types and locations of asbestos-containing materials present and prevent any uncontrolled disturbance and/or possible exposure to asbestos.

3.0 METHODOLOGY

Bersch & Associates Ltd. conducted the survey of the Transit Repair Terminal North Building in April 2014. The primary documents for guidance and criteria in this survey were the Province of Saskatchewan "Occupational Health and Safety Act and Regulations, 1996", Province of Saskatchewan "Managing Asbestos", and the U.S. Environmental Protection Agency "Guidance for Controlling Asbestos Containing Materials in Buildings". The USEPA document identifies factors associated with the "condition" and the "potential for disturbance or erosion" of asbestos containing materials (ACM). These factors help to determine potential for exposure to ACM and were used to make a qualitative evaluation of the material. It should be noted that the recommendation of "Management" Asbestos Abatement Action is based upon the premise that renovations are not scheduled in that area that will require disturbing or violating the asbestos containing material. In the event that renovations are scheduled that impact upon the areas of asbestos containing material then pre-removal of the asbestos containing materials may be necessary.

In total, eighteen (18) bulk samples of suspect asbestos-containing materials were collected within the Transit Repair Terminal North Building. As a result Chrysotile asbestos was detected within the facility. Refer to Appendix I for a copy of the Bulk Sample Analysis Report. All bulk samples collected were analyzed by Bersch & Associates Ltd. laboratory in accordance with the current U.S. 40 CFR Part 763, Vol. 52, No.210 for the analysis of asbestos in building materials using polarized light microscopy and dispersion staining techniques. The detection limit of this method is listed as less than 1%.

4.0 RECOMMENDATIONS

1. <u>104, 105 and 111 Work Shop Areas</u>

Transite Drain Pipe is located at ceiling height running throughout the Shop Areas. This material is considered a non-friable material and will not produce an elevated airborne fibre release unless mechanically disturbed. Recommendation is for the management of this material until renovations warrant removal.

PRIORITY:	THREE
CONDITION:	GOOD
POTENTIAL FOR DISTURBANCE:	LOW
ACTION:	MANAGE

2. 108 Locker Room, 109 Washroom and 117 Office

Transite Drain Pipe is located above the suspended ceiling within these areas. The pipe was inaccessible to identify with a stencil but entire pipe should be considered to be ACM. This material is considered a non-friable material and will not produce an elevated airborne fibre release unless mechanically disturbed. Recommendation is for the management of this material until renovations warrant removal

PRIORITY:	THREE
CONDITION:	GOOD
POTENTIAL FOR DISTURBANCE:	LOW
ACTION:	MANAGE

5.0 ASBESTOS ABATEMENT DISCUSSION

Asbestos is a known carcinogen and is listed in the Province of Saskatchewan under the Occupational Health and Safety Appendix, Part V as a Hazardous Chemical Substance and any release of asbestos fibres into the atmosphere creates a potential health hazard. Although the mechanism and epidemiology of asbestos carcinogenisis is not yet well defined, accumulating evidence suggests the significance of exposure at even very low fibre concentrations and hence human exposure should be kept to a minimum. It should be noted however that asbestos is a natural mineral and a measurable background concentration can be detected in any location sampled (inside buildings, outside buildings, urban, rural, etc.). The recommendations of the report are therefore intended to keep the potential exposure to an absolute minimum with the knowledge that a zero exposure is not possible.

Asbestos containing materials have been used in a wide variety of applications. Of particular concern, is the group of so called friable products. A friable product is one which can be crumbled or reduced to powder or smaller fragments by hand pressure. Publications from the U.S.E.P.A. as early as 1977 have indicated the potential hazard of asbestos exposure in buildings containing these friable products. The two main uses of friable asbestos products are as spray insulation (thermal, acoustic or fireproofing) on deck and/or beams or as thermal insulation on piping or mechanical equipment. A large amount of non-friable asbestos-containing materials

have also been used in building construction such as asbestos cement board and asbestos containing vinyl flooring.

The mere presence of a friable asbestos containing material does not imply that there is an actual presence of elevated airborne fibre. As numerous studies have indicated, elevated asbestos fibre levels are generally found when settled dust or the actual asbestos containing material itself is disturbed by maintenance, renovation, inadvertent contact or vibration. The factors considered in the Environmental Protection Agency (USEPA) exposure assessment (condition of material, water damage, activity, movement, exposed surface area, accessibility, friability and presence in an air stream) often give some indication of the likelihood of fibre release but are not in any way definitive in determining whether a hazard exists or not. That is, even if the most friable product exists in a building, elevated fibre levels will not likely occur unless there is some disturbance by physical contact, vibration or an air stream.

There are four possible approaches to control exposure to airborne asbestos once a friable material is identified in a building. These methods briefly are as follows:

- A) **Removal** Asbestos material is removed and disposed of by burial and replaced by non-asbestos materials.
- **B**) Encapsulation Asbestos material is coated with a bridging or penetrating sealant.
- **C) Enclosure** Asbestos containing materials are separated from the building environment by barriers such as suspended ceilings or cladding materials.
- **D) Deferred Action or Management and Custodial Control** The Province of Saskatchewan Human Resources, Labor and Employment Branch under the Occupational health and Safety Regulations publish a document outlining "The Management of Asbestos". In the guide for compliance, an action plan is outlined for management of the asbestos materials identified and in summary is:
 - 1. Identification, which has been accomplished by this report.
 - 2. Development of Written Handling Procedures for maintenance personnel or often arrangements are made for a qualified contractor to conduct the necessary removal or spot maintenance prior to the regular staff conducting maintenance.
 - 3. Asbestos Abatement Awareness and Process Training if the regular maintenance personnel are required to conduct asbestos related activities.
 - 4. Inspection on regular basis is conducted to determine the ongoing condition of the material.

6.0 **REFERENCES**

- .1 Province of Saskatchewan "The Occupational Health and Safety Act and The Occupational Health and Safety Regulations" Office Consolidation, December 1996.
- .2 Province of Saskatchewan Human Resources, Labor, and Employment "The Management of Asbestos" January, 1991.
- .3 USEPA, U.S. Environmental Protection Agency, "Guidance for Controlling Asbestos-Containing Materials in Buildings". Washington, DC: Office of Toxic Substances, USEPA.
- .4 Midwest Centre for Occupational Health & Safety St. Paul's, Minnesota Asbestos Training For Inspectors & Management Planners
- .5 McCrone Research Institute Course Hayward California " Asbestos Identification"
- .6 Environment Management and Protection Act, Saskatchewan Environment, October 2002
- .7 Hazardous Substances and waste Dangerous Goods Regulations, Saskatchewan Environment, April 1989

APPENDIX I

BULK SAMPLE ANALYSIS REPORT

BERSCH & ASSOCIATES LTD.

April 30, 2014

City of Saskatoon Infrastructure Services Department 1101 Avenue P North Saskatoon, Sk. S7L 7K6

ATTENTION: Brent Anderson

SUBJECT: Transit Repair Terminal North Building – Bulk Sample Report

Please find attached our laboratory's results for the bulk material samples taken from the Transit Repair Terminal North Building located at 315 Avenue C North, Saskatoon, SK. The samples were analyzed in our laboratory for the identification of asbestos.

The results for the samples submitted were obtained by examination in accordance with the current USEPA 600/R-93/116 Method for the analysis of asbestos in building materials using polarized light microscopy and dispersion staining techniques. The detection limit of this method is listed as less than 1% by volume.

This test report relates only to the materials sent for examination and any use or extension of the information by the client of these results is the responsibility of the client. If any questions arise on the results of the attached information please contact our office. Thank you for this opportunity of service to your firm.

Sincerely,

Wes Berschiminsky Bersch & Associates Ltd. File: B67BLD21

Bersch & Associates Ltd.

Box 3568 Humboldt, Sask. S0K 2A0

BULK SAMPLE ANALYSIS REPORT

PROJECT NO. B67.14

CLIENT: City of Saskatoon

Infrastructures Services- Facility Branch

Contact : Brent Anderson

LOCATION: Transit Repair Terminal North - 315 Avenue C North, Saskatoon, SK

NO.	DATE	SAMPLE INFORMATION	ASBESTOS	%	ANALYST
1	21-May-13	Room # 110 - 1' x 1' Floor Tile, off white with dark streak	None detected		WB
2	21-May-13	Room # 111 - Transite Roof Drain Pipe	Chrysotile	40%	WB
3	21-May-13	Room # 111 - Lineal Pipeline Insulation on Hot Water Supply Line adjacent to Room # 114	None detected		WB
4	21-Apr-14	Room # 117- Office - 1' x 1' Floor Tile, off white with dark streak	None detected		WB
5	21-Apr-14	Room # 117- Office - 2' x 4' Ceiling Tile with pin hole and gash mark pattern	None detected		WB
6	21-Apr-14	Room # 117- Office - Ducting Insulation above suspended ceiling in northwest corner	None detected		WB
7	21-Apr-14	Room # 111- Repair Area - Green Tool Board on center of west wall	None detected		WB

B67BAD21

Bersch & Associates Ltd.

Box 3568 Humboldt, Sask. S0K 2A0

BULK SAMPLE ANALYSIS REPORT

B67BAD21

PROJECT NO. B67.14

CLIENT: City of Saskatoon

Infrastructures Services- Facility Branch

Contact : Brent Anderson

LOCATION: Transit Repair Terminal North - 315 Avenue C North, Saskatoon, SK

NO.	DATE	SAMPLE INFORMATION	ASBESTOS	%	ANALYST
8	21-Apr-14	Room # 111- Repair Area - Lineal Pipeline Insulation on HWS line adjacent to Unit # 3	None detected		WB
9	21-Apr-14	Room # 111- Repair Area - Bulletin Board in northeast corner adjacent to Room # 109	None detected		WB
10	21-Apr-14	Room # 111- Repair Area - Duct Expansion Gasket on AHU5 adjacent to Room # 117	None detected		WB
11	21-Apr-14	Room # 109 - Men's Washroom - Duct Sealant at seams	None detected		WB
12	21-Apr-14	Exterior of Room # 103 - Insulation behind sheet metal siding on west side of Room # 103	None detected		WB
13	21-Apr-14	Room # 102 - Storage - Fire-stop material at pipe penetration into east wall	None detected		WB
14	21-Apr-14	Room # 102 - Storage - Pipeline Insulation on small HWR line adjacent to east wall	None detected		WB

Page2

Bersch & Associates Ltd.

Box 3568 Humboldt, Sask. S0K 2A0

BULK SAMPLE ANALYSIS REPORT

B67BAD21

PROJECT NO. B67.14

CLIENT: City of Saskatoon

Infrastructures Services- Facility Branch

Contact : Brent Anderson

LOCATION: Transit Repair Terminal North - 315 Avenue C North, Saskatoon, SK

NO.	DATE	SAMPLE INFORMATION	ASBESTOS	%	ANALYST
15	21-Apr-14	Room # 112 - Women's Locker Room - Sheet Flooring, white with beige/green stone pattern	None detected		WB
16	21-Apr-14	Room # 112 - Women's Locker Room - Lineal Pipeline Insulation adjacent to shower	None detected		WB
17	21-Apr-14	Basement Boiler Room - Pipeline Insulation beneath metal cladding on furnace exhaust	None detected		WB
18	21-Apr-14	Basement Boiler Room - Insulation beneath plastic jacking on pipeline south of furnaces	None detected		WB

BERSCH & ASSOCIATES LTD.

BULK SAMPLE PHOTOS

#2) Transite Pipe

APPENDIX II

FLOOR PLANS

Appendix J

NCSCS Score Sheet

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Pre-Screening Checklist

		Response	
	Question	(yes / no)	Comment
1	Are Radioactive material , Bacterial contamination or Biological hazards likely to be present at the site?	No	If yes, do not proceed through the NCSCS. Contact applicable regulatory agency immediately.
2	Are there no contamination exceedances (known or suspected)? Determination of exceedances may be based on: 1) CCME environmental quality guidelines; 2) equivalent provincial guidelines/standards if no CCME guideline exists for a specific chemical in a relevant medium; or 3) toxicity benchmarks derived from the literature for chemicals not covered by CCME or provincial guidelines/standards.	Yes	If yes (i.e., there are no exceedances), do not proceed through the NCSCS.
3	Have partial/incompleted or no environmental site investigations been conducted for the Site?	No	If yes, do not proceed through the NCSCS.
4	Is there direct and signficant evidence of impacts to humans at the site, or off-site due to migration of contaminants from the site?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
5	Is there direct and significant evidence of impacts to ecological receptors at the site, or off-site due to migration of contaminants from the site?	No	Some low levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial land uses. However, if ecological effects are considered to be severe, the site may be categorized as Class 1, regardless of the numerical total NCSCS score. For the purpose of application of the NCSCS, effects that would be considered severe include observed effects on survival, growth or reproduction which could threaten the viability of a population of ecological receptors at the site. Other evidence that qualifies as severe adverse effects may be determined based on professional judgement and in consultation with the relevant jurisdiction.
6	Are there indicators of significant adverse effects in the exposure zone (i.e., the zone in which receptors may come into contact with contaminants)? Some examples are as follows: -Hydrocarbon sheen or NAPL in the exposure zone -Severely stressed biota or devoid of biota; -Presence of material at ground surface or sediment with suspected high concentration of contaminants such as ore tailings, sandblasting grit, slag, and coal tar.	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
7	Do measured concentrations of volatiles or unexploded ordnances represent an explosion hazard ?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, and do not continue until the safety risks have been addressed. Consult your jurisdiction's occupational health and safety guidance or legislation on exposive hazards and measurement of lower explosive limits.

If none of the above applies, proceed with the NCSCS scoring.

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Pre-Screening Checklist

		Response	
	Question	(yes / no)	Comment
1	Are Radioactive material , Bacterial contamination or Biological hazards likely to be present at the site?	No	If yes, do not proceed through the NCSCS. Contact applicable regulatory agency immediately.
2	Are there no contamination exceedances (known or suspected)? Determination of exceedances may be based on: 1) CCME environmental quality guidelines; 2) equivalent provincial guidelines/standards if no CCME guideline exists for a specific chemical in a relevant medium; or 3) toxicity benchmarks derived from the literature for chemicals not covered by CCME or provincial guidelines/standards.	Yes	If yes (i.e., there are no exceedances), do not proceed through the NCSCS.
3	Have partial/incompleted or no environmental site investigations been conducted for the Site?	No	If yes, do not proceed through the NCSCS.
4	Is there direct and signficant evidence of impacts to humans at the site, or off-site due to migration of contaminants from the site?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
5	Is there direct and significant evidence of impacts to ecological receptors at the site, or off-site due to migration of contaminants from the site?	No	Some low levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial land uses. However, if ecological effects are considered to be severe, the site may be categorized as Class 1, regardless of the numerical total NCSCS score. For the purpose of application of the NCSCS, effects that would be considered severe include observed effects on survival, growth or reproduction which could threaten the viability of a population of ecological receptors at the site. Other evidence that qualifies as severe adverse effects may be determined based on professional judgement and in consultation with the relevant jurisdiction.
6	Are there indicators of significant adverse effects in the exposure zone (i.e., the zone in which receptors may come into contact with contaminants)? Some examples are as follows: -Hydrocarbon sheen or NAPL in the exposure zone -Severely stressed biota or devoid of biota; -Presence of material at ground surface or sediment with suspected high concentration of contaminants such as ore tailings, sandblasting grit, slag, and coal tar.	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
7	Do measured concentrations of volatiles or unexploded ordnances represent an explosion hazard ?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, and do not continue until the safety risks have been addressed. Consult your jurisdiction's occupational health and safety guidance or legislation on exposive hazards and measurement of lower explosive limits.

If none of the above applies, proceed with the NCSCS scoring.

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Pre-Screening Checklist

		Response	
	Question	(yes / no)	Comment
1	Are Radioactive material, Bacterial contamination or Biological hazards likely to be present at the site?	No	If yes, do not proceed through the NCSCS. Contact applicable regulatory agency immediately.
2	Are there no contamination exceedances (known or suspected)? Determination of exceedances may be based on: 1) CCME environmental quality guidelines; 2) equivalent provincial guidelines/standards if no CCME guideline exists for a specific chemical in a relevant medium; or 3) toxicity benchmarks derived from the literature for chemicals not covered by CCME or provincial guidelines/standards.	No	If yes (i.e., there are no exceedances), do not proceed through the NCSCS.
3	Have partial/incompleted or no environmental site investigations been conducted for the Site?	No	If yes, do not proceed through the NCSCS.
4	Is there direct and signficant evidence of impacts to humans at the site, or off-site due to migration of contaminants from the site?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
5	Is there direct and significant evidence of impacts to ecological receptors at the site, or off-site due to migration of contaminants from the site?	No	Some low levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial land uses. However, if ecological effects are considered to be severe, the site may be categorized as Class 1, regardless of the numerical total NCSCS score. For the purpose of application of the NCSCS, effects that would be considered severe include observed effects on survival, growth or reproduction which could threaten the viability of a population of ecological receptors at the site. Other evidence that qualifies as severe adverse effects may be determined based on professional judgement and in consultation with the relevant jurisdiction.
6	Are there indicators of significant adverse effects in the exposure zone (i.e., the zone in which receptors may come into contact with contaminants)? Some examples are as follows: -Hydrocarbon sheen or NAPL in the exposure zone -Severely stressed biota or devoid of biota; -Presence of material at ground surface or sediment with suspected high concentration of contaminants such as ore tailings, sandblasting grit, slag, and coal tar.	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
7	Do measured concentrations of volatiles or unexploded ordnances represent an explosion hazard ?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, and do not continue until the safety risks have been addressed. Consult your jurisdiction's occupational health and safety guidance or legislation on exposive hazards and measurement of lower explosive limits.

If none of the above applies, proceed with the NCSCS scoring.

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Summary of Site Conditions

Subject Site:	Test Site			
Civic Address: (or other description of location)		321 Avenue C North, Saskatoon, Saskatchewan		
Site Common Name : (if applicable)		Caswell Transit Maintenance Building		
Site Owner or Custodian: (Organization and Contact Person)		City of Saskatoon		
Legal description <i>or</i> metes and bounds:		Lots 13 to 36, Lot A, and Lot B, Block 19, Plan G582		
Approximate Site area:		0.71 Hectares		
PID(s): (or Parcel Identification Numbers [PIN] if untitled Crown land)				
Centre of site: (provide latitude/longitude or	Latitude: Longitude:	degrees min secs degrees min secs		
UTM coorainates)	UTM Coordinate:	Northing 5777071.64 Easting 385397.7		
Site Land Use:	Current:	Industrial		
	Proposed:			
Site Plan	To delineate indicating the Delineation	the bounds of the Site a site plan MUST be attached. The plan must be drawn to scale boundaries in relation to well-defined reference points and/or legal descriptions. of the contamination should also be indicated on the site plan.		
Provide a brief description of the Site:	The Site is and parking	a transit maintenance facility consisting of a maintenance garage, with outdoor storage yard g.		

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Summary of Site Conditions

Affected media and Contaminants of Potential Concern (COPC):	The soil and groundwater has been impacted by BTEX and petroleum hydrocarbons F1-F4. The CPOPs of concern include benzene, toluene, ethylbenzene, xylenes (BTEX), and petroleum hydrocarbon Fraction F1 (C6-C10), Fraction F2 (C10-C16), Fraction F3 (C16-C34), and Fraction F4 (>C34).

Please fill in the "letter" that best describes the level of information available for the site being assessed:

D

Site Letter Grade

If letter grade is F, do not continue, you must have a minimum of a Phase I Environmental Site Assessment or equivalent.

Scoring Completed By:	Jessica Cutter, M.Sc.
Date Scoring Completed:	24-Jul-14

CCME National Classification System (2008, 2010 v 1.2) (I) Contaminant Characteristics Test Site

Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method of Evaluation	Notes
1. Residency Media (replaces physical state)				·
Which of the following residency media are known (or strongly suspected) to have one or more exceedances of the applicable CCME guidelines? yes = has an exceedance or strongly suspected to have an exceedance no = does not have an exceedance or strongly suspected not to have an exceedance		Soil has been shown to have exceedances for BTEX and/or PHC Fractions F1 to F4. Groundwater has been shown to have exceedances for PHC Fractions F1 and F2 in monitoring well 14-23. The nearest surface water body is the South Saskatchewan River, approximately 1,400 m east of the Site.	The overall score is calculated by adding the individual scores from each residency media (having one or more exceedance of the most conservative media specific and land-use appropriate CCME guideline). Summary tables of the Canadian Environmental Quality Guidelines for soil, water (aquatic life, non-potable groundwater environments, and agricultural water uses) and sediment are available on the CCME website at bttp://www.come.com/initiations/come_room_btml/category_id=124	An increasing number of residency media containing chemical exceedances often equates to a greater potential risk due to an increase in the number of potential exposure pathways.
A. Soil	Yes		<u>International Contractions and the category in a ready of the ready o</u>	
Yes No Do Not Know			For potable groundwater environments, guidelines for Canadian Drinking Water Quality (for comparison with groundwater monitoring data) are available on the Health Canada website at http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_sup-appui/sum_guide- range recomplication of the section	
B. Groundwater	Yes		recommutex_e.num.	
Yes No Do Not Know				
C. Surface water	No			
Yes No Do Not Know				
D. Sediment	No			
Yes No Do Not Koow				
"Known" -score	4			
"Potential" - score				
2. Chemical Hazard				
What is the relative degree of chemical hazard of the contaminant in the list of hazard rankings proposed by the Federal Contaminated Sites Action Plan (FCSAP)?	High	PHC Fraction F1 and Lead are ranked as 'High' on the hazard ranking	The relative degree of chemical hazard should be selected based on the most hazardous contaminant known or suspected to be present at the site.	Hazard as defined in the revised NCS pertains to the physical properties of a chemical which can cause harm. Properties can include toxic potency, propensity to
High Medium Low			The degree of hazard has been defined by the Federal Contaminated Sites Action Plan (FCSAP) and a list of substances with their associated hazard (Low, Medium and High) has been provided as a separate sheet in this file.	biomagnity, persistence in the environment, etc. Although there is some overlap between hazard and contaminant exceedance factor below, it will not be possible to derive
Do Not Know			See Attached Reference Material for Contaminant Hazard Rankings	contaminant exceedance factors for many substances
"Known" -score "Potential" - score				but don't have a CCME guideline. The purpose of this category is to avoid missing a measure of toxic potential.
3. Contaminant Exceedence Factor				
What is the ratio between the measured contaminant concentration and the applicable CCME guidelines (or other "standards")?	High (>100x)	Soil: Greatest exceedences is PHC F2 in 14-23-3 @ 2.25 m = 7040/260 = 27 X Water: Greatest exceedence is PHC F2 in well 14-23 = 136/1.6	Ranking of contaminant "exceedance" is determined by comparing contaminant concentrations with the most conservative media-specific and land-use appropriate CCME environmental quality quidelines. Ranking should be based on contaminant	In the event that elevated levels of a material with no associated CCME guidelines are present, check provincial and USEPA environmental criteria.
High (>100x) Medium (10x to 100x) Low (1x to 10x) Do Not Know "Known" -score "Potential" - score	6		Ranking of contaminant hazard as high, medium and low is as follows: High = One or more measured contaminant concentration is greater than 100 X appropriate CCME guidelines Medium = One or more measured contaminant concentration is 10 - 99.99 X appropriate CCME guidelines Low = One or more measured contaminant concentration is 1 - 9.99 X appropriate CCME guidelines Mobile NAPL = Contaminant is a non-aqueous phase liquid (i.e., due to its low solubility, it does not dissolve in water, but remains as a separate liquid) and is present at a sufficiently high saturation (i.e., greater than residual NAPL saturation) such that there is significant potential for mobility either downwards or laterally. Other standards may include local background concentration or published toxicity	Hazard Quotients (sometimes referred to as a screening quotient in risk assessments) refer to the ratio of measured concentration to the concentration believed to be the threshold for toxicity. A similar calculation is used here to determine the contaminant exceedance factor (CEF). Concentrations greater than one times the applicable CCME guideline (i.e., CEF=>1) indicate that risks are possible. Mobile NAPL has the highest associated score (8) because of its highly concentrated nature and potential for increase in the size of the impacted zone.
			benchmarks. Results of toxicity testing with site samples can be used as an alternative. This approach is only relevant for contaminants that do not biomagnify in the food web, since toxicity tests would not indicate potential effects at higher trophic levels. High = lethality observed. Medium = no lethality, but sub lethal effects observed. Low = neither lethal nor sub lethal effects observed.	

CCME National Classification System (2008, 2010 v 1.2) (I) Contaminant Characteristics

	\'	~		-
	Tes	st S	Site	
_				

Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific	Method of Evaluation	Notes
4. Contaminant Quantity (known or strongly suspected)	I	momation, provide references)		
What is the known or strongly suspected quantity of all contaminants?	<2 ha or 1000 m3	Due to the size of the Site which is less than 1 ha, the suspected quantity of contamination is likely <1,000 cubic meters.	Measure or estimate the area or quantity of total contamination (i.e, all contaminants known or strongly suspected to be present on the site). The "Area of Contamination" is defined as the area or volume of contaminated media (soil, sediment, groundwater,	A larger quantity of a potentially toxic substance can result in a larger frequency of exposure as well as a greater probability of migration, therefore, larger quantities of
>10 hectare (ha) or 5000 m ³ 2 to 10 ha or 1000 to 5000 m ³ <2 ha or 1000 m ³ Do Not Know			surface water) exceeding appropriate environmental criteria.	these substances eam a higher score.
"Known" -score	2			
"Potential" - score				
5. Modifying Factors				
Does the chemical fall in the class of persistent chemicals based on its behavior in the environment?	No	Not listed within reference material	Persistent chemicals, e.g., PCBs, chlorinated pesticides etc. either do not degrade or take longer to degrade, and therefore may be available to cause effects for a longer period of time. Canadian Environmental Protection Act (CEPA) classifies a chemical as persistent	
Yes No Do Not Know			when it has at least one of the following characteristics: (a) in air,	
			 (i) its subject to atmospheric transport from its source to a remote area; (b) in water, its half-life is equal to or greater than 182 days; (c) in sediments, its half-life is equal to or greater than 365 days; or (d) in soil, its half-life is equal to or greater than 182 days. 	Examples of Persistent Substances are provided in attached Reference Materials
			This list does not include metals or metalloids, which in their elemental form do not degrade. However metals and metalloids form chemical species in the environment, many of which are not readily bioavailable.	
Are there contaminants present that could cause damage to utilities and infrastructure, either now or in the future, given their location?	No			Some contaminants may react or absorb into underground utilities and infrastructure. For example, organic solvents may degrade some plastics, and salts could cause corresion of matal
Yes No Do Not Know				
How many different contaminant classes have representative CCME guideline exceedances?	two to four	Volatile Petroleum Hydrocarbons (BTEX, F1-F4) and Lead	For the purposes of the revised NCS ranking system, the following chemicals represent distinct chemical "classes": inorganic substances (including metals), volatile petroleum hydrocarbons. light extractable petroleum hydrocarbons. heave vetractable petroleum	Refer to the Reference Material sheet for a list of example substances that fall under the various chemical classes.
one two to four five or more Do Not Know			hydrocarbons, PAHs, phenolic substances, chlorinated hydrocarbons, halogenated methanes, phthalate esters, pesticides.	
"Known" - Score	2			
"Detential" Secre				

Contaminant Characteristic Total

Raw Total Scores- "Known"	22
Raw Total Scores- "Potential"	0
Raw Combined Total Scores	22
Total Score (Raw Combined / 40 * 33)	18.2

(II) Migration Potential (Evaluation of contaminant migration pathways) Test Site

			Method Of Evaluation	Notes
Definition	Score	Rationale for Score		
		(document any assumptions, reports, or site-specific information; provide references)		
1. Groundwater Movement				·
A. Known COPC exceedances and an operable groundwater				
pathway within and/or beyond the property boundary.	1	There is known contact of contaminants with groundwater. There are exceedences for E1	Paviaw abamical data and avaluate aroundwater quality	The 1002 NCS retionale evoluted the officite migration as a regulatory issue. The
i) For potable groundwater environments, 1) groundwater concentrations exceed background concentrations and 1% the Guideline for Canadian Drinking Water Quality (GCDWQ) or 2) there is known contact of contaminants with groundwater, based on physical evidence of groundwater contamination. For non-potable environments (typically utchan environments with municipal services), 1) groundwater concentrations exceed 1% the applicable non potable guidelines or modified generic	12	and F2 concentrations in monitoring well 14-23	The evaluation method concentrates on 1) a potable or non-potable groundwater environment; 2) the groundwater flow system and its potential to be an exposure pathway to known or potential receptors An aquifer is defined as a geologic unit that yields groundwater in usable quantities and drinking water quality. The aquifer can currently be used as a potable water supply or could have the potential for use in the future. Non-potable groundwater environments are defined as areas that are serviced with a reliable alternative water supply (most comonoly provided in urban areas). The	exposure assessment and classification of hazards should be evaluated regardless of the property boundaries. Someone experienced must provide a thorough description of the sources researched to determine the presence/absence of a groundwater supply source in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resources such as internet links.
guidelines (which exclude ingestion of drinking water pathway) or 2) there is known contact of contaminants with groundwater, based on physical evidence of groundwater impacts.			evaluation of a non-potable environment will be based on a site specific basis. Physical evidence includes significant sheens, liquid phase contamination, or contaminant saturated soils.	Note that for potable groundwater that also daylights into a nearby surface water body, the more stringent guidelines for both drinking water and protection of aquatic life should be considered. Selected References
ii) Same as (i) except the information is not known but strongly	9		Seeps and springs are considered part of the groundwater pathway.	Potable Environments
suspected based on indirect observations. my model control on portune criteria (excludes ingestion potable criteria or modified generic criteria (excludes ingestion of drinking water pathway) for non-potable environments			In Arctic environments, the potability and evaluation of the seasonal active layer (above the permafrost) as a groundwater exposure pathway will be considered on a site-specific basis.	Guidelines for Canadian Drinking Water Quality: <u>www.hc-sc.gc.ca/ewh-semt/pubs/water-</u> eau/doc_sup-appui/sum_guide-res_recom/index_e.html
Absence of groundwater exposure pathway (i.e., there is no aquifer (see definition at right) at the site or there is an adequate isolating layer between the aquifer and the	0			Non-Potable Environments Canadian Water Quality Guidelines for Protection of Aquatic Life. CCME. 1999
contamination, and within 5 km of the site there are no aquatic receiving environments and the groundwater does not daylight).	10			Compilation and Review of Canadian Remediation Guidelines, Standards and Regulations. Science Applications International Corporation (SAIC Canada), report to Environment Canada, January 4, 2002.
Score	12			
NOTE: If a score is assigned here for Known COPC Exceedances, skip Part B (Potential for groundwater pathway) and go to Section	, then you can 2 (Surface Wate	er Pathway)		
B. Potential for groundwater pathway.				
a. Relative Mobility	1		Organics Metals with higher mobility Metals with higher mobility	Reference: US EPA Soil Screening Guidance (Part 5 - Table 39)
High Moderate Low Insinnificant			Noc (198) a basic constraints a basic constraints Koc < 500 (i.e., log Koc < 2.7)	If a score of zero is assigned for relative mobility, it is still recommended that the following sections on potential for groundwater pathway be evaluated and scored. Atthough the Koc of an individual contaminant may suggest that it will be relatively immobile, it is possible that, with complex mixtures, there could be enhanced mobility due to co-solvent
Do Not Know Score	Do Not Know 2			effects. Therefore, the Koc cannot be relied on solely as a measure of mobility. An evaluation of other factors such as containment, thickness of confining layer, hydraulic conductivities and precipitation infiltration rate are still useful in predicting potential for groundwater migration, even if a contaminant is expected to have insignificant mobility based on its chemistry alone.
 b. Presence of engineered sub-surface containment? No containment Partial containment Full containment Do Not Know 	Do Not Know		Review the existing engineered systems or natural attenuation processes for the site and determine if full or partial containment is achieved. Full containment is defined as an engineered system or natural attenuation processes, monitored as being effective, which provide for full capture and/or treatment of contaminants. All chemicals of concern must be contained for Full Containment' scoring. Natural attenuation must have sufficient data, and reports cited with monitoring data to support steady state conditions and the attenuation exercent. If the supersection is no enclosed to include the support steady state conditions and the sufficient data.	Someone experienced must provide a thorough description of the sources researched to determine the containment of the source at the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps, geotechnical reports or natural attenuation studies and other resources such as internet links.
Score	1.5		autoritation processes in there's to containing in isolative in transit autoritation process, insi category is evaluated as high. If there is less than full containment of if uncertain, then evaluate as medium. In Arctic environments, permafrost will be evaluated, as appropriate, based on detailed evaluations, effectiveness and reliability to contain/control contaminant migration.	United States Environmental Protection Agency (USEPA) 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. EPA/600/R- 98/128. Environment Canada – Ontario Region – Natural Attenuation Technical Assistance Bulletins (TABS) Number 19 –21.
 c. Thickness of confining layer over aquifer of concern or groundwater exposure pathway 3 m or less including no confining layer or discontinuous confining layer 			The term "confining layer" refers to geologic material with little or no permeability or hydraulic conductivity (such as unfractured clay); water does not pass through this layer or the rate of movement is extremely slow.	
3 to 10 m > 10 m Do Not Know Score	Do Not Know 0.5		Measure the thickness and extent of materials that will impede the migration of contaminants to the groundwater exposure pathway. The evaluation of this category is based on: 1) The presence and thickness of saturated subsurface materials that impede the vertical migration of contaminants to lower aquifer units which can or are used as drinking water sources or	
			2) The presence and thickness of unsaturated subsurface materials that impede the vertical migration of contaminants from the source location to the saturated zone (e.g., water table aquifer, first hydrostratigraphic unit or other groundwater pathway).	
d. Hydraulic conductivity of confining layer >10 ⁴ cm/s or no confining layer 10 ⁴ to 10 ⁶ cm/s <10 ⁶ cm/s			Uetermine the nature of geologic materials and estimate hydraulic conductivity from published material (or use 'Range of Values of Hydraulic Conductivity and Permeability' figure in the Reference Material sheet). Unfractured clays should be scored low. Sits should be scored medium. Sand, gravel should be scored high. The evaluation of this category is based on:	

(II) Migration Potential (Evaluation of contaminant migration pathways) Test Site

				•• ·
		Rationale for Score	Method Of Evaluation	Notes
Definition	Score	(document any assumptions, reports, or site-specific information; provide references)		
De Net Kenne			TI The presence and hydraulic conductivity (K) of saturated subsurface materials that impede	
Do Not Know			the vertical migration of contaminants to lower aquifer units which can or are used as a drinking	
			water source, groundwater exposure pathway or	
	Do Not Know		vertical migration of contaminants from the source location to the saturated water table aquifer,	
Score	0.5		first hydrostratigraphic unit or other groundwater pathway.	
B. Potential for groundwater pathway.				
Dresinitation infiltration rate			Precipitation	
e. Precipitation inflitration rate			Refer to Environment Canada precipitation records for relevant areas. Divide annual precipitation	
(Annual precipitation factor x surface soil relative permeability factor)			by 1000 and round to nearest tenth (e.g., 667 mm = 0.7 score).	
High			Permeability	
Moderate			For surface soil relative permeability (i.e., infiltration) assume: gravel (1), sand (0.6), loam (0.3) and	
Low			pavement or clay (0).	
None			Multiply the surface soil relative permeability factor with precipitation factor to obtain the score for	
Do Not Know			precipitation infiltration rate.	
Scorr	Do Not Know			
Scole	0.4			
f. Hydraulic conductivity of aquifer			Determine the nature of geologic materials and estimate hydraulic conductivity of all aquifers of	
>10 ⁻² cm/s			concern from published material (refer to "Range of Values of Hydraulic Conductivity and	
10 ⁻² to 10 ⁻⁴ cm/s			remeability in the Relefence Material sheet).	
<10 ⁻⁴ cm/s				
Do Not Know				
	De Net Kerne			
Score	Do Not Know			
Potential groundwater pathway total	5.0			
Allowed Potential score	5.5	Note: If a "known" score is provided, the "potential" score is disallowed.		
Groundwater pathway total	12			
2. Surface Water Movement				
A Demonstrated migration of COPC in surface water above				
background conditions				
		There is no known or suspect contact of contaminants with surface water, however surface	Collect all available information on quality of surface water near to site. Evaluate available data	General Notes:
Known concentrations of surface water:		PHC E3 and E4 impacts were detected in the surface sample collected Due to the distance	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water	Someone experienced must provide a thorough description of the sources researched to
Known concentrations of surface water:		PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., recreation, irrigation, aquatic life, livestock watering, etc.). The evaluation method	Someone experienced must provide a thorough description of the sources researched to classify the surface water body in the vicinity of the contaminated site. This information
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed COME CMOC for protociles of equation if a injection. Instead,		PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., recreation, irrigation, aquatici life, livestock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway.	Someone experienced must provide a thorough description of the sources researched to classify the source water body in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, must be documented in the NCS site Classification worksheet including contact names, the name of the NCS site classification worksheet including contact names, the name of the NCS site classification worksheet including contact names, the name of the name
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site)		PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., recreation, irrigation, aquatic life, lexistock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies.	Someone experienced must provide a thorough description of the sources researched to classify the surface water body in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X;	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitation, irrigation, aquatic life, lexistock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation,	Someone experienced must provide a thorough description of the sources researched to classify the surface water body in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as intermet links.
Known concentrations of surface water: Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based 	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceriation, irrigation, aquatic life, lexistock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References:
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CVOG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations.	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., recreation, irrigation, aquatic life, lexestock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be traci-	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., recreation, irrigation, aquatic life, levestock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classify the surface water body in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u>
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., recreation, irrigation, aquatic life, levestock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME: 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life the transmission of the source of the protection of a source of the source and the source can be able to b
Known concentrations of surface water: Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by>1 X; or There is known contact of contaminants with surface water based on site observations. In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). 	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceration, irrigation, qualute life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceration, irrigation, aquatic life, lexestock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigaton and Livestock Water) <u>www.ccme.ca</u>
 Known concentrations of surface water: Concentrations exceed background concentrations and exceed CCME CWGG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but strongly 	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., recreation, irrigation, aquatic life, lexestock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.come.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWGC, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., recreation, irrigation, qualute life, lexistock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classify the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as intermet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.come.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
 Known concentrations of surface water: Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the ste) by >1 X; or site observations. There is known contact of contaminants with surface water based on site observations. In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). Same as (i) except the information is not known but <u>strongly. suspected</u> based on indirect observations. 	12	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitation, irrigation, qualute life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway	12 8	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitation, irrigation, aquatic life, lexistock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.come.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
 Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) 	12 8 0	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., ercentaion, irrigation, aquatic life, lexistock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigaton and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
 Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly</u> suspected based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) 	12 8 0	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitation, irrigation, aquatic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.come.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
 Known concentrations of surface water: Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the ste) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) 	12 8 0	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., recreation, irrigation, qualute life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.come.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the ste) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly</u> suspected based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)	12 8 0	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitation, irrigation, qualute life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly</u> suspected based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) NOTE: If a score is assigned here for Demonstrated Migration in 1	12 8 0 0 Surface Water, th	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitation, irrigation, aquatic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly</u> suspected based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) Score NOTE: If a score is assigned here for Demonstrated Migration in a B, Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water	12 8 0 Surface Water, th d go to Section 3	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitation, irrigation, aquatic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquicultural Water Uses (trigation and Livestock Water) <u>www.come.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWGG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly</u> suspected based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) Score NOTE: If a score is assigned here for Demonstrated Migration in 1 skip Part B (Potential for migration of COPCs in surface water a. Presence of contaminent	12 8 0 Surface Water, th 1 go to Section 3	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., ercentation, irrigation, aquatic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) Score NOTE: If a score is assigned here for Demonstrated Migration in 1 skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water A constainment No containment	12 8 0 0 Surface Water, th d go to Section 3	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitanio, irrigation, qualita life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (alove ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) Score NOTE: If a score is assigned here for Demonstrated Migration in 1 Skip Part B (Potential for migration of COPCs in surface water) An Ocontainment No containment Partial containment	12 8 0 Surface Water, th 1 go to Section 3	en you can (Surface Soils)	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitation, irrigation, qualutic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME: 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME: 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWGG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) Score NOTE: If a score is assigned here for Demonstrated Migration in a skip Part B (Potential for migration of COPCs in surface water) an to containment Partial containment Partial containment Put and or COPC sin surface water Do Nut Know	12 8 0 Surface Water, th d go to Section 3	en you can (Surface Soils)	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitation, irrigation, aquatic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquicultural Water Uses (trigation and Livestock Water) <u>www.come.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly</u> suspected based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) NOTE: If a score is assigned here for Demonstrated Migration in 1 skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water a. Presence of contamment Parial containment Parial containment Parial containment Full containment Do Not Know	12 8 0 0 Surface Water, th 1 go to Section 3	en you can (Surface Soils)	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceiton, irrigation, aquatic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the ste) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly</u> . suspected based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) Score NOTE: If a score is assigned here for Demonstrated Migration in a kip Part B (Potential for migration of COPCs in surface water) and Part B (Potential for migration of COPCs in surface water) and Part B identification ment Partial containment Partial containment Partial containment Partial containment Partial containment Partial containment Do Not Know Score b. Distance to Surface Water	12 8 0 0 Surface Water, th i go to Section 3	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitaion, irrigation, qualutic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (alowe ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquate life, irrigation, livestock, water, and/or recreation (whichever uses are applicable at the site) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). Same as (i) except the information is not known but <u>strongly</u> suspected based on indirect observations. ii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) NOTE: If a score is assigned here for Demonstrated Migration in 1 Skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water) and Do Not Know Score b. Distance to Surface Water 0 to <100 m	12 8 0 Surface Water, th 1 go to Section 3	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitaion, irrigation, qualutic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME: 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME: 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the ste) by >1 X; or, There is known contact of contaminants with surface water based on site observations. or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) Score NOTE: If a score is assigned here for Demonstrated Migration in 1 skip Part B (Potential for migration of COPCs in surface water) and the containment Partial containment Partial containment Partial containment Put I containment Do Not Know b. Distance to Surface Water 0 to <100 m	12 8 0 0 Surface Water, th d go to Section 3 Do Not Know 3	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceiton, irrigation, aquatic life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life. Review the existing engineered systems and relate these structures to site conditions and proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, dichnes, sedimentation ponds; score high if there are no intervening barriers between the site and nearby surface water. Full containment must include containment of all chemicals. Review available mapping and survey data to determine distance to nearest surface water bodies.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.come.ca</u> Health and Livestock Water) <u>www.come.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME CWG for protection of aquate life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the ste) by >1 X; or There is known contact of contaminants with surface water based on site observations. or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly</u> suspected based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) NOTE: If a score is assigned here for Demonstrated Migration in takip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water a. Presence of contamment Partial containment Partial containment Partia contai	12 8 0 0 Surface Water, th 1 go to Section 3 Do Not Know 3	en you can (Surface Soils)	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitan, irrigation, qualita life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.corne.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquicultural Water Uses (trigaton and Livestock Water) <u>www.corne.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
Known concentrations of surface water: i) Concentrations exceed background concentrations and exceed CCME (VOGG for protection of aquate life, irrigation, livestock, water, and/or recreation (whichever uses are applicable at the ste) by >1 X; or an exceed of the steries is known contact of contaminants with surface water based on site observations. or in the absence of CWOG, chemicals have been proven to be toxic based on site specific testing (e.g., toxicity testing; or other indicator testing of exposure). ii) Same as (i) except the information is not known but <u>strongly</u> suspected based on indirect observations. iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.) NOTE: If a score is assigned here for Demonstrated Migration in 1 skip Part B (Potential for migration of COPCs in surface water) and Partial containment Partial containment Partial containment Do Not Know Score b. Distance to Surface Water 0 to <100 m 100 - 300 m 200 NX Know	12 8 0 0 Surface Water, th g o to Section 3 Do Not Know 3	PHC F3 and F4 impacts were detected in the surface sample collected. Due to the distance between the Site and the closest surficial water body (1,400 m), surface water is not thought to be at risk.	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use, e.g., erceitaion, irrigation, qualita life, lexitock watering, etc.). The evaluation method concentrates on the surface water flow system and its potential to be an exposure pathway. Contarination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation, irrigation, livestock watering, aquatic life.	Someone experienced must provide a thorough description of the sources researched to classly the surface water body in the vicinity of the contaminate site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links. Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life <u>www.ccme.ca</u> CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water) <u>www.ccme.ca</u> Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.

(II) Migration Potential (Evaluation of contaminant migration pathways) Test Site

	1		Mathead Of Fundamentary	Netes
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
a Tanagraphy				
Contaminants shows ground level and slope is steen			Poview opering documents on the topography of the site and the slope of surrounding	
Contaminants at or below ground level and slope is steep			terrain	
Contaminants above ground level and slope is intermediate			Steep slope = >50%	
Contaminants at or below ground level and slope is			Intermediate slope = between 5 and 50%	
Contaminants above ground level and slope is flat			Flat slope = < 5%	
Contaminants at or below ground level and slope is flat			Note: Type of fill placement (e.g., trench, above ground, etc.).	
Do Not Know				
	Do Not Know			
Score	1			
d. Run-off potential			Rainfall	Selected Sources:
High (rainfall run-off score > 0.6)			Refer to Environment Canada precipitation records for relevant areas. Divide rainfall by 1000 and	Environment Canada web page link: www.msc.ec.gc.ca
Moderate (0.4 < rainfall run-off score <0.6)			round to nearest tenth (e.g., 667 mm = 0.7 score).	Snow to rainfall conversion apply ratio of 15 (snow):1(water)
Low (0.2 < rainfall run-off score <0.4)			The former definition of "annual rainfall" did not include the precipitation as snow. This minor	
Very Low (0 < rainfall run-off score < 0.2)			adjustment has been made. The second modification was the inclusion of permeability of	
None (rainfall run-off score = 0)			surface materials as an evaluation factor.	
DO NOL KHOW			Bormonhility.	
	Do Not Know	4	For infiltration assume: gravel (0), sand (0.3), loam (0.6) and pavement or clay (1).	
Score	0.4		g(),	
			Multiply the infiltration factor with precipitation factor to obtain rainfall run off score.	
e. Flood potential				
1 in 2 years			Review published data such as flood plain mapping or flood potential (e.g., spring or mountain run	1
1 in 10 years			off) and Conservation Authority records to evaluate flood potential of nearby water courses both	
1 in 50 years			up and down gradient. Rate zero if site not in flood plain.	
Not in floodplain				
Do Not Know	Do Not Know			
Score	0.5			
Potential surface water pathway total	6.9	A factor of a fill a second second data data in the fill a second state of a fill a fill and the		
Allowed Potential score		Note: If a "known" score is provided, the "potential" score is disallowed.		
Surface water patriway total				
3. Surface Soils (potential for dust, dermal and ingestion exposure)				
A. Demonstrated concentrations of COPC in surface soils (top 1.5 m)				
	1	Exceedances in top 1.5 m in 14-2 and in surface sample collected.		
			Collect all available information on quality of surface soils (i.e., top 1.5 metres) at the site, Evaluate	Selected References:
COPCs measured in surface soils exceed the CCME soil quality			available data against Canadian Soil Quality Guidelines. Select appropriate guidelines based on	CCME. 1999. Canadian Soil Quality Guidelines for the Protection of Environmental and
guideline.	12		current (or proposed future) land use (i.e, agricultural, residential/parkland, commercial, or	Human Health
Strongly suspected that soils exceed guidelines			industrial), and soil texture if applicable (i.e., coarse or fine).	www.ccme.ca
	9			
COPCs in surface soils does not exceed the CCME soil quality guideline	0			
or is not present (i.e., bedrock).	0			
	12			
Score	10			
00010	12			
NOTE: If a score is assigned here for Demonstrated Concentration	ns in Surface So	oils, then you can		
skip Part b (Potential for a surface soils migration pathway) and go	u to Section 4 (V			
B. Potential for a surface soils (top 1.5 m) migration pathway				
			Consult engineering or risk assessment reports for the site. Alternatively, review photographs or	The possibility of contaminants in blowing snow have not been included in the revised
a. Are the soils in question covered?	1		perform a site visit.	NCS as it is difficult to assess what constitutes an unacceptable concentration and
Exposed	1		Landscaped surface soils must include a minimum of 0.5 m of topsoil.	secondly, spills to snow or ice are most efficiently mitigated while freezing conditions
Vegetated				remain.
Landscaped				
Paved De Net Know				
DO NOL KNOW				
	Do Not Know	4		
Score	4			
b. For what proportion of the year does the site remain covered			Consult climatic information for the site. The increments represent the full span from soils which	
by snow?			are always wet or covered with snow (and therefore less likely to generate dust) to those soils	
10 to 10% of the year			which are predominantly dry and not covered by show (and therefore are more likely to generate	
More than 30% of the year			uusij.	
Do Not Know				
	Do Not Know			
Sooro	20 NOT KIIOW	1		
Botontial surface call pathway tatal	3			1
Allowed Potential score		Note: If a "known" score is provided, the "potential" score is disallowed		
Soil pothway total	12			

(II) Migration Potential (Evaluation of contaminant migration pathways)

(,		-
Tes	t Site	

	1		Method Of Evaluation	Notes
Definition	Saara	Rationale for Score		1000
Definition	Score	(document any assumptions, reports, or site-specific information; provide references)		
4. Vapour				
A Demonstrated COPCs in vanour				
A. Demonstrated COV C3 in vapour.	1	Vapour testing has not been conducted, but are suspected as BTEX, PHC E1-E4 are known		
Vapour has been measured (indoor or outdoor) in concentrations		to be volatile compounds. Soil concentrations are above vapour inhalation guidelines for PHC	Consult previous investigations, including human health risk assessments, for reports of vapours	
exceeding risk based concentrations.	12	Fraction F2 for 14-23-3, 14-35-3, 14-36-3, 14-37-3, and 14-40-4	detected.	
Strongly suspected (based on observations and/or modelling)	٩			
	ů.			
vapour has not been measured and volatile hydrocarbons have not been found in site soils or droundwater	0			
	9			
Score	9			
skip Part B (Potential for COPCs in vapour) and go to Section 5 (S	ediment)	lan		
B. Betentiel fer CODCe is unreus	sumon,			
a. Relative Volatility based on Henry's Law Constant. H'	1	Renzene = 2.28 E-01 Toluene = 2.72 E-01 and Ethylhenzene = 3.23 E-01		If the Henry's Law Constant for a substance indicates that it is not volatile, and a score of
(dimensionless)				zero is assigned here for relative volatility, then the other three questions in this section on
High (H' > 1.0E-1)			Reference: US EPA Soil Screening Guidance (Part 5 - Table 36)	Potential for COPCs will be automatically assigned scores of zero and you can skip to
Moderate (H' = 1.0E-1 to 1.0E-3)			Provided in Attached Reference Materials	Section 5.
Not Volatile				
Do Not Know				
	Do Not Know			
Score	2.5			
b. What is the soil grain size?		Coarse as per grain size analysis	Review soil permeability data in engineering reports. The greater the permeability of soils, the	
Fine Coarse			greater the possible movement of vapours.	
Do Not Know			Fine-grained soils are defined as those which contain greater than 50% by mass particles less	
	Do Not Know		than 75 μm mean diameter (D50 < 75 $\mu m)$. Coarse-grained soils are defined as those which	
Score	3		contain greater than 50% by mass particles greater than 75 μ m mean diameter (D50 > 75 μ m).	
	-			
c. Is the depth to the source less than 10m?			Review groundwater depths below grade for the site.	
Yes				
No De Net Know				
DO NOL KHOW	Do Not Know			
Score	1			
d Are there any preferential pathways?			Visit the site during dry summer conditions and/or review available photographs.	Preferential pathways refer to areas where vapour migration is more likely to occur
Von			Where bedrock is present, fractures would likely act as preferential pathyways.	because there is lower resistance to flow than in the surrounding materials. For example,
No				underground conduits such as sewer and utility lines, drains, or septic systems may serve
Do Not Know				pathways include earthen floors, expansion joints, wall cracks, or foundation perforations
	Do Not Know			for subsurface features such as utility pipes, sumps, and drains.
Score	1			
Potential vapour pathway total Allowed Potential score	7.5	Note: If a "known" score is provided, the "potential" score is disallowed.		
Vapour pathway total	9			
5. Sediment Movement				
A. Demonstrated migration of sediments containing COPCs	-			
		Nearest surface water body 1,400 m from site, and there is no evidence for a sediment	Review sediment assessment reports. Evidence of migration of contaminants in sediments must	Usually not considered a significant concern in lakes/marine environments, but could be
There is evidence to suggest that sediments originally deposited to the	12	exposure pairway	be reported by someone experienced in this area.	very important in rivers where transport downstream could be significant.
site (exceeding the CCME sediment quality guidelines) have migrated.				
Strongly suspected (based on observations and/or modelling)	٩			
	Ŭ			
sediments will migrate in future				
or	0			
Absence of sediment exposure pathway (i.e., within 5 km of the site				
there are no aquatic receiving environments, and therefore no				
seuments).	1			
	0			
Score	0			
NOTE: If a score is assigned here for Demonstrated Migration of S	ediments, then	you can		

(II) Migration Potential (Evaluation of contaminant migration pathways)

lest Site				
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
B. Potential for sediment migration				
a. Are the sediments having COPC exceedances capped with sediments having no exceedances ("clean sediments")? Yes No Do Not Know	Do Not Know		Review existing sediment assessments. If sediment coring has been completed, it may indicate that historically contaminated sediments have been covered over by never 'clean' sediments. This assessment will require that cores collected demonstrate a low concentration near the top and higher concentration with sediment depth.	
b. For lakes and marine habitats, are the contaminated sediments in shallow water and therefore likely to be affected by	/		Review existing sediment assessments. If the sediments present at the site are in a river, select *no* for this question.	
tidal action, wave action or propeller wash? Yes No	Do Not Know			
Do Not Know	2			
c. For rivers, are the contaminated sediments in an area prone to sediment scouring? Yes No Do Not Know	Do Not Know		Review existing sediment assessments. It is important that the assessment is made under worst case flows (high yearly flows). Under high yearly flows, areas which are commonly depositional	
Potential sediment pathway total Allowed Potential score Sediment pathway total	6 0	Note: If a "known" score is provided, the "potential" score is disallowed.		
6. Modifying Factors				
Are there subsurface utility conduits in the area affected by contamination? Yes No Do Not Know	No		Consult existing engineering reports. Subsurface utilities can act as conduits for contaminant migration.	
Known Potential	0			

Migration Potential Total Raw "known" total 33 Raw "potential" total 0.0 Raw combined total 33.0 Note: Total (max 33) 17.0 the tot

Note: If "Known" and "Potential" scores are provided, the checklist defaults to known. Therefore, the total "Potential" Score may not reflect the sum of the individual "Potential" scores.

CCME National Classification System (2008, 2010 v 1.2) (III) Exposure (Demonstrates the presence of an exposure pathway and receptors) Test Site

Test one				
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
1. Human	1			
A. NIOWIT SAPOSULE			*Where adverse effects on humans are documented, the site should be automatically designated as a	Known adverse impact includes domestic and traditional food sources. Adverse effects based on food chain transfer to
Documented adverse impact or high quantified exposure which has or will result in an adverse effect, injury or harm or impairment of the safety to humans as a result of the contaminated site. (Class 1 Site*)	22		Class 1 site (e, a, action required). There is no need to proceed through the NCS in this case. However, a scoring guideline (22) is provided in case a numerical score for the site is still desired (e.g., for comparison with other Class 1 sites).	humans and/or animals can be scored in this category. However, the weight of evidence must show a direct link of a contaminated food source/supply and subsequent ingestion/transfer to humans. Any associated adverse effects to the environment are scored separately later in this worksheet. Someone experienced must provide a through description of the sources researched to evaluate and determine the
Same as above, but "Strongly Suspected" based on observations or indirect evidence.	10		This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quoteins -1 for noncarcinogenic chemicals and incremental cancer risks that exceed acceptable levels defined by the jurisdiction for carcinogenic chemicals (for most jurisdictions this is	quantified exposure/impact (adverse effect) in the vicinity of the contaminated site. Selected References:
No quantified or suspected exposures/impacts in humans.	0		typically either >10° or >10°). Known impacts can also be evaluated based on blood testing (e.g. blood lead >10 ug/dL) or other health based testing.	Tream Canada – rederal Contaminated one rosk Assessment in Canada Paris 1 and 2 Guidance on Hornan Ream Screening Level Risk Assessments (www.hc-sc.gc.ca/ewh-semt/pubs/contamsite/index_e.html) United States Environmental Protection Agency, Integrated Risk Information System ((RIS) – <u>http://toxnet.nml.nih.gov</u>
Score	0		This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quotients of less than 0.2 for non-carcinogenic chemicals and incremental lifetime cancer risks for carcinogenic chemicals that are within acceptable levels as defined by the jurisdiction (for most jurisdictions this is less than either 10 ⁶ or 10 ⁶).	
NOTE: If a score is assigned here for Known Exposure, then you can				
skip Part B (Potential for Human Exposure) and go to Section 2 (Huma	in Exposure Modifyir	ng Factors)		
B. Potential for human exposure				
a) Land use (provides an indication of potential human exposure scenarios) Agricultural Residential / Parkland Commercial Industrial Do Not Know			Review zoning and land use maps over the distances indicated. If the proposed future land use is more 'sensitive' than the current land use, evaluate this factor assuming the proposed future use is an place. Agricultural land use is defined as uses of land where the activities are related to the productive capability of the land or facility (e.g., greenhouse) and are agricultural in nature, or activities related to the feeding and housing of animates as livestock. Residential/Parktand land uses are defined as uses of land on which the activities are recreations in nature and require the natural or human designed capability of use land to sustain that activity (parkland). Commercial/Industrial land uses are due to the land to sustain that activity (parkland).	This is the main "receptor" factor used in site scoring. A higher score implies a greater exposure and/or exposure of more sensitive human receptors (e.g., children).
	Do Not Know		derined as land on which the activities are related to the buying, selling, or trading or merchandise or services (commercial), as well as land uses which are related to the production, manufacture, or	
Score	1.5		storage of materials (industrial).	
b. Indicate the level of accessibility to the contaminated portion of the site (e.g., the potential for coming in contact with contamination) Limited barriers to prevent site access; contamination not covered Moderate access or no intervening barriers, contaminants are covered. Remote locations in which contaminants not covered. Controlled access or remote location and contaminants are covered Do Not Know	2.11.11		Review location and structures and contaminants at the site and determine if there are intervening barriers between the site and humans. A low raining should be assigned to a covered joits esurrounded by a fence or in a remote location, whereas a high score should be assigned to a site that has no cover, fence, natural barriers or buffer.	
	Do Not Know			
Score	1			
B. Potential for human exposure				
 C) Potential for intake of contaminated soll, water, sediment or loods for operable or potentially operable pathways, as identified in Worksheet II (Migration Potential). i) direct contact Is dermal contact with contaminated surface water, groundwater, sediments or solls anticipated? Yes No Do Not Know 	Do Not Know		If soils or potable groundwater are present exceeding their respective CCME guidelines, dermal contact is assumed. Exposure to surface water, non-potable groundwater or sediments exceeding their respective CCME guidelines will depend on the site. Select "Yes" if dermal exposure to surface water, non-potable groundwater or sediments is expected. For instance, demain contact with sediments would not be expected in an active port. Only soils in the top 1.5 m are defined by CCME (2003) as surface soils. If contaminated soils are only located deeper than 1.5 m, direct contact with soils is not anticipated to be an operable contaminant exposure pathway.	Exposure via the skin is generally believed to be a minor exposure route. However for some organic contaminants, skin exposure can pika very important component of overall exposure. Dermal exposure can occur while swimming in contaminated waters, bathing with contaminated surface water/groundwater and digging in contaminated dirt, etc.
Score	1.5			Exposure via the lungs (inhalation) can be a very important exposure pathway. Inhalation can be via both particulates
ii) inhalation (i.e., inhalation of dust, vapour) Vapour - Are there inhabitable buildings on the site within 30 m of soils or groundwater with volatile contamination as determined in volksheet II (Migration Potential)? Yes			If inhabitable buildings are on the site within 30 m of soils or groundwater exceeding their respective guidelines for volatile chemicals, there is a potential of rick to human health (Health Canada, 2004). Review site investigations for Location of soil asmipples (having onceasing of validances of volatile substances) relative to buildings. Refer to (II) Migration Potential worksheet, 4B.a), Potential for COPCs in Vapour for a definition of volatility.	Lapostore van en en unger investitet van de vers yn sponani texposter parmety, inneaton Left De Vid Outri particulates (dust) and gas van en unger investitet van en en unger en en unger en en unger en unger en unger en unger en unger volatie contaminants have migrated below buildings resulting in the potential for vapour intrusion. Assesses the potential for humans to be exposed to vapours originating from site soils. The closer the receptor is to a source of volatile chemicals in soil, the greater the potential of exposure. Also, coarser-grained soil will convey vapour much more efficiently in the soil than finer grained material such as clays and sites.
No Do Not Know Score Dust - If there is contaminated surface soil (e.g. top 1.5 m) , indicate whether the soil is fine or coarse textured. If it is	Do Not Know 1.5		Consult grain size data for the site. If soits (containing exceedances of the CCME soil quality guidelines) predominantly consist of fine material (having a median grain size of 75 microns; as defined	General Notes; Someone experienced must provide a thorough description of the sources researched to determine the presence/absence of a vapour migration and/or dust generation in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links.
zero. Fine Coarse Surface soil is not contaminated , enter a score of Do Not Know Texture			uy come (2000)) then these sols are more likely to generate dusts.	Selected References; Canadian Council of Ministers of the Environment (CCME), 2006, Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines, PN 1332, <u>www.come.ca</u> Golder, 2004. Soil Vapour Intrussion Guidance for Health Canada Screening Level Risk Assessment (SLRA) Submitted to Health Canada, Burnaby, BC
Score	Do Not Know			
inhalation total	3.5			

CCME National Classification System (2008, 2010 v 1.2) (III) Exposure (Demonstrates the presence of an exposure pathway and receptors) Test Site

Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
B. Potential for human exposure				
B. Potential for human exposure iii) Ingestion (i.e., ingestion of food items, water and soils [for children]), including traditional foods. Drinking Water: Choose a score based on the proximity to a drinking water supply, to indicate the potential for contamination (present or future). O to 100 m 100 to 300 m 300 m to 1 km 1 to 5 km No drinking water present Do Not Know Score Is an alternative water supply readily available? Yes No Lo Not Know Score	Do Not Know 2 Do Not Know 0.5		Review available site data to determine if drinking water (groundwater, surface water, private, commercial or municipal supply) is known or suspected to be contaminated above Guidelines for Canadian Drinking Water Quality. If drinking water supply is known to be contaminated, some immediate action (e.g., provision of alternate drinking water supply) should be initiated to reduce or eliminate exposure. The evaluation of significant potential for exceedances of the water supply in the future may be based on the capture zones of the drinking water wells; contaminant travel times; computer modelling of flow and contaminant transport.	Selected References: Guidelines for Canadian Drinking Water Quality: <u>www.hc-sc.gc.ca/hecs-</u> <u>sesc/water/publications/drinking, water quality_quidelines/toc.htm</u> Drinking water can be an extremely important exposure pathway to humans. If site groundwater or surface water is not used for drinking, then this pathway is considered to be inoperable. Consider both wild foods such as salmon, venison, caribou, as well as agricultural sources of food items if the contaminated site is on or adjacent to agricultural land uses.
Do Not Know Score Are food items consumed by people, such as plants, domestic animals or wildlife harvested from the contaminated land and its surrounding? Yes No Do Not Know Score Ingestion total Human Health Total "Potentia" Score Allowed "Potentia" Score	Do Not Know 1.5 Do Not Know 0.5 4.5 12	Note if a "Known" Human Health score is provided, the "Potential" score is disallowed.	Use human health risk assessment reports (or others) to determine if there is significant reliance on traditional food sources associated with the site. Is the food item in question going to spend a large proportion of its time at the site (e.g., large nammalis may spend a very small amount of time at small contaminated site)? Human health risk assessment reports for the site in question will also provide information on potential bioaccumulation of the COPC in question.	
2. Human Exposure Modifying Factors				
a) Strong reliance of local people on natural resources for survival (i.e., food, water, shelter, etc.) Yes No	No	_		
Do Not Know Known Potential Raw Human "known" total Raw Human "sotential" total Raw Human Exposure Total Score Human Heath Total (max 22)	0 0 0 0 0.0			
3. Ecological				
A. Known exposure				
Documented adverse impact or high quantified exposure which has or will result in an adverse effect, injury or harm or impairment of the safety to terrestrial or aquatic organisms as a result of the contaminated site.	18		Some tow levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial land uses. However, if ecological effects are deemed to be servers, the site may be categorized as class one (i.e., a priority for remediation or risk management), regardless of the numerical tata MCS score. For the purpose of application of the NCS, effects that would be considered severe include observed effects on survival, growth or reproduction which could threaten the viability of application of the NCS. However, if a different and the second several the site is the site. Other evidence that qualifies as severe adverse effects may be determined based on professional judgement and in consultation with the relevant jurisdiction. If ecological effects are determined to be severe and an automatic Class 1 is assigned, there is no need to proceed through the NCS. However, a scoring guideline (18) is provided in case a numerical score for the site is still desired (e.g., for comparison with other Class 1 isles).	ICUME, 1999: Canadan Water Quality Guidelines for the Protection of Aquatic Life. <u>www.come.ca</u> CCME, 1999: Canadan Water Quality Guidelines for the Protection of Aquatic Life. <u>www.come.ca</u> Sensitive receptors- review: Canadian Council on Ecological Areas; <u>www.come.ca</u> Compared and the level of individual. For example, population-level effects could include reduced reproduction, growth or survival in a species. Community-level, as opposed to at the level of individuals. For example, population-level effects could include reduced reproduction, growth or survival in a species. Community-level effects could include reduced species diversity or relative abundances. Further discussion of ecological assessment endpoints is provided in A Framework for Ecological Risk Assessment: General Guidance (CCME 1996). Notes: Someone experienced must provide a theorough description of the sources researched to classify the environmental
Same as above, but "Strongly Suspected" based on observations or indirect evidence.	12		This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quotients >1. Alternatively, known impacts can also be evaluated based on a weight of evidence assessment involving a combination of site observations, lissue testing, toxicity testing and quantitative community assessments. Scoring of adverse effects on individual rare or endangered species will be completed on a case-by-case basis with full scientific justification.	receptors an use worms of the Nuclear analysis of the intermediation must be documented in the NuCs Site (Jassification) Worksheet induding contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resource such as internet links.
No quantified or suspected exposures/impacts in terrestrial or aquatic organisms	0		This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quotients of less than 1 and no other observable or measurable sign of impacts. Alternatively, it can be based on a combination of other lines of evidence showing no adverse effects, such as site observations, tissue testing, toxicity testing and quantitative community assessments.	
Score	0	1		
	0			

NOTE: If a score is assigned here for Known Exposure, then you can skip Part B (Potential for Ecological Exposure) and go to Section 4 (Ecological Exposure Modifying Factors)

CCME National Classification System (2008, 2010 v 1.2) (III) Exposure (Demonstrates the presence of an exposure pathway and receptors) Test Site

Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
B. Potential for ecological exposure (for the contaminated portion of the				
site) a) Terrestrial i) Land use Agricultural (or Wild lands) Residential/Parkland Commercial Industrial Do Not Know Score	Do Not Know		Review zoning and land use maps. If the proposed future land use is more "sensitive" than the current land use, evaluate this factor assuming the proposed future use is in place (indicate in the worksheet that future land use is the consideration). Agricultural land use is defined as uses of land where the activities are related to the productive capability of the land or facility (e.g., greenhouse) and are agricultural in nature, or activities related to the feeding and housing of animals as livestock. Wild lands are grouped with agricultural land due to the similarities in receptors that would be expected to occur there (e.g., hetbivorous mammals and birds) and the similar need for a high level of protection to ensure ecological functioning. Residential/arkand land uses are defined as uses of land on which dwelling on a permanent, temporary, or seasonal basis is the activity (residential), as well as uses on which the activities are cercentional in nature and require the natural or human designed capability of the land to sustain that activity (parkland). Commercial/Industrial land uses are defined as land on which the activities are selected to the buying, selling, or trading of merchandise or services (commercial), as well as land uses which are related to the production, manufacture, or storage of materials (industrial).	
ii) Uptake potential Direct Contact - Are plants and/or soil invertebrates likely exposed to contaminated soils at the site? Yes No	Do Not Know		If contaminated soils are located within the top 1.5 m, it is assumed that direct contact of soils with plants and soil invertebrates is an operable exposure pathway. Exposure to soils deeper than 1.5 m is possible, but less likely.	
Do Not Know Score	0.5			
in) Integration (Lic., witaine or Doinestic at intras in greating contaminated food lemns, soils or water) Are terrestriat animals likely to be ingesting contaminated water at the site? Yes No. Not Kenny,	Do Not Know		Refer to an Ecological Risk Assessment for the site. If there is contaminated surface water at the site, assume that terrestrial organisms will ingest it.	
Conce Are terrestrial animals likely to be ingesting contaminated soils at the site? Ves No	0.5		Refer to an Ecological Risk Assessment report. Most animals will co-ingest some soil while eating plant matter or soil invertebrates.	
Do Not Know Score Can the contamination identified bioaccumulate? Yes No Do Not Know Score Distance to servitive terrestrial encloted area	Do Not Know 0.5 Do Not Know 0.5		Bioaccumulation of contaminants within food items is considered possible if: 1) The Log(Kow) of the contaminant is greater than 4 (as per the chemical characteristics work sheet) and concentrations in soils exceed the most conservative CCME soil quality guideline for the intended land use, or 2) The contaminant in collected tissue samples exceeds the Canadian Tissue Residue Guidelines.	Environmental recentors include: Incid regional or provincial species of interest or similfrance: arctic environments (op a
0 to 300 m 300 m to 1 km 1 to 5 km > 5 km Do Not Know	Do Not Know		environmental receptor located within this area of the site will be subject to further evaluations. It is also considered that any environmential receptor located greater than 5 km will not be a concern for evaluation. Review Conservation Authority mapping and literature including Canadian Council on Ecological Areas link: <u>www.coaa.org</u> .	site specific basis); nature preserves, habitats for species at risk, sensitive forests, natural parks or forests.
Raw Terrestrial Total Potential Allowed Terrestrial Total Potential	5	Note if a "Known" Ecological Effects score is provided, the "Potential" score is disallowed.		
B. Potential for ecological exposure (for the contaminated portion of the site)				
 b) Aquatic i) Classification of aquatic environment Sensitive Typical Not Applicable (no aquatic environment Do Not Know 	Do Not Know		"Sensitive aquatic environments" include those in or adjacent to shellfish or fish harvesting areas, marine parks, ecological reserves and fish migration paths. Also includes those areas deemed to have ecological significance such as for fish food resources, spawning areas or having rare or endangered species. "Typical aquatic environments' include those in areas other than those listed above.	
i) Uptake potential Does groundwater daylighting to an aquatic environment exceed the CCME water quality guidelines for the protection of aquatic life at the point of contact? Yes No (or Not Applicable) Do Not Know Score	Do Not Know		Groundwater concentrations of contaminants at the point of contact with an aquatic receiving environment can be estimated in three ways: 1) by comparing cellected nearshore groundwater concentrations to the CCME water quality guidelines (this will be a conservative comparison, as contaminant concentrations in groundwater often decrease between nearshore wells and the point of discharge). 2) by conducting groundwater modeling to estimate the concentration of groundwater immediately before discharge. 3) by installing water samplers, "peepers", in the sediments in the area of daylighting groundwater.	
Distance from the contaminated site to an important surface water resource 0 to 300 m 300 m to 1 km 1 to 5 km > 5 km Do Not Know Score	Do Not Know 1.5		It is considered that within 300 m of a site, there is a concern for contamination. Therefore an environmental receptor or important water resource located within this area of the site will be subject to further evaluation. It is also considered that any environmental receptor located greater than 5 km away will not be a concern for evaluation. Review Conservation Authority mapping and literature including Canadian Council on Ecological Areas link: <u>www.ccea.org</u> . Bioaccumulation of food items is possible if:	Environmental receptors include: local, regional or provincial species of interest or significance, sensitive wetlands and fens and other aquatic environments.

CCME National Classification System (2008, 2010 v 1.2) (III) Exposure (Demonstrates the presence of an exposure pathway and receptors)

Test Site				
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
Are aquatic species (i.e., forage fish, invertebrates or plants)			 The Log(Kow) of the contaminant is greater than 4 (as per the chemical characteristics work sheet) 	
that are consumed by predatory fish or wildlife consumers,			and concentrations in sediments exceed the CCME ISQGs.	
such as mammals and birds, likely to accumulate			 The contaminant in collected tissue samples exceeds the CCME tissue quality guidelines. 	
contaminants in their tissues?				
Yes				
NO	De Mat Kasu			
DO NOL KNOW	DUNULKIUW			
Score	0.5			
Raw Aquatic Total Potential	4.5	Note if a "Known" Ecological Effects score is provided, the "Potential" score is		
Allowed Aquatic Total Potential		disallowed.		
4. Ecological Exposure Modifying Factors				
···	1		Consult and an analysis in the second s	Operation of visits include these that are estimated and ensured threatened are forward by the second state of the second stat
			Consult any ecological risk assessment reports. In mormation is not present, utilize on-line databases	Species at risk include trose that are extingated, endangered, threatened, or or special concern. For a list or species at
a) Known occurrence of a species at lisk.			such as Eco Explorer. Regional, Provincial (Environment Ministries), or rederal stall (Fisheries and	Tisk, consult Schedule i of the rederal Species at Risk Act
			Oceans or Environment Canada) should be able to provide some guidance.	(http://www.sararegistry.gc.ca/species/schedules_e.cm/ne=1), way provincia governments may also provide regionary
Is there a potential for a species at risk to be present at the site?				applicable lists of species at risk. For example, in British Coumbia, consult: BCMMU AD 2006 Endongened Species and Executions in British Columbia Pravingial red and blue lists. Ministru of
No				Buttainable Boscierce Magagement and Water Lond and Air Braterian. Provincial red and bute lists, winnistry of
Do Not Know	No			oustainable resource management and water, Land and Air Frotection. http://siniwww.gdv.bc.ca/atrisk/red-blue.htm
001101100	0	1		
	U			
Score				
b) Potential impact of aesthetics (e.g., enrichment of a lake or tainting of				
food flavor).				
				This from will require some level of desumentation by user including contact names, addresses and the second se
Is there evidence of aesthetic impact to receiving water bodies?	No		Documentation may consist or environmental investigation reports, press articles, petitions or other	I mis item will require some level of documentation by user, including contact names, addresses, phone numbers, e-mail
			Tecorus.	audresses. Evidence of changes must be documented, please attach copy of report containing relevant information.
Yes				
No	0			
Do Not Know				
Is there evidence of olfactory impact (i.e., unpleasant smell)?	No	No odors at the surface.	Examples of olfactory change can include the smell of a COPC or an increase in the rate of decay in	
Yes			an aquatic habitat.	
No	0			
Do Not Know				
Is there evidence of increase in plant growth in the lake or water			A distinct increase of plant growth in an aquatic environment may suggest enrichment. Nutrients e.g.,	
body?	NO		nitrogen or phosphorous releases to an aquatic body can act as a fertilizer.	
Yes				
No	0			
Do Not Know				
Is there evidence that fish or meat taken from or adjacent to the	NI-		Some contaminants can result in a distinctive change in the way food gathered from the site tastes or	
site smells or tastes different?	INO		smells.	
Yes	0			
No				
Do Not Know				
Ecological Modifying Factors Total - Known	0			
Ecological Modifying Factors Total - Potential				
Raw Ecological Total - Known	0			
Raw Ecological Total - Potential	0			
Raw Ecological Total	0	-		
Ecological Total (Max 18)	0.0			
5. Other Potential Contaminant Receptors				
				Plants and lichans provide a natural insulating lawar which will help prevent thewing of the portuginate during the summer
				Plants and lichens may also absorb less solar radiation. Solar radiation is turned into heat which can also cause
 a) Exposure of permafrost (leading to erosion and structural concerns) 				underlying permafrost to melt.
			Consult engineering reports, site plans or air photos of the site. When permafrost melts, the stability of	
Are there improvements (roads, buildings) at the site dependant	No		the soil decreases, leading to erosion. Human structures, such as roads and/or buildings are often	
upon the permatrost for structural integrity?			dependent on the stability that the permafrost provides.	
Yes				
No	0			
Do Not Know				
Is there a physical pathway which can transport soils released by			Melting permafrost leads to a decreased stability of underlying soils. Wind or surface run-off erosion	
damaged permafrost to a pearby aquatic environment?	No		can carry soils into nearby aquatic habitats. The increased soil loadings into a river can cause an	
Vec			increase in total dissolved solids and a resulting decrease in aquatic habitat quality. In addition, the	
No	0	1	erosion can bring contaminants from soils to aquatic environments.	
Do Not Know		1	•	
bonornou		1		
Other Potential Receptors Total - Known	0			
		4		
Other Potential Receptors Total - Potential	U			

Exposure Total		
Raw Human Health + Ecological Total - Known	0	
Raw Human Health + Ecological Total - Potential	0	Only includes "Allowed potential" - if a "Known" score was supplied under a given category then the "Potential" score was not included
Raw Total	0	given category then the indentitial score was not included.
Exposure Total (max 34)	0.0	

CCME National Classification System (2008, 2010 v 1.2) Score Summary

Scores from individual worksheets are tallied in this worksheet. Refer to this sheet after filling out the revised NCS completely.

